
PLATYPUS: A Multiple–View Learning Predictive Framework
for Cancer Drug Sensitivity Prediction

Kiley Graim∗, Verena Friedl, Kathleen E. Houlahan† and Joshua M. Stuart∓

Dept. of Biomolecular Engineering, University of California,
Santa Cruz, CA 95064, USA,
∓E-mail: jstuart@ucsc.edu

Cancer is a complex collection of diseases that are to some degree unique to each patient.
Precision oncology aims to identify the best drug treatment regime using molecular data
on tumor samples. While omics-level data is becoming more widely available for tumor
specimens, the datasets upon which computational learning methods can be trained vary
in coverage from sample to sample and from data type to data type. Methods that can
‘connect the dots’ to leverage more of the information provided by these studies could offer
major advantages for maximizing predictive potential. We introduce a multi-view machine-
learning strategy called PLATYPUS that builds ‘views’ from multiple data sources that are
all used as features for predicting patient outcomes. We show that a learning strategy that
finds agreement across the views on unlabeled data increases the performance of the learning
methods over any single view. We illustrate the power of the approach by deriving signatures
for drug sensitivity in a large cancer cell line database. Code and additional information are
available from the PLATYPUS website https://sysbiowiki.soe.ucsc.edu/platypus.
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1. Introduction

Predicting whether a tumor will respond to a particular treatment strategy remains a chal-
lenging and important task. However, the availability and cost of screening compound libraries
for a tumor sample remains prohibitive. At the same time, the use of genomic assays, such as
DNA and RNA sequencing, for clinical decision making are on the rise. As the costs for these
high-throughput assays drop, applying ‘genomic signatures’ from machine-learning trained on
external data in place of the more expensive direct drug assay becomes an option.

One obstacle to achieving this goal is the ability to find training sets for machine-learning
classifiers for which comprehensive clinical outcomes are available, e.g. survival or drug sensi-
tivity. Non–uniformity of large composite datasets such as The Cancer Genome Atlas (TCGA,
cancergenome.nih.gov) forces many existing approaches to ignore data unless it is available
for all samples. At the same time, many studies have samples that would be useful to analyze
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beyond their original purpose, yet cannot be included because they lack outcome data.
The large number of variables compared to far fewer samples can often result in bio-

logically irrelevant solutions.12 However, issues related to the over-determined nature of the
problem sets can be minimized by using prior knowledge to inform feature selection techniques.
Incorporating this information can guide learning methods to both more generalizable and in-
terpretable solutions. For example, several approaches that include database-mined gene–gene
interaction information have shown promise for interpreting cancer genomics data and utiliz-
ing it to predict outcomes.1,10,16,18 In addition, ensembles can reduce error caused by small
sample sizes.17

We present a multiple view learning (MVL) framework called PLATYPUS (Progressive
LAbel Training bY Predicting Unlabeled Samples) that combines the advantages of the
knowledge-driven and ensemble approaches. ‘Views’ are feature extractions of particular data
platforms that encode specific prior knowledge and are each allowed to vote on the predicted
outcome, providing a more complete and diverse glimpse into the underlying biology. The
framework infers outcome labels for unlabeled samples by maximizing prediction agreement
between multiple views, thus including more of the data in the classifiers. It reduces over-
fitting caused by small sample sizes both by predicting labels for unlabeled samples and by
incorporating prior knowledge.8

A typical approach in machine learning is to train classifiers on a subset of samples con-
taining all of the data, impute missing data, or train ensembles based on data availability,
but are generally restricted to samples with the majority of the data for each sample.20 The
semi–supervised MVL approach learns missing patient outcome labels, thus allowing the use
of all available labeled and unlabeled datasets. PLATYPUS trains on one or more views and
then co-trains on the unlabeled samples. By doing this, PLATYPUS can make predictions
on any patient regardless of data availability. This increases overall classifier accuracy while
also finding solutions that generalize to the entire population– which has proven extremely
difficult in high–feature, low–sample problems.2 A comparison of PLATYPUS to other related
methods is provided in Supplemental Section S1.

