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The importance of open data has been increasingly recognized in recent years. Although the sharing 
and reuse of clinical data for translational research lags behind best practices in biological science, a 
number of patient-derived datasets exist and have been published enabling translational research 
spanning multiple scales from molecular to organ level, and from patients to populations. In seeking 
to replicate metabolomic biomarker results in Alzheimer’s disease our team identified three 
independent cohorts in which to compare findings. Accessing the datasets associated with these 
cohorts, understanding their content and provenance, and comparing variables between studies was 
a valuable exercise in exploring the principles of open data in practice. It also helped inform steps 
taken to make the original datasets available for use by other researchers. In this paper we describe 
best practices and lessons learned in attempting to identify, access, understand, and analyze these 
additional datasets to advance research reproducibility, as well as steps taken to facilitate sharing of 
our own data. 
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1.  Background & Introduction 

The importance of data sharing and reuse is increasingly recognized across the biomedical research 
landscape. Also receiving increased attention are the challenges of adhering to best practices in data 
sharing. In many cases, researchers and even data managers are not properly incentivized to put in 
the up-front time and effort required to make data discoverable, comprehensible, and interoperable. 
Even when projects do plan ahead for data sharing by incorporating the required effort into a budget 
and hiring experienced informatics personnel, it is not always obvious how best to present data 
resources to facilitate discovery and uptake by others. 
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† © 2017 The Authors. Open Access chapter published by World Scientific Publishing Company 
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1.1.  The FAIR guiding principles 

Recognizing the urgent need to improve infrastructure for scholarly reuse of data, a group of 
stakeholders came together to develop what they referred to as “FAIR guiding principles”, with 
FAIR as an acronym for Findable, Accessible, Interoperable, and Reusable.1   These principles are 
meant to serve as guidelines and desiderata for good data stewardship. They are intended to enhance 
reusability of data, particularly from the machine perspective, enabling “computational agents” to 
identify, retrieve and analyze relevant datasets. A resource is ‘F’ (findable) if it has a globally unique 
and persistent identifier paired with rich metadata and is indexed in a searchable resource. ‘A’ 
(accessible) means that both data and metadata are retrievable using a standard, open protocol that 
allows for authentication as needed. The ‘I’ (interoperable) criteria relate to use of standards for 
knowledge representation. Finally, in order to be considered ‘R’ (reusable), a resource must have 
clearly defined and documented provenance and rules for usage. 

The authors of the FAIR guiding principles make two important points that are relevant to 
the exercise described here: first, humans and machines face different challenges in the discovery 
and retrieval of relevant datasets. Humans have an intuitive sense of semantics and are able to 
interpret contextual clues such as icons, page structure, and narrative text. Machines lack these 
skills, but are far superior in scale and speed. In an ideal world, a resource enables discovery and re-
use by both human and machine “stakeholders”. Second, the FAIR authors assert that an optimal 
state in which computers are able to fully “understand” and operate on a digital object will likely 
rarely be achieved. Our intent in this work is not to fault any existing data resources, producers, or 
curators for in any way falling short of this theoretic optimal state. Rather, we seek to highlight ways 
in which existing datasets, all of which were made available before the FAIR guidelines were 
published, already adhere to these principles, and provide practical suggestions for how data 
producers going forward can make resources findable, accessible, interoperable, and reusable for 
both machines and humans. 

1.2.  The Alzheimer’s Disease Metabolomics Consortium 

The Alzheimer’s Disease Metabolomics Consortium (ADMC- https://sites.duke.edu/adnimetab/) is 
a large, inter-institutional consortium that brings together centers of excellence of metabolomics, 
informatics and modeling to work collaboratively with Alzheimer’s Disease experts to elucidate the 
molecular mechanisms of etiology and progression in AD. ADMC uses a systems approach in which 
metabolomics data are used to inform and complement genomics, proteomics, and neuroimaging 
data to provide novel insights about disease mechanisms.  

