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We apply a treatment simulation and optimization approach to develop decision support guidance 
for warfarin precision treatment plans. Simulation include the use of ~1,500,000 clinical avatars 
(simulated patients) generated by an integrated data-driven and domain-knowledge based Bayesian 
Network Modeling approach. Subsequently, we simulate 30-day individual patient response to 
warfarin treatment of five clinical and genetic treatment plans followed by both individual and sub-
population based optimization. Sub-population optimization (compared to individual optimization) 
provides a cost effective and realistic means of implementation of a precision-driven treatment plan 
in practical settings. In this project, we use the property of minimal entropy to minimize overall 
adverse risks for the largest possible patient sub-populations and we temper the results by 
considering both transparency and ease of implementation. Finally, we discuss the improved 
outcome of the precision treatment plan based on the sub-population optimized decision support 
rules. 
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1. Introduction

Precision medicine’s fundamental charter is to improve treatment outcomes. Generally, outcome is 
improved by tailoring treatment personalized to an individual’s clinical and genetic characteristics. 
In this manuscript, we combine both simulation and optimization approaches to personalize 
treatment using decision support rules, which indicate which particular treatment plan maximizes 
outcome improvement for patients with a particular set of clinical and genetic characteristics 
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(throughout this manuscript, patients with a particular set of clinical and genetic characteristics are 
defined as a ‘sub-population’). We use precision warfarin treatment plans as an example to show 
our approach, methods and results. 

Warfarin is the most widely used anticlotting agent with a highly significant effect on reducing 
blood clots and preventing strokes and, thus, can dramatically decrease healthcare costs due to 
clotting-related events. However, administration of this drug is a challenge because of both sides of 
risks: stroke, if under-dosed, and bleeding, if over-dosed. Over 50 unique warfarin treatment plans 
have been developed to minimize the complexity of administration  and both sides of risks. Warfarin 
treatments plans predict the initial warfarin dose and suggest a follow-up dose adjustment based on 
the patient’s lab results, International Normalized Ratio (INR), and the patients individual clinical 
and/or genetic factors. 

The key question to healthcare providers and hospital administrators charged with treating 
hundreds of thousands (if not millions) of a diverse collection of patients, is which treatment plan is 
the most “effective”. For warfarin, no single treatment plan exists that provides the “optimal” 
outcome for every patient in a large diverse patient population In short, there is no “one-size fits all” 
treatment plan that optimally reduces adverse events for all individuals. Our approach is based on a 
fundamental principle, “What are the optimal sub-populations of patients, with corresponding 
precision-based treatment plan, that minimizes adverse events while simultaneously reduces 
complexity of implementation across a large diverse patient population.” Our optimization 
“variable” is the collection of precision treatment plans derived from each individual’s clinical and 
genetic characteristics 1,2. We then vary the treatment plan, and definition of sub-population to create 
the optimal outcome. The combination of prediction (of treatment outcome as a function of 
treatment plan) and optimization of grouped outcome (across sub-populations) allows our approach 
to capture each individuals’ variability; produce precision-driven treatment plans and takes into 
consideration the complexity of implementing optimized treatment protocols across a diverse 
patient population 2–4.  

Specifically, we selected 5 warfarin treatment plans, each of which consists of 3 different 
treatment periods and protocols. We demonstrate our approach to find sub-populations and the 
optimal treatment plan for each sub-population. To avoid confusion, throughout this manuscript, we 
use the term ‘treatment plan’ for the 30-day course of treatment and ‘protocol’ for the specification 
of components of the 30 day treatment plan. In addition, ‘personalized treatment plan’ is the 
treatment plan optimized for an individual whereas ‘precision treatment plan’ is the treatment plan 
optimized for an entire sub-population.    