2. System and methods

2.1. Data

At the time of download the Cancer Cell Line Encyclopedia (CCLE) contained genomic, phe-
notype, clinical, and other annotation data for 1,037 cancer cell lines,7 described in Section S2.
Of these, drug sensitivity data was available for 504 cell lines and 24 drugs. Drug response was
converted to a binary label in order to transform the regression problem into a classification
problem. For each compound, cell lines were divided into quartiles ranked by ActArea; The
bottom 25% were assigned to the ‘non–sensitive’ class and the top 25% to the ‘sensitive’ class.
Cell lines lying in the middle were marked with ‘intermediate’ and considered unlabeled in
this test (Fig. S2). Note that these samples are often the most difficult to classify as they rep-
resent those with a range of sensitivities that may span orders of magnitude where the growth
inhibition curve has its steepest changes as a function of drug concentration. Thus, the ability
to input a binary designation for the growth inhibition using a co-training strategy could in

Pacific Symposium on Biocomputing 2019 

137



itself have advantages over approaches that identify cutoffs in the drug response curves that
are more-or-less arbitrary, without the use of a clear optimization criteria, and without the
ability to make use of genomic signatures.

(a) View Creation

(b) Learning

(c) Inference

Fig. 1. PLATYPUS framework illustrated with three views. (a) Creation of single views using
sample data and optional prior knowledge. (b) Iterative Learning: Each view maximizes prediction
accuracy on the labeled samples; unlabeled samples predicted with high confidence are added to the
known sample set; repeat until no new samples are labeled. (c) Models from the final iteration of
PLATYPUS training applied to new data.

2.2. Single views and co-training

PLATYPUS uses co–training (Fig. 1) between single views to learn labels for unlabeled sam-
ples. Single views are based on different feature sets. Genomic or clinical features can be used
directly (baseline views), or transformed using a biological prior (interpreted views). We built
four baseline views from the CCLE data: expression, CNV, mutation, Sample- and Patient-
Specific (SPS) information; and many interpreted views (Section S3). Each view can be set up
with the best suited machine learning algorithm and optimized parameters for its task, e.g. a
random forest or an elastic net (Section S5.1).

Co–training works by training a separate classifier using each view as a separate feature
set to make independent predictions, then incorporating disagreement into the loss function.
Each view trains on the labeled data then predicts labels for the common unlabeled set. High
confidence labels are passed as truth in the next iteration. Co–training methods iterate until
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either convergence, some threshold (a minimal change in label definition on the unlabeled
samples) is attained, or a maximum number of iterations is reached.

After co–training, each view can be used as a standalone classifier that incorporates learn-
ing from one or more data platforms without relying solely on that data platform. Since views
are trained in conjunction, the trained models will incorporate the perspectives of all views.
This also provides a measure of influence from all views when applying any of the classifiers
to new data, without requiring data for those views when making predictions.

2.3. Maximizing agreement across views through label assignment

The key step in the PLATYPUS approach is the inference of outcome labels for a set of
unlabeled data. Each training iteration seeks to improve the agreement of the assignments
given to the unlabeled data across all views. Views are first created by applying machine
learning methods using either the features directly, or from gene set summaries or subsetting
(Section S3). Fig. 1 shows an overview of PLATYPUS using three views. Any number of views
may be used– in this paper, up to 10 views are used per experiment.

PLATYPUS searches iteratively for a label assignment that improves the agreement on
unlabeled data (Fig. 1(b)). At each iteration t, the views are trained on labeled data and the
labels for unlabeled samples are inferred. Because the set of labels can change across iterations,
we denote the training data with sensitive labels as T+(t) and those with non–sensitive labels
as T−(t) at iteration t. T+(0) and T−(0) are the given sets of sensitive and non–sensitive
training samples before learning labels, respectively. The set of unlabeled samples is denoted
U(t), with all unlabeled samples before learning labels as U(0).

V is the set of views used in the PLATYPUS run. In iteration t, each view v ∈ V is trained
to maximize its prediction accuracy on the labeled samples T+(t) and T−(t). The accuracy of
view v at iteration t is determined using cross–validation of the training samples and is written
here as a(v, t), where a(v, 0) is the single view accuracy before learning labels. A prediction is
then made by the trained models for each unlabeled sample s. Let l(v, s, t) be the prediction of
sample s by view v in iteration t where it is 1 if predicted sensitive and 0 otherwise. The single
view votes are summarized to a sensitive ensemble vote L+(s, t) and non–sensitive ensemble
vote L−(s, t) for each sample (Eq. 1 and 2).