The ADMC generated metabolomics data in collaboration with the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) on the ADNI-1 cohort (see Section 2.1.  below). These data were 
analyzed to identify peripheral metabolic changes in AD patients and correlate them with 
cerebrospinal fluid pathology markers, imaging features, and cognitive performance. Desiring to 
validate findings in independent cohorts, we identified other extent sample collections and/or 
datasets for which similar clinical and molecular data had been collected, or could be generated 
prospectively (Figure 1). In this paper we assess the degree to which these datasets already adhere 
to FAIR criteria and identify additional desiderata for best practices in data sharing, especially for 
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human users. Note that all of the datasets included here were discovered through distinctly human 
mechanisms: prior knowledge, networking, and past first-hand experience. 
 

 

Figure 1: Metabolomic profiling was performed on the ADNI-1 cohort. The resulting 
metabolomic dataset was combined with clinical data collected on the ADNI-1 cohort, 
including AD-related markers and cognitive tests, to identify biomarkers in AD. Three 
additional cohorts were identified for which either metabolomic data had been collected 
(Framingham) or biospecimens were available (MURDOCK and ROSMAP). The ADMC 
performed metabolomic profiling on serum samples from ROSMAP and MURDOCK. 
Analysis of these datasets is ongoing. 

2.  Methods 

2.1.  Datasets 

Three cohorts were identified for use in validation of original findings (Table 1). In both the original 
analysis of the ADNI-1 cohort2 and replication in the additional datasets, analysis required 
metabolomic data, demographics, and clinical data, e.g. cognitive tests, changes in AD status, and 
APOE genotype.  

The ADNI-1 cohort on which the original analysis was performed is part of the Alzheimer’s 
Disease Neuroimaging Initiative and comprises 200 normal controls, 400 individuals with MCI, and 
200 subjects with mild AD. Metabolomics data were generated on baseline serum samples using the 
AbsoluteIDQ®-p180 kit (Biocrates AG).3 
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The Framingham heart study was initiated in 1948 to identify risk factors for heart disease, 
beginning with 5200 adult men and women from the town of Framingham, MA. In 1971 a second-
generation “offspring” cohort was enrolled, consisting of 5,100 of the original participants' adult 

children and their spouses.4 The offspring cohort had their second examination 8 years after 
enrollment, and subsequent visits approximately every 4 years after that, including imaging, 
cognitive assays, etc. On their fifth visit, blood was drawn and used to perform metabolomic 
profiling using a liquid chromatography / mass spectrometry (LC/MS) platform.5 They did not the 
Biocrates p180 platform, however there was overlap in the specific metabolites measured including 
a number of amino acids, lysophosphatidylcholines, and sphingomyelins.  

The Religious Orders Study (ROS) and the Memory and Aging Project (MAP) are both 
longitudinal cohort studies of aging and Alzheimer's disease (AD) run from Rush University. ROS 
enrolled individuals from more than 40 groups of religious orders (nuns, priests, brothers) across 
the United States for longitudinal clinical analysis and brain donation.6 MAP was designed to 
complement the ROS study by using a similar structure and design as ROS, but enrolling 
participants with a wider range of life experiences and socioeconomic status.7 The entire ROSMAP 
cohort consists of approximately 3000 participants. The ADMC has performed mass-spectrometry-
based metabolomic profiling on both serum and post-mortem brain samples for a subset of the 
ROSMAP cohort using the AbsoluteIDQ®-p180 kit from Biocrates Life Sciences.  

Finally, the MURDOCK Study is not an open dataset but rather a community-based 
longitudinal registry and biorepository based in Kannapolis, NC and run by Duke University with 
more than 12,000 participants enrolled.8 A number of prospective disease-specific “sub-studies” 
have been initiated from this registry, including a memory health study with approximately 800 
participants. Blood and urine samples were collected at baseline enrollment along with demographic 
and clinical information. MURDOCK participants consent to give researchers access to their 
electronic health records for future study, and follow-up questionnaires are collected annually to 
ascertain longitudinal health status from the patient perspective. For the memory health study, 
participants were given assessments of cognitive status at enrollment and in a follow-up visit two 