2.  Methods 

In this manuscript, we combined all methods to produce rules to decide precision treatment plan 
with ~1,500,000 clinical avatars, who are simulated Aurora Health Care patients.  In this method 
section, we first discuss the clinical avatars, clinical trial simulation, and optimization. Figure 1 
summarizes 4 key steps to produce data for this work, which consists of two major components, 
Treatment Simulation5 and Optimization2.   
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Figure 1. 4-step integrated approach to produce rules to decide precision treatment plan 

 

2.1.  Create clinical avatars (simulated patients) for warfarin therapy based on data-driven 
and domain-expert knowledge 

The platform used in this study begins with extracting real patient electronic medical records 
(EMRs) from Aurora Health Care, a major hospital system in the Midwest. We used only de-
identified patient data per IRB approval by an AHC honest broker. We extract from a diverse 
collection of 14,206 patients with Atrial Fibrillation (AF) over 10 years which were then integrated 
into that previously validated warfarin clinical trial simulation framework. The simulation 
framework has reproduced warfarin clinical trial results by using a PK/PD model 6 and iterative 
Bayesian Network Modeling (BNM) implemented in  TETRAD 7. 

We incorporated both data-driven knowledge and domain-expert knowledge to create clinical 
avatars. Specifically, (1) Distribution and causal relationships among most variables of patient 
characteristics were discovered from the EMRs, and (2) distribution of genetic tests, CYP2C9 and 
VKORC1, and causal relationships between other variables were observed from extensive literature 
review. We used TETRAD to take both types of input parameters to instantiate a Bayesian Network 
Model of the EMRs coupled with stochastic models to subsequently create clinical avatars. In order 
to cover variations, we create 100 times more subjects (clinical avatars) than the original subjects 
(EMR patients). The clinical avatars were then used as input to the following step, the warfarin 
Pharmacokinetic and Pharmacodynamic (PK/PD) model, which will be described in the following 
section in details.  

2.2.  Develop warfarin treatment simulation and execute multi-treatment, side-by-side 
warfarin simulations 

Details of the treatment simulation are described in our preliminary work 8. In brief, on the treatment 
simulation platform, a clinical avatar representing a patient, “takes” the protocol-adjusted warfarin 

Step 2: Develop warfarin treatment simulation and execute multi-treatment, side-by-side warfarin 
             Simulations (section 2.2) 

Step 1: Create clinical avatars for warfarin therapy based on data-driven and domain-expert  
             Knowledge (section 2.1) 

Step 3: Conduct individual optimization approach to minimize an individual’s two-sided risk (section 
2.3) 

Step 4: Summarize and produce decision support rules to decide precision treatment plan (sub- 
            population optimization) (section 2.4) 
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dose each day of a thirty-day simulation. Since International Normalized Ratio (INR) is not tested 
daily, the avatar’s dose may not be changed until the next scheduled INR test.  

In this study, we simulate treatment process for created clinical avatars based on 5 warfarin 
treatment plans, which are summarized in Table 1. They are AAA, CAA, PGAA, PGPGI, and 
PGPGA. Each treatment plan includes three protocols for three treatment periods. For example, in 
the PGPGI treatment plan, modified IWPC PG protocol is used for initial period (days 1 to 3) 9, 
Lenzini PG protocol is used for adjustment period (days 4 and 5), and Intermountain protocol is 
used for maintenance (days 6 to 30) period. Among all protocols, some protocols (including AHC 
10, IWPC Clinical 9, and Intermoutain 11) use only INR and others (including IWPC PG 9, Modified 
IWPC PG 12, and Lenzini PG 13) use genotypic information and/or INR to adjust dosage.  We note 
that ‘AHC’ is the treatment plan or protocols currently used in the Aurora Health Care and our team 
coded that clinical protocol and put it in our simulation settings. Other treatment plans and protocols 
can be found in the associated references. 

 
Table 1. Five distinct treatment plans included in our treatment simulations. 