L+(s, t) =
∑
v∈V s

w(v, t) l(v, s, t) (1) L−(s, t) =
∑
v∈V s

w(v, t)(1−l(v, s, t)) (2)

Only views with data to predict sample s are taken into account: V s = {v ∈ V :

v has data for s}; and the different views are weighted by w(v, t) (Eq. 3). View accuracies
within [0.5, 1] are rescaled to [0, 1] and log–scaled. Views with an accuracy lower than 0.5 are
given a weight of 0 since it indicates worse than random predictions.

w(v, t) =

{
−log(1− a(v,t)−0.5

0.5 ) if a(v, t) ≥ 0.5

0 otherwise
(3)

To determine, which unlabeled samples are added to the training data for the next iteration,
we define Lmax(t), the strongest vote found between all samples in iteration t (Eq. 4), and
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Ψ(t), the set of samples reaching the strongest vote (Eq. 5).

Lmax(t) = max
s∈U(t)

{max{L+(s, t), L−(s, t)}} (4)

Ψ(t) = {s ∈ U(t) : max{L+(s, t), L−(s, t)} = Lmax(t)} (5)

In order to favor missing data for a sample over conflicting predictions, we define Lmin(t) as
mins∈Ψ(t){min{L+(s, t), L−(s, t)}}, the weakest contrary vote that is found between all samples
in Ψ(t).

All samples meeting both the strongest vote and the weakest contrary vote conditions
(Label Agreement Criteria) build the set of new training samples T (t), which are added to
T+(t) and T−(t) for the next iteration’s training data:

T (t) = {s ∈ Ψ(t) : min{L+(s, t), L−(s, t)} = Lmin(t)} (6)

T+(t+ 1) = T+(t) ∪ {s ∈ T (t) : L+(s, t) > L−(s, t)} (7)

T−(t+ 1) = T−(t) ∪ {s ∈ T (t) : L+(s, t) < L−(s, t)} (8)

To avoid adding predictions with low confidence, Lmax(t) needs to stay above a certain value,
otherwise no labels are added to the training data in iteration t. This can be adjusted by the
learning threshold λ, which represents the fraction of the maximal reachable vote, i.e. when
all views agree. By default λ is 75%.

The training process continues until a convergence criterion is met: either all labels have
been learned, no new labels have been learned in the last iteration, or a maximum number of
iterations has been reached. After termination of the learning process, the trained single–view
predictors can be used independently or as an ensemble via PLATYPUS (Fig. 1(c)).

3. Results

3.1. Preliminary experiments to optimize PLATYPUS performance

We ran 120 different PLATYPUS variants to predict drug sensitivity in the CCLE cell lines
to identify the best way to combine the views for this application. As mentioned in the Data
Section (Section S2), samples with intermediate levels of sensitivity for a particular drug were
treated as unlabeled and used by the co-training to maximize agreement across views. The
conversion of this regression problem into a classification problem in which drug sensitivities
arbitrarily are discretized into sensitive versus insensitive (top and bottom 25%), reflects the
reality of the clinical setting in which a decision must be made to either treat or not treat a
particular patient. The test measures the co-training strategy’s ability to infer sensitivities for
cell lines that are the most difficult to classify.

We first asked whether the interpretive views that use gene set information provide benefit
over using only the baseline views (Section 2.2). We then determined a weighting scheme for
the ensemble to achieve better performance. We ran PLATYPUS using the 4 baseline views
and the 3, 5, 7, and 10 best–performing single views for each of the 24 CCLE drugs at a λ = 75%

learning threshold, for a total of 120 different PLATYPUS variants (5 per drug). Fig. 2(a)
shows the highest accuracy PLATYPUS models as well as each of the single view scores. In
almost all cases PLATYPUS significantly outperforms single view models, most notably for
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Fig. 2. PLATYPUS Performance. (a) Boxplot showing performance (in AUC) sorted by PLATY-
PUS score, of all single views and the best PLATYPUS score. PLATYPUS score for each drug is
the highest from the 3,5,7, and 10 view runs. (b) AUC for PD-0325901 sensitivity predictions for
each single view, colored by view type. The 10 views to the right of the gray line are used in the
PLATYPUS ensemble. See Fig. S3 for single view AUCs for all drugs. DT = Drug Target; GS =
Gene Set.

the MEK inhibitors AZD6244 and PD-0325901, and HDAC inhibitor Panobinostat. Adding
interpreted views to PLATYPUS increased PD-0325901 AUC from 0.94 to 0.99 (Fig. 2(b)),
motivating their continued inclusion in PLATYPUS models. Furthermore, within 10 iterations,
most PLATYPUS runs added 90% or more of the unlabeled cell lines to the labeled set,
effectively doubling the number of samples on which the models trained. We look more closely
at the results from the best overall performing PLATYPUS model, PD-0325901, as well as
important features from each of its models, in Section 3.2.