Table 1. Overview of datasets included in evaluation.
Dataset Full name Study URL Data URL 
ADNI Alzheimer’s disease 

neuroimaging initiative
http://adni.loni.usc.edu/ http://adni.loni.usc.edu/data-

samples/access-data/  
Framingham Framingham Heart 

Study 
https://www.framinghamhe
artstudy.org/  

https://www.ncbi.nlm.nih.gov/p
rojects/gap/cgi-
bin/study.cgi?id=phs000007

ROSMAP Religious Orders Study 
and Memory and Aging 
Project 

https://www.synapse.org/#!
Synapse:syn3219045  

https://www.radc.rush.edu/

MURDOCK Measurement to 
Understand 
Reclassification of 
Disease of 
Cabarrus/Kannapolis

https://www.murdock-
study.com/  

https://www.murdock-
study.com/services/data-
dictionary/ 
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years later. Metabolomic profiling was performed on baseline serum samples using the 
AbsoluteIDQ®-p180 kit.  

2.2.  Data governance 

ADNI has a relatively straightforward process for applying for access. One must agree to an online 
Data Use Agreement and fill out a form that includes one’s institutional affiliation and a description 
of the proposed use of the data. Annual status updates are requested via email, and failure to provide 
them results in access being rescinded.  

Access to the Framingham data involves a more complex process. The Framingham data are 
stored in dbGaP. In order to request access, the applicant must have an approved IRB protocol for 
data analysis from their home institution. An application is then required that describes the proposed 
use of the data as well as a data management plan to keep data secure. Notably, the principal 
investigator’s signature is not sufficient. Rather, an institutional signing authority is required to be 
involved, as well as an IT Director who has institutional (not just departmental) authority, e.g. the 
Chief Information Officer or Director of IT Security. A major hurdle for our inter-institutional 
consortium was the requirement that each institution obtain the data directly from dbGaP rather than 
access the data through our secure file share. Statistical collaborators at other institutions were thus 
required to obtain their own respective IRB protocol approval and apply for access through dbGaP 
including a named signing authority and IT contact. Even using Duke’s protocol as a basis, this 
slowed things down considerably. 

For the ROSMAP and MURDOCK studies, each has a process in place for a would-be 
collaborator to fill out a proposal for use of data and/or samples. A signed DUA is required between 
the source institution and each collaborating institution, as well as a material transfer agreement 
(MTA) where applicable. For both studies, the collaborator must then identify which specific 
variables are needed. MURDOCK additionally requires a data sharing document that specifies the 
mechanism of the data exchange.  

3.  Results 

3.1.  FAIR Assessment 

We attempted to assess each dataset’s adherence to the FAIR guiding principles. Note that we did 
not rely solely on machine-readable data and metadata particularly for the ‘F’, ‘A’, and ‘R’ criteria, 
but took into account resource owners’ efforts to make datasets findable, accessible, and reusable 
for humans as well. The overall scores are provided in Table 2, with descriptions provided below.  

We assessed each resource on a scale from 1 to 5 with 1 signifying no adherence at all and 
5 connoting perfect adherence to the principles. By definition, since we were able to re-use each 
dataset to some degree, none of them received a score of 1. Conversely, none of them received a 
perfect 5 in any of the four areas. A formal analysis enumerating each sub-criteria is beyond the 
scope of this review, but specific examples of how the different datasets demonstrated the guiding 
principles are described in the following sections, along with some areas for improvement. 
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3.1.1.  Alzheimer’s Disease Neuroimaging Initiative ADNI-1 Cohort 

ADNI is indexed in the Neuroscience Information Framework (NIF) as a resource, though not as a 
dataset per se (‘F’). Access to ADNI data generally requires log-in to the Laboratory of Neuro 
Imaging (LONI) Image and Data Archive (IDA)9 and manual navigation through a web interface to 
identify the files of interest (‘A’). Given that ADNI is a complex study in its second decade and 
involves a complicated protocol to collect clinical, genomic, demographic, imaging, and cognitive 
data on multiple sub-cohorts, the available data spans hundreds of files and thousands of variables. 
This can be challenging to navigate, particularly for researchers new to the study. ADNI mitigates 
these challenges through extensive documentation and data dictionaries (‘R’). ADNI has data 
dictionaries for each data file and a single consolidated dictionary in .csv format that enables 
searching for terms and filtering by topic. ADNI also has a merged file containing the most 
important variables. A major strength of ADNI is that all data files are available not only as .csv but 
also as packages for R, SPSS, SAS, and Stata (‘A’, ‘I’). LONI also has tools for visualization of the 
population by different parameters (Figure 2). 

