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Precision medicine research efforts both in basic science discovery and clinical implementation are well 

underway and promise to provide individualized preventions and treatments, improving overall health care 

delivery.  To achieve these goals, advances in data capture and analysis are needed spanning different types of 

‘omic and clinical data.  The efforts to enhance precise treatments for all may accentuate healthcare disparities 

unless specific challenges are identified and addressed.  This session of the 2018 Pacific Symposium on 

Biocomputing presents the latest developments in this transdisciplinary research space of genomics, medicine, 

and population health.  

1. Introduction

Precision medicine is often described as providing a patient the optimal tailored treatment the first 

time as opposed to standard treatment or trial and error.  Precision medicine has arguably been 

practiced since the emergence of modern medicine1. The definition of precision medicine has 

recently evolved from the 20th century’s addition of genetic variants that impact drug response2-4 

to the 21st century’s recognition that lifestyle, social, and environmental factors interact with the 

patient’s genome5, impacting a range of health consequences including conferring risk to disease 

and differential response to treatmen6. 

Although the concept of precision medicine is not new, the implementation of precision medicine 
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is relatively nascent.  Recent key advances in genomics7 and the emergence of electronic health 

records (EHRs) in part through the HITECH Act8, 9 make it feasible to put precision medicine to 

practice10. Despite these advances, the adoption of genomic data in routine clinical practice has 

been slow likely due to a variety of reasons including costs or inconsistent reimbursement policies 

(such as changing and limited coverage by Medicare) and access to genomic testing11. 

Another major driver behind the lack of implementation is the lack of data. The lack of data is 

distributed across active research areas that fuel precision medicine including basic discovery and 

functional or biological characterization12.  Inherent in these broad areas of research are needed 

expansions of informatics approaches to extract health-informative data from various big data 

sources coupled with advances in novel statistical and computational methodology to integrate and 

interpret disparate data types for predictive modeling or further discovery and functional 

characterization13, 14.  Beyond the traditional boundaries of basic research are data needs related to 

precision medicine implementation ranging in topics from cost-effectiveness and clinical utility to 

clinical decision support15, 16, among other topics17. 

Precision medicine research and implementation programs will undoubtedly evolve rapidly with 

the recent infusion of support from the previous administration18.  The initial structure and 

recruitment sites for the Precision Medicine Initiative Cohort Program, an ambitious effort to 

ascertain one million participants in the United States for precision medicine research, have been 

established as of 2016, and recruitment and collection of these data are anticipated this year.  Of 

note is the Program’s emphasis on racial/ethnic, geographic, and economic diversity, variables that 

continue to be underrepresented in the basic discovery studies19-21 despite their known influence 

on human health22, 23. The absence of these data may lead to misdiagnoses and missed 

opportunities for many patients not represented in discovery studies24. The new Cohort endeavor, 

now known as “All of Us,” is expected to both generate new data but also to inspire new 

regulations and guidelines based on safety and bioethics25-27.  Given innovative biocomputing is 

the engine of precision medicine’s implementation vehicle, PSB is the optimal forum for the 

presentation, discussion, and debate of these diverse topics that eventually fuel true individualized 

health for all.    

The investigators and research featured in this session each represent a facet of precision medicine 

research highlighting needs and gaps that must be addressed to achieve the goals of translational 

research.  Topics covered in this session include the problem of finding sufficient numbers of 

patients or participants with similar characteristics required to achieve adequate power to identify 

important biomarkers that distinguish subtypes including genetic, metabolomic or other 

phenotypic features that have a molecular or mechanistic relationship.  Without careful attention, 

this can lead to health disparities, as less information may be available from vulnerable groups, 

and thus leading to less effective diagnosis and treatment.  Such challenges need to be identified 

and actively addressed. 

This session also addresses development of incorporating social network information to recruit 

patients in context where they are and better understand the variables that are operative for those 

individuals in disadvantaged coverage and difficult complex environments, all of which opens up 
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for new possibilities in research and care. 

2.  Podium presentations 

A group of four manuscripts describe novel and emerging approaches to tackle ‘omic data 

generated by metabolomics and transcriptomics.  A Orlenko and colleagues28 present a case study 

of Tree-based Pipeline Optimization Tool (TPOT)29, an Automated Machine Learning (AutoML) 

tool, applied to the clinical metabolic profiling of patients exposed to metformin.  In their 

assessment of TPOT in 546 samples and 42 metabolites, the investigators identified a putatively 

novel association between increased homocysteine and long-term exposure to metformin.  The 

investigators also developed several considerations for future studies including suggestions for 

adjustments for confounding features and recommendations for the ideal study design or dataset 

characteristics that minimize bias and improve AutoML performance. 