We next investigated how to combine the ensemble of different views to improve the
PLATYPUS method’s accuracy. Previous studies show that combining multiple weak but
independent models will result in much higher model accuracy.17,20 Similarly, previous work
has shown that using biological priors can reduce the influence of noise present in biological
data.10,11,18 However, it is not clear how models can be combined in an ensemble to achieve
the best results. First, we tested a weighting scheme where each view contributed equally to
the final prediction, however this made the model sensitive to information–poor views (data
not shown). We then tested an AUC–weighted voting scheme, which derives view weights for
the current iteration based on the AUC obtained from the previous iteration (Eq. 3). Doing
so allows the PLATYPUS ensemble to incorporate a large number of views, without the need
for a pre-selection step, where each view has the opportunity to either become more accurate,
and contribute more to the prediction outcome, during label learning, or is effectively ignored
if it never reaches a high accuracy.

Figs. S5 and S6 show the effectiveness of label learning validation (LLV) for each of the 24
drugs in CCLE. Most of the drug models learn labels correctly, however model AUC decreases
once a model starts to learn labels incorrectly. Over many iterations this can lead to a model
where the majority of labels are learned incorrectly (e.g. Nutlin-3, Fig. S6). We found that this
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risk can be minimized by setting a high confidence threshold for label learning and by using
many information–independent views. In our experiments, LLV consistently helps identify
optimal parameters to run PLATYPUS on a given dataset.

Without missing data, PLATYPUS is equivalent to a classic ensemble classifier and often
outperforms any single view model. In order to understand the benefits of using additional
unlabeled data, we compared the ‘ensemble’ (first) iteration of PLATYPUS to the final and
the ‘best’ iterations. We define ‘best’ as the iteration with the highest AUC. Interestingly, in
almost all cases, the PLATYPUS AUC is higher than the ensemble AUC (Fig. S4). The use of
more samples by PLATYPUS helps ensure a more generalizable model. For the experiments
in this paper, we intentionally set a high number for maximum iterations to show how label
learning can degrade over time, and therefore the final iteration often scores poorly. Label
learning degradation is avoidable by using high label learning thresholds and an appropriate
number of iterations.

3.2. Predicting drug sensitivity in cell lines

Our analysis focuses on the full CCLE dataset, composed of 36 tumor types. For most drugs,
the Sample- and Patient-Specific (SPS) view has the highest starting view performance with
AUCs ranging from 0.6 to 0.8, and expression baseline views often performed similarly. The
mutation view is effective for some drugs (e.g. MEK inhibitors). Three of the four baseline
views are top performers for predicting cancer cell line sensitivity to PD-0325901 (Fig. 2(b)),
a MEK1/2 inhibitor. CNV view performance was never high enough to warrant inclusion in
PLATYPUS models except as the ‘aggregated copy number changes’ feature in the SPS view.

Interpreted views often outperform the SPS view (Fig. S3). We found several examples in
which a biological prior view outperformed the data–specific view, e.g. Metabolic Enzymes,
Drug Targets, and Chromatin Modifying Enzymes are better at predicting Lapatinib sen-
sitivity than the baseline expression predictor. The Drug Target Gene Set Hallmark view
outperforms data–specific views in Irinotecan and Panobinostat sensitivity predictions. Such
examples can be found for all compounds except for the MEK inhibitors, for which the baseline
mutations view is always the top performer.

In general, views incorporating expression data have high accuracy (Fig. S3), whereas
mutation views are comparable to a random prediction in most cases. This could be due to the
presence of many passenger mutations that have little bearing on cell fitness and drug response.
In one notable exception, AZD6244, the Drug Target Mutation view is more accurate than the
Drug Target Expression view. Generally, interpreted mutation views outperform their baseline
counterpart. For example, the Drug Target Mutation view is more accurate than the baseline
mutation view in both Irinotecan and Topotecan. Furthermore, the Drug Target Mutation
view trained on PD-0325901 increases the relative feature weights for RAS genes, suggesting
that it identifies the exclusivity of RAS/BRAF mutations described in Section S6. However
overall, mutation views have low accuracy despite mutations being key to drug sensitivity,
indicating that other representations that increase the signal-to-noise ratio of this data should
be explored in future work.