            Treatment    

            Periods 

Treatment 

 Plans 

Initial protocol 

(days) 

Adjustment protocol 

(days) 

Maintenance protocol 

(days) 

AAA  (Clinical) AHC (1-2) AHC (3-7) AHC (8-30) 

CAA  (Clinical) IWPC Clinical (1-2) AHC (3-7) AHC (8-30) 

PGAA (Pharmacogenetics) IWPC PG (1-2) AHC (3-7) AHC (8-30) 

PGPGI  (Pharmacogenetics) Modified IWPC PG (1-3) Lenzini PG (4-5) Intermountain (6-30) 

PGPGA (Pharmacogenetics) Modified IWPC PG (1-3) Lenzini PG (4-5) AHC (6-30) 

 
In practice, each simulated patient receives warfarin treatment based on the treatment plans and 

protocols. Their physiological response to the dosing is measured by International Normalized Ratio 
(INR), i.e., measurement to understand how thin the blood is. Generally, if the INR is larger or 
smaller than the therapeutic window (often the range 2.0 < INR < 3.0), then the protocol calculates 
the correct change in dose to adjust INR into therapeutic range. In our computational simulation the 
INRs are predicted using a PK/PD model 6 based on clinical and genotypic characteristics of the 
clinical avatar.  

Similar to actual treatment process, on this platform, the clinical avatar ingests the warfarin dose 
computed by the treatment plan or protocol, then the PK/PD model predict INR, and, then, the 
warfarin dose is, again, adjusted based on the INR. Typically, warfarin is taken every day, and INR 
test is measured based on the schedule documented on the protocol.   

In this study, we simulated 30-day warfarin treatment process using five treatment plans for each 
clinical avatar based on adapted PODSS algorithm 3,4, which was originally developed in machine 
learning settings. Each treatment plan includes three protocols, each of which corresponds to a 
treatment period, and a different protocol uses a distinct algorithm to adjust dosage. As a result, we 
generate several INR values in the 30-day treatment for a protocol. Using each clinical avatars 
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modeled INR values, we calculated Time in Therapeutic Range (TTR; 0-100%) by way of linear 
interpolation between protocol based check days 14 with therapeutic range defined as 2-3. The TTR 
is typically used as surrogate outcome in warfarin studies to represent prevention of the both side of 
risks, stroke and bleeding. In general, the higher TTR, the lower the two-sided risks, and vice versa. 
Finally, we have 5 TTRs, each of which is associated with a specific treatment plan. These TTRs 
are personalized prediction results and the values are very different for various patients based on 
their clinical and genetic characteristics. These predicted TTR outcome can be further used for 
optimization to identify personalized treatment in the following steps.  

2.3.  Conduct individual optimization approach to minimize an individual’s two-sided risk 

In the simulation, when a treatment plan has a larger predicted TTR, the treatment plan has a higher 
probability and chance to actually minimize two-side of risks. Hence, the purpose is to obtain a 
treatment plan to maximize predicted TTR (or minimize risks). More details were discussed in our 
preliminary work 1. Implement the individual optimization approach is straightforward. We first 
prioritize TTRs (each corresponding to a protocol) using the matrix of data developed from the 
above warfarin treatment simulations for each patient and then identify the protocol with the largest 
TTR. The treatment plan or protocol with the greatest TTR indicates the optimal reduction in the 
two-sided risks for a clinical avatar. As a result, based on each clinical avatars’ clinical and genetic 
characteristics, in this process, we identify a label of treatment plan that minimizes the two-sided 
risks for each clinical avatar.   

2.4.  Summarize and produce decision support rules to decide precision treatment plan (sub-
population optimization) 

The difference between this and the last step is optimization target: an individual or a sub-
population.  

The advantage of this step is ‘practicability’, which means we do not need sophisticated program 
and clinical decision support system (CDSS) to take multiple variables of a patient to find the 
‘personalized treatment plan’. Instead, one can use simple criteria and easily follow the decision 
support rules created in this step to find the ‘precision treatment plan’. A rule, for example, indicates, 
PGAA treatment plan is predicted to minimize two-sided risks for the patient sub-population, 
age<64.95 yrs and VKORC = A/A or G/A.  