Table 2. Scoring of compliance with FAIR principles for each dataset. Legend: 1- no 
adherence; 2- minimal evidence of adherence; 3- some adherence; 4- good adherence; 
5- follows principles to the letter. The MURDOCK Study is not included here because 
it is not an open data set but rather a registry and biorepository for collaborative 
research. 

Dataset Findable Accessible Interoperable Reusable 
ADNI 3 3 2 4 
Framingham 4 3 2 4 
ROSMAP 4 2 2 4 

Figure 2: Visualization tools on the ADNI’s data archive website. 
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The extensive existing clinical dataset for the ADNI-1 cohort was collected under the NIA-funded 
Alzheimer’s Disease Neuroimaging Initiative. All ADNI-1 data must follow ADNI data governance 
rules, which include the stipulation that data be distributed only through the Laboratory of Neuro 
Imaging (LONI) Image and Data Archive (IDA).9 Metabolomic data were generated through the 
NIA-funded Accelerating Medicines Partnership - Alzheimer's Disease (AMP-AD), which has a 
different set of data governance rules, including the requirement that all data be accessible through 
Sage Bionetworks’ Synapse platform.  

In order to comply with AMP-AD rules that require access to datasets through Sage 
Bionetworks’ Synapse platform10, a project was created in Synapse with digital object identifiers 
(DOIs) that point to the relevant permanent URLs in LONI’s IDA (‘F’). Importantly, these DOIs 
can be versioned as the underlying data files are updated, e.g. when additional clinical data are 
collected. Though two separate logins are required, one for Synapse and one for LONI, the hand-
off is otherwise transparent and selecting “download” from the Synapse interface enables a user to 
download the appropriate file through the open http protocol directly after LONI authentication 
(‘A’).  

3.1.2.  Framingham 

The study itself is indexed in both DataMed and NIF and has a permanent, versioned accession 
number in dbGaP (‘F’). Data are downloadable from dbGaP through http once permission is 
obtained (‘A’). Documentation is extensive, including annotated codebooks, procedures, variable 
statistics and publications (‘R’). Again unsurprisingly for such a large, complex, and long-running 
study the documentation can be overwhelming, particularly for someone new to the study. The 
complexity is partially mitigated by search tools on the Framingham web site for variables. File 
names include some amount of metadata, with documentation to help the user understand shorthand 
naming conventions. However, individual data dictionaries for respective files contain headers that 
describe file content clearly and in detail. Another helpful resource for understanding Framingham 
data is a spreadsheet listing all of the different data files along with what cohorts they apply to and 
what types of data they contain (‘R’) (Figure 3). Finally, although dbGaP does not make explicit 
use of the Data Use Ontology (DUO), which has been adopted by the Global Alliance for Genomics 
and Health (GA4GH, or the Global Alliance) to code consent information, it does reference concepts 
that appear in the DUO such as not-for-profit use only (‘F’). 

 
 

Figure 3: Framingham spreadsheet of data files and related metadata.  
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3.1.3.  ROSMAP 

The Rush Alzheimer's Disease Center (RADC) has developed an elegant and user friendly 
“Research Resource Sharing 
Hub” designed to enable 
non-RADC investigators to 
navigate the complex set of 
data and biospecimens 
available for sharing (Figure 
4) (‘F’). This website 
provides extensive 
documentation, the ability to 
generate reports on numbers 
of research participants 
matching specific criteria 
broken down by 
demographics (Figure 6), 
and the ability to submit a 
request for data and/or 
biospecimens (‘A’). Once our data request was approved, the Rush team extracted the required data 
and shared it via Dropbox. 