The Drug Target Gene Set views created from Molecular Signatures Database (MSigDB)
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gene set collections perform well overall, especially on Irinotecan, Topotecan, and Panobinostat
(Fig. S3). For most compounds the Drug Target Gene Set Hallmark is more accurate than the
Oncogenic and Immunologic. A possible reason is that these gene sets are from the Hallmark
collection, which are re–occurring, highly reliable gene sets built from combinations of other
gene set collections. Their similar performance could also be due to overlap in the gene sets.
We recommend that users test for and subsequently remove highly correlated views before
running label learning, and intend to incorporate this into future versions of PLATYPUS.
One approach to handling correlated views is to extend the ensemble vote step to use stacked
learning instead of the current agreement formula. By training a model on the predictions
from each view, PLATYPUS may be better able to handle correlated views by treating them
with less weight than more independent views.

In addition to the MSigDB gene set views, master regulator–based predictors via Virtual
Inference of Protein activity by Enriched Regulon analysis (VIPER)13 were tested but are not
among the top performing ones for any drug. This could be due to use of a generic regulon as
VIPER input rather than tissue–specific versions for each cell line.13

The PLATYPUS model for the drug PD-0325901 achieved the highest accuracy of all
experiments, with a near perfect AUC. We therefore chose to further investigate the results of
this drug to identify the nature by which the MVL approach finds an improved classification.
PD-0325901 was initially tested in papillary thyroid carcinoma cell lines and is known to be
especially effective in cell lines with BRAF mutations.14 Since these are frequent in the CCLE
data, the high accuracy of the single view models is expected. Fig. 3 shows changes from the
ensemble to the ‘best’ PLATYPUS PD-0325901 models. Single view AUCs mostly increase
after several iterations, and feature weights within the models also shift to varying degrees. In
the baseline mutations view, RAS gene mutations have higher Gini coefficient changes in the
PLATYPUS model than in the ensemble (Fig. 3(c)), indicating increased model importance of
those genes. Past studies of the CCLE data7 and our analysis (Section S6 and Table S3) have
found RAS and BRAF mutations in the data tend to be mutually exclusive, both of which
are linked to PD-0325901 sensitivity (Fig. S1). Thus, PLATYPUS is better able to identify
the dual importance of RAS/BRAF mutations than the single view and ensemble models.

We also chose to look at a case where PLATYPUS failed to achieve an improvement.
LBW242 is one such case. The single views for this drug all have near random scores. However,
instead of identifying an improvement through view combination as is the usual case in our
experiments (e.g. PHA-665752 and Nutlin-3), the PLATYPUS models also achieved near
random performance (Fig. 2(a)). Further investigation reveals that the performance may not
be the fault of PLATYPUS. Instead, little signal may be available in the drug sensitivity
labels for this case due to our quantization strategy (i.e. using the upper- and lower-quartiles
for the resistant and sensitive classes). The dose-response curve for LBW242 shows very few
of the CCLE cell lines may be truly sensitive. While our approach creates balanced class sizes
and ensures continuity between experiments, finding a more nuanced per–drug cutoff would
likely improve model performance. Suboptimal label cutoffs lead to a low signal–to–noise ratio
in the labels for a few of the drugs, which in general leads to low classifier performance.19 It
is also possible that the metric for drug sensitivity for some drugs is ineffective. Traditional
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methods to quantify sensitivity are dependent on population growth and thus slow–growing
cell lines may appear to be resistant to all drugs.6

These results are consistent with previous findings that have shown sensitivity to some com-
pounds is easier to predict than others.9 For example, the two MEK inhibitors (PD-0325901,
AZD6244) and Panobinostat have higher overall accuracy in the single view models (Fig. S3).
Interestingly, in the case of Panobinostat, the ‘Chromatin Modifiers’ and ‘Positional Gene
Set’ PLATYPUS views have higher single view accuracy than the baseline expression view,
which could indicate that there is an epigenetic effect from chromatin modifiers. We postulate
that a small region of the genome has been unwound, lending sensitivity to Panobinostat.
PLATYPUS captures this interaction, whereas single view models do not.

Fig. 3. Performance and feature weight changes for single views between ensemble and PLATYPUS
in predicting sensitivity to PD-0325901. (a) For each random forest view, the average Gini change for
all features between the ensemble and the best PLATYPUS iteration, plotted against the view AUC
for the ensemble (arrow tail) and PLATYPUS (arrow head). Circled view is shown in detail in (c).
(b) Same as (a), but showing the elastic net views and their average change in feature weights. (c)
Scatter plot where each point is a feature in the Baseline Mutations