We used an entropy function implanted in a decision tree algorithm to create the rule set. The 
reason and details has been discussed in our previous method paper 2. In brief, we aim to maximize 
overall outcomes by simultaneously optimize two targets when producing decision support rules: 
(1) identify a treatment plan to minimizes the two-sided risks for a sub-population and (2) identify 
the sub-population that maximal proportion of patients can benefit from the identified treatment 
plan. Due to our specifically designed data structure and entropy/impurity property, we 
simultaneously optimize these two targets to create decision support rules.    
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Table 2. Independent variables used to create the decision tree 

Variable 

Name 

Variable Type Variable Range 

Weight Continuous 71-490 

Height Continuous 46.1-85 

Age Continuous 18-102 

Race Discrete(Nominal) Asian/Black or African American/White 

AMI Binary 0/1 

BMI Continuous 8.7-91.3 

CYP2C9 Discrete(Ordinal) *1/*1 (value=5), *1/*2 (value=4), *1/*3 (value=3),*2/*2 (value=2),*2/*3 

(value=1) 

Fluvastatin Binary 0/1 

VKORC1G Discrete(Ordinal) A/A (value=1), G/A (value=2), G/G (value=3) 

Gender Binary 0/1 

Smoker Binary 0/1 

 
Table 2 summarizes independent variables used for the multi-class decision tree algorithm 

implemented in Matlab 15,16. All independent variables are numeric. The original variable type of 
CYP2C9 and VKORC1 are categorical. We transform these categorical variables into ordinal 
variables based on the dosage amount 17 for appropriate therapy. In the Step 3, we have created a 
label of optimal personalized treatment plan for a clinical avatar. Dependent variable of the decision 
tree is that label. The dataset consists ~1,500,000 clinical avatars, each of which includes a set of 
patient characteristics and the optimal treatment plan label. Now the computational problem 
becomes using a decision tree algorithm to identify patient sub-population with the maximal 
proportion of individuals that benefit from one or fewer optimal treatment plan label(s).  

3.  Results 

3.1.  Observation of the data 

Table 3 summarizes comparison of variable distribution between EMR and clinical avatars. There 
is no statistically significant difference (P <0.05) between the two populations for both continuous 
and discrete variables. 
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Table 3. Characteristics of the Original Aurora AF Warfarin and Aurora Clinical Avatar Populations. 

Characteristic Aurora AF Warfarin Population 
(mean±SD) 

Aurora Clinical Avatar 
Population  

Age year 67.3±14.43 67.2±14.47 

Weight lb 199.24±54.71 199.24±54.6 

Height in 66.78±4.31 66.53±4.32 

Gender, % 
 

Female 
Male 

53.14 
46.86 

53.10 
46.90 

Race, % 
 

White 
African-American 

Asian 
Am. Indian/Alaskan 

Pacific Islander 

95.18 
4.25 
0.39 
0.18 

0.0001 

95.22 
4.19 
0.40 
0.18 

0.0001 

Tobacco, % 
 

No 
Yes 

90.33 
9.66 

90.67 
9.33 

Amiodarone, % 
 

No 
Yes 

88.45 
11.54 

88.49 
11.51 

Fluvastatin, % 
 

No 
Yes 

99.97 
0.03 

99.98 
0.02 

CYP2C9, % 
 

*1/*1 
*1/*2 
*1/*3 
*2/*2 
*2/*3 
*3/*3 

65.77a 
14.6a 
9.11a 
6.41a 
1.93a 

0a 

67.39 
14.86 
9.25 
6.51 
1.97 

0 

VKORC1, % 
 

G/G 
G/A 
A/A 

38.54a 
44.02a 
17.33a 

38.37 
44.18 
17.45 

 aAurora patient population’s genotypic characteristics were derived from published genotype distributions. 