3.1.4.  MURDOCK 

The MURDOCK Study is not an open dataset 
but rather a registry and biorepository 
intended to facilitate cohort identification and 
collaborative sub-studies. Thus, in contrast 
with the datasets described above, the 
MURDOCK Study currently has only five 
forms and hundreds of data elements 
compared to the many thousands found in 
Framingham or ADNI. The main MURDOCK 
Study website provides a link to an online data 
dictionary documenting the different data 

Figure 4: A screenshot (edited) of Rush’s Research Resource Sharing 
Hub, enabling users to query for available data for research 
participants who meet specific criteria. 

Figure 5: Self-reported clinical history, 
BMI, and age in the MURDOCK Registry 
found on the public facing MURDOCK 
Study website. 
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elements collected at the enrollment and follow-up stages of the study (‘R’). The website also gives 
a human readable overview of some demographic data and self-reported clinical history for a 
number of common diseases (‘R’) (Figure 5). It also provides information regarding the cognitive 
tests performed in the memory health study: attention and concentration, executive functions, 
memory, language, visual skills, conceptual thinking, calculations, and orientation. Once the data 
transfer is approved, the MURDOCK team extracts the specified field data and shares it using Box 
or ftp (‘A’).  

3.2.  Common challenges across datasets 

3.2.1.  Metadata summarization and complexity 

Critical for every project was high level documentation to acquaint collaborators with study design 
and available data domains. Graphical overviews with linked details tend to be more informative 
and user-friendly than text-based summaries. In some cases, collection protocols were represented 
graphically; along with their corresponding naming conventions and file names. The best overviews 
included metrics for the data sets such as counts of different sample types, data types, etc.  Metadata 
describing the processes, data files, fields and coded values were available from each of the projects 
and essential for data re-use. In almost all cases, metadata was largely human-readable and not 
computable or queryable (ROSMAP being the notable exception- see Figure 4). 

Though none of the datasets described here were shared through metabolomics-specific 
repositories with computable metadata, progress has been made in establishing standards for 
metadata for metabolomic datasets. For example, EMBL-EBI (European Molecular Biology 
Laboratory- European Bioinformatics Institute)’s Metabolights data repository requires ISA-tab 
formatted metadata and provides a preconfigured downloadable ISACreator template. Use of ISA 
tools and the ISA standard does have some associated learning curve, but our team was able to make 
the ADNI1 p180 dataset ISA-compliant with significant help from knowledgeable curators for a 
recently accepted “data descriptor” (Nat Sci Data, in press.). According to a reviewer of this 
manuscript and documentation on GitHub (https://github.com/ISA-tools/isa-api), there exists a 
script, biocrates2isatab.py, that enables seamless conversion of Biocrates data to ISA-tab format, 

Figure 6: Tabular results of a query of a Rush Research Resource Sharing Hub query for 
frequency data of ROSMAP participants. 
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however we were unable to locate the script itself- perhaps it is not yet publicly available. Certainly 
the use of such tools and standards will help to ensure FAIR datasets moving forward. 

Other important sources of study metadata are data dictionaries for each domain. Data 
dictionaries can take on different levels of rigor and utility. Ideally a data dictionary is provided in 
a tabular format so that it is searchable for specific terms, browsable to get a feel for the different 
data domains and variables included, and filterable by topic. If the data files themselves do not use 
standard identifiers for variables, the data dictionary may facilitate mapping variables to existing 
standards, e.g. mapping local identifiers for metabolites to standard identifiers such as INCHI Key 
or ChEBI ID. Although some variables may seem obvious enough not to need descriptive text, 
contextual information is often helpful, e.g. TimeStamp might be described as “Time stamp for 
blood draw” rather than “Time stamp.” 

An additional local use case was the ability to query and filter based on status of 
metabolomics assays, e.g. which biospecimens had been assayed on a specific platform, and 
connecting that information to clinical and demographic data. A tool with i2b2-like graphical 
querying functionality would enable a PI or researcher to assess how many participants had both 
metabolomic and imaging data, and a diagnosis of AD. 