J Westra and colleagues30 take a different approach in the analysis of metabolomic data with the 

observation that these data are better represented by Gaussian mixture distributions rather than the 

linear models that assume normality commonly used to test for SNP-trait associations.  The 

investigators present an adaptation of Kim et al where tests of association between copy number 

variants and traits were performed with a likelihood ratio test31.  The adapted test presented here is 

a likelihood ratio test that can be constrained based on a priori biological data describing the 

genotype-phenotype relationship, if available.  This adapted tested was applied to simulated data 

to evaluate performance of the test versus liner models as well as to natural data from 20,315 

SNPs on chromosome 11 for 5,936 Framingham Heart Study participants with gas-

chromatography-measured red blood cell fatty acid levels32.  A total of 28 SNPs from five 

different regions of chromosome 11 were associated with the metabolic trait, including 19 SNPs 

containing the FADS gene complex known to enzymatically desaturate arachidonic acid to dihoo-

gamma-linoleneic acid.  While further work is needed to extend the model, the present study 

suggests that powerful analysis of metabolomics data may require different models compared with 

the traditional linear models so popular in GWAS. 

Both J Berghout and S Rachid Zaim offer methods applicable to single-subject transcriptomics.  J 

Berghout and colleagues33 describe a mixture mole for transcript fold-change clustering from 

isogenically paired samples known as the “N-of-1 pathways MixEnrich.”34  The Gene Ontology 

Biological Processes (GO-BP)35, 36 is applied to both reduce dimensionality as well as to identify 

functional attributes.  The method was validated using a microarray dataset of inbred mouse 

strains exposed to different diets.  The MixEnrich results for the paired mouse liver transcriptomes 

are compared with results from two other methods, Linear Models for Microarray (limma)37 and 

Gene Set Enrichment Analysis38, both of which require a minimum of three pairs as opposed to a 

single sample pair required by MixEnrich.  Results suggest that MixEnrich reproduces GO-BP 

signals in similar priority order compared with the other approaches, thus offering an efficient 

alternative to cost prohibitive cohort-derived gold standards used for validation. 

S Rachid Zaim and colleagues39 use simulations to address limitations in using transcriptomics as 

a clinical biomarker.  Here, the investigators assume that a transcriptional signal or association can 
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be detected at the pathway level regardless of patient-level heterogeneity in gene expression.       

The simulations are performed to assess 54 different scenarios using single-subject and cohort-

based techniques describing variability at various levels including pathway gene set size, fraction 

of expressed gene responsive within the gene set, fraction of up and down-regulated gene 

expression response, and sample size.  Results of these simulations suggest that single-subject 

pathway detection methods that include patient-level variability can detect transcriptional 

dysregulation at the pathway level, scenarios likely relevant to heterogeneous clinical populations 

expected in precision medicine.  

Of all the ‘omics, genomics, represented by genotyping and sequencing, is the most mature and 

readily available in the clinic.  Whole genome sequencing has been particularly groundbreaking  

in diagnosing previously undiagnosed rare diseases40-42, but these data remain an analysis 

challenge for more common, complex diseases.  A Gupta and colleagues43 note, as have others44, 

that the genetic architecture of some complex diseases such as autism spectrum disorder (ASD) 

remains unknown despite evidence of a strong genetic component.  While it is now recognized 

that complex diseases are often a result of many variants across multiple genes with independent 

and interacting effects, and sequencing methods are available to capture genome-wide variability, 

few statistical methods have emerged to detect these complex genetic architectures.  The 

investigators posit that Coalition Game Theory (CGT) can be applied to genomic data to identify 

individual genes (“players”) who improve the performance of the coalition or, in this case, the 

relationship to ASD.  The investigators apply CGT to 2,710 whole-genome sequences from ASD 

multiplex families and identify eight genes with significantly elevated “player scores.”  All eight 

genes are in biological pathways known to be affected by ASD and directly interact with genes 

previously associated with ASD. Although further follow-up is needed, these results suggest CGT 

is a promising method for large-scale genome data generated for complex diseases. 

Two manuscripts centered on the use of automated clinical systems in the delivery or practice of 

precision medicine. In the first, C-L Chi and colleagues45 apply a treatment simulation and 

optimization approach to develop decision support for warfarin dosing.  Warfarin is a commonly 

prescribed anti-coagulant, and variability in initial dosing has a strong and known genetic 

component46, 47.  Genetically-guiding warfarin dosing was an early poster-child for 

pharmacogenomics in precision medicine, but lackluster clinical trials48-50 save for one51 among 

other issues have dampened enthusiasm.  Logistically, the development of algorithm-based dosing 

delivered via EHR-automated decision support has been a challenge for this and other drugs 

impacted by genetics, particularly for diverse populations52.  The investigators present results of 

simulations that employed the property of minimal entropy to minimize overall risks for the 

largest patient groups.  The investigators further discuss these results through the lens of ease of 

implementation, a factor highly relevant for this53 and other potential precision medicine clinical 

applications.     

S Poole and colleagues54 address alarm fatigue, an unfortunate consequence of easy and constant 

automated vital sign monitoring.  The investigators aim to improve default vital sign alarm 

thresholds to decrease the number of unnecessary alarms.  The investigators develop personalized 

vital sign thresholds based on a large heart rate database used to identify the 1st and 99th 
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percentiles of a patient’s heart rate on the patient’s first day of monitoring.  Results suggest that 

these new thresholds would decrease low and heart rate alarms while preserving sensitivity and 

boosting specificity.  Overall, the investigators suggest these thresholds will reduce alarm fatigue 

thereby improving both patient care and hospital costs, major goals underlying the original 

HITECH Act55. 

3.  Posters with published papers 

This year’s poster session with papers published in the proceedings will feature two research 

groups.  In the first, A Fish and colleagues56 present evidence that genetic associations are 

modified by local ancestry transitions inferred from genome-wide association study (GWAS) fine-

mapping Metabochip data available on ~10,000 African Americans with de-identified EHRs57.  

African Americans are considered admixed with an average 75-93% their genomes originating 

from West African ancestral populations and the remaining from  European ancestral 

populations58-61. Local ancestry, as opposed to inferred genome-wide global ancestry, is the 

inference of ancestral state at the locus-level.  Local ancestry estimates have been instrumental in 

admixture mapping efforts62 as well as the estimation of recombination rates and the identification 

of recombination hotspots63.  The investigators leveraged this admixed population with clinical 

data to identify SNP x transition interactions where the transition represent a switch in ancestral 

backgrounds between nearby variants.  Five Bonferroni-corrected significant interactions were 

identified, and subsequent statistical follow-up suggested that a European to African transition 

modifies the association rs16890640 between mean corpuscular hemoglobin and mean corpuscular 

volume.  Bioinformatic data coupled with model organism data suggest that alterations in the 

region chromatin conformation are the biological basis for the modifying effect of the ancestral 

transition.  More broadly, this study offers an example of epistasis where the interaction, and the 

not variant itself, is associated with the phenotype64.  Furthermore, this study highlights yet 

another example of the importance of diverse populations in the search for all genetic variants and 

their modifiers important in human health and health disparities. 

In the second, B Li and colleagues65 test two functions of PrediXcan:  1) its ability to predict gene 

expression and 2) its ability to prioritize GWAS results.  PrediXcan is a gene-based association 

method rooted in the observation that phenotypic variability can be explained by regulatory 

variants that modulate the expression levels of genes66.  PrediXcan uses reference transcriptome 

data to infer gene expression in GWAS data by estimating the genetically determined component 

of gene expression.  This gene-based approach reduces multiple testing and proffers biological 

insights or mechanisms compared with standard single SNP tests of association common in 

GWAS.  This study evaluates PrediXcan using genotypic and transcriptomic datasets available 

from the 1000 Genomes Project (Yoruba; YRI) and GWAS data from the AIDS Clinical Trials 

Group (ACTG) protocol A520267, 68.  To characterize the accuracy in predicting gene expression 

levels, the investigators compared the PrediXcan-inferred YRI data based on whole blood models 

and transcriptomic data from the Genotype-Tissue Expression (GTEx) Project69 and Depression, 

Genes and Networks (DGN)70 to the actual YRI expression data and found that the slopes of 

correlation between predicted and actual were negative for almost one-half of the genes tested.  

Despite these differences, PrediXcan identified 19 genes in the A5202 cohort dataset associated 
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with triglyceride change from baseline to 24 or 48 weeks that were not previously identified using 

phenome-wide association testing, attesting to PrediXcan’s potential ability to prioritize GWAS 

findings.  Of note is the poor transcriptome prediction in YRI despite the fact that the GTEx 

cohort includes African Americans.  These data suggest that testing the limits of PrediXcan in 

gene-trait associations will require more, larger, and diverse populations with both GWAS and 

transcriptome-level data. 
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