 
Figure 2 summarizes distribution of personalized treatment plan labels (derived from the Step 

3) observed in all clinical avatars. Each clinical avatar has a personalized treatment plan label 
optimized from one of the five treatment plans. As described in the method section, the optimal 
label is decided based on the highest TTR across the 5 available treatment-plan options. That 
optimal-treatment-plan label is a class label used in the subsequent decision tree algorithm. PGAA 
treatment plan (37.8%) is the majority followed by CAA (23.4%) and AAA (22.7%) treatment plans.   
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Figure 2. Proportion of personalized protocol derived from individual optimization. 

3.2.  Derive personalized treatment rules from the data 

 
Figure 3. Personalized Treatment Rules extracted from ~1,500,000 clinical avatars by using a multi-class decision tree 

algorithm. The number of clinical avatars in leaf nodes 1 to 12 ranged from 19,518 to 382,823. 

 
Figure 3 shows decision support rules derived from all those clinical avatars using multi-class 
decision tree algorithm. When the tree is very large, we have many complicated and a large number 
of rules, which results in a challenge for practical use. On the other hand, when the tree is very small, 
the effect of personalized treatment will diminish (extreme example is no tree at all and there is no 
benefit due to personalized treatment). Therefore, we empirically test and decide 12 decision support 
rules to maximize visualization and ease of use while maintaining performance of grouping by 
pruning the tree 18.  
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In this decision tree, we have 12 leaf nodes, each of which has a number corresponding to the 
nodes in the following figures. In each leaf node, we also include the label of optimal sub-population 
treatment plan, which is a predicted class of that node in the decision tree algorithm.  

We note that the ‘actual’ prediction has been done in simulation and individual optimization 
(Steps 2 and 3). Here, the decision tree algorithm is used to summarize and produce decision support 
rules using prediction data created in the Steps 2 and 3. Similar to Figure 2, the optimal sub-
population treatment plan for most nodes is PGAA followed by CAA and AAA.  

3.3.  Analysis of treatment plans in each leaf node 

 

Figure 4. TTR average and standard deviation of the five protocols in different sub-populations (nodes 1 to 12). In 

general genetic-based treatment plans have lower variations (such as PGAA, PGPGA, and PGPGI). 

 
Before comparing personalized with one-fit-all treatment plans, in this section, we observe TTR 
average and standard deviation of each one-fit-all treatment plan for the 12 leaf nodes (Figure 4). 
Specifically, we first follow decision rules in the Figure 3 to identify the 12 patient sub-populations. 
In each sub-population, we take the average and standard deviation of the 5 treatment plans from 
each clinical avatar belong to that sub-population. As a result, we have 5 TTR averages and standard 
deviations observed from the 12 patient sub-populations. 

In the Figure 4, we can observe that variations for AAA and CAA are very high. Although the 
average TTRs for some sub-populations are high, the average TTRs for others are low. Therefore, 
the overall TTR is not high and, therefore, the chance to become optimal sub-population protocol is 
in the middle. On the other hand, although the variations for PGPGA and PGPGI treatment plans 
are consistently low, the TTR averages for most nodes are also consistently low. Thus, the overall 
TTRs are low across all patient sub-populations. Finally, PGAA treatment plan has both advantages: 
higher TTR average and lower variations across all patient sub-populations. Therefore, the chance 
to become sub-population optimal protocol is the highest. Therefore, we can expect PGAA should 
be the dominated sub-population protocol, followed by AAA and CAA. This expectation 
corresponds to the rule to decide personalized treatment plan in Figure 3, in which PGAA is the 
majority followed by AAA and CAA treatment plans. 
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3.4.  Compare personalized with one-fit-all treatment plans  

 
Figure 5. Comparison of TTR average between optimal sub-population and one-fit-all treatment plans. 

 
Figure 6. Comparison of TTR standard deviations between optimal sub-population and one-fit-all treatment plans. 