3.2.2.  Data concept mapping across projects 

Notable progress by the Metabolomics Standards Initiative and the Coordination of Standards in 
Metabolomics (COSMOS) initiative.11, 12 But as with many biological domains other than genomics, 
adoption of metabolomic data standards has been slow. Metabolomic data itself adds a layer of 
complexity in that some observations of molecular species may be ambiguous, for example lacking 
the ability to differentiate between two molecules with the same atomic composition but with double 
bonds between different carbon atoms. It is therefore not possible in some cases to assign a specific 
identifier to a given experimental value, since the value actually represents species A OR species B.  
Since the same Biocrates kit was used for three of the four datasets, mapping of metabolites for 
those three sets is trivial. Mapping and some manual review are needed to map the overlapping 
species between the p180 kit and the LCMS platform results for the Framingham study. For 
example,  lysophosphatidylcholine (carbon:double bond = 16:0), is referred to as “C16_0_LPC” and 
“lysoPC a C16:0” in Framingham and the Biocrates kit respectively. Analysis has not yet been 
performed to determine consistency among the Biocrates datasets, nor comparability between 
Biocrates and the other LCMS platform, but this will be an important finding for future attempts to 
compare across metabolomic datasets. 

In all observed cases, studies defined their own data elements rather than using existing 
concepts from existing terminologies such as SNOMED CT, LOINC, or PhenX. This resulted in 
some cases of significant semantic differences in variables of the same name, for example ‘APOE’ 
as a genotype vs. continuous variables representing RNA expression. Increased use of commonly 
accepted standards will increase interoperability of datasets moving forward. 

Also related to interoperability, categorizing diagnoses was not consistent across studies and 
different protocols were used for consensus diagnosis. Although different assessments were used to 
evaluate cognitive impairment, they were each established, validated, standardized instruments. It 
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was therefore possible to establish equivalent concepts across projects with input from clinical 
experts.  

In all cases, no matter how detailed the codebooks or project descriptions, there was always 
some need to ask for assistance from the data owners and to document this additional information 
for the analysts. This included, for example, additional information conveyed within a variable name 
e.g. single letter codes within variable names identifying brain regions. 

3.2.3.  Versioning and data provenance 

Reproducible research requires the ability to track different versions of data as well as data 
provenance. Data sources can change for many different reasons, either because an error was 
discovered, or because additional data have become available. The Framingham study does a 
particularly good job versioning the data available in dbGaP, clearly identifying later releases of 
data for download after an embargo period, and dividing the data into two different groups based on 
participant consent. (One group consented to use for all research; the other consented for research 
use only by nonprofit entities.) For the ADNI-1 cohort, LONI has a policy that file names should 
not change so that researchers can always find the file they had previously downloaded. In addition, 
in order to adhere to DOI requirements for the AMP-AD project, LONI has enabled explicit 
versioning of data files within the IDA. 

4.  Conclusions 

Based on our experience exploring publicly available datasets to validate translational findings we 
would add to the FAIR guiding principles the following best practices, particularly to enable data 
discovery and reuse by human beings: 1. Provide user-friendly metadata in the form of a graphical 
overview of data, sample types, instruments used at timepoints and counts; 2. Provide a data 
dictionary that is both browsable and searchable; and 3. Use common data elements wherever 
possible for data collection, whether from clinical terminologies or molecular databases.  

It is easy for a group to become so familiar with their own data that they lose perspective on 
how it will be seen and interpreted by others. This exercise has helped inform our own work to make 
our data FAIR for other researchers, though we are not yet where we wish to be. Understanding of 
data sharing use cases, a well-formed plan, and dedicated resources are needed to enable adherence 
to FAIR principles. 

It is encouraging to see that real effort is being devoted to making scholarly data available 
for re-use. A decade ago, it would have been difficult to obtain even a single dataset for validation. 
Our experience with the three cohorts described above suggests that although we have a long way 
to go before data are FAIR for computational agents, significant progress is being made to make 
data resources findable, accessible, and reusable by human agents. Our experience also suggest that, 
as with clinical data, we have a long way to go before data are truly interoperable. The obstacles are 
largely not technical ones. Education in the issues described here, as well as the will and the 
resources through aligned incentives, will ensure that we continue to make progress toward a 
FAIRer research data landscape.  
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