Finally, we compare TTR average and standard deviations between the optimal sub-population 
and one-fit-all treatment plans in Figures 4 and 5, respectively. There are 12 sub-populations, each 
of which correspond a leaf node (N1~N12). The optimal sub-population treatment plan is the 
treatment plan (black bar) recommended in the Figure 3 for a specific type of patients. On the other 
hand, the one-fit-all treatment plans are the treatment plans (color bars) uniformly used on every 
clinical avatar belong to that sub-population. We note that only computational settings, like 
simulation, allow a clinical avatar receive warfarin treatment based on multiple treatment plans. 
From Figure 5, we can observe that TTR of the optimal sub-population treatment plan is almost the 
highest across all patient sub-populations. On the other hand, variations are, in general, around the 
middle (Figure 6). In sum, compared to one-fit-all treatment protocol, personalized treatment plan 
improve TTR outcome, ranged from 15% to 31% (average and median across those 12 leaf nodes 
are both 24%). Such outcome improvement is the result of optimizing and reusing existing treatment 
plan using precision-medicine approach. 

4.  Conclusion 

Combing clinical avatars simulation, with optimization can yield clinical decision support rules with 
respect to dosing strategy for patients with AF. Clinical avatars are developed through BNM model 
based on the distribution of patient characteristics in Aurora Healthcare EMRs and genotypic 
characteristics from published literature (Step 1 in the Figure 1). We then simulated individual dose 
response and outcomes for 30-day warfarin therapy. All ~1.5-million clinical avatars underwent on 
five simulated treatment regimes (Step 2). Simulated outcomes were then used as input to apply 
individual optimization to create the label of a treatment plan that maximize TTR outcome (Step 3). 
Finally, a decision tree algorithm was used to identify decision support rules that minimizes overall 
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adverse risks (or maximizes TTR) for the largest possible patient sub-populations from these clinical 
avatars (Step 4). The decision support rules identify treatment plans that maximizing TTR outcome 
for patients with a specific type of clinical and genetic characteristics.  

Leaf nodes of decision support rules demonstrate precision treatment plans for a specific type 
of individuals. Figures 4 and 5 further show computational evidence of average TTR outcome and 
variation when comparing between personalized and one-fit-all treatment plans. When comparing 
TTR average (Figure 5), the precision treatment plan almost has the highest TTR treatment outcome 
across all sub-populations from node 1 to 12. Compared with one-size-fits-all treatment plan, 
personalized treatment plan improved TTR outcomes ranged from 15% to 31% (average and median 
across 12 leaf nodes are both 24%). On the other hand, the standard deviations are about the middle 
compared to all other one-fit-all treatment plans. Therefore, we argue that without developing a new 
treatment plan and protocol, the efficacy can be improved by applying precision-medicine approach 
to re-use existing treatment options.     

Many clinical trial simulations (CTS) were used to access cost-effectiveness19, health 
economic20, and discrete-event19,21. Some studies apply CTS to help understand how different 
genotypes influence dosing decisions22. In this study, we used CTS coupled with sub-population 
optimization to produce a ‘practical’ precision-medicine approach. Instead of using many patient’s 
clinical and genetic characteristics, a care-giver can use a few variables at the point of care to 
optimize treatment plan. By using personalized treatment rules in the Figure 3, small, rural clinics 
can provide optimized treatment regimes without significant increased burden or expensive software 
and EMR implementation.  

In general, limitations can be classified in two categories: the PK/PD model and clustering 
approaches. (1) Unlike machine learning, which can integrate many variables to predict INR, PK/PD 
models use only variables (such as partial variables in the Table 2) that were significantly relevant 
for prediction. (2) PK/PD model was developed with patient populations distinct from the patient 
population used to construct the clinical avatar model. (3) Clustering approaches, such as the 
decision tree algorithm, may not create rules of interest for physicians. This limitation will be 
address by our ongoing work, which will focus on producing various versions of rule-creation 
approaches. In this study, bleeding and thrombosis risks are equally important in our study. In 
specialized scenarios, one may be more important than the other risk. We are also working on 
incorporating constraints and weightings to produce these specialized rules.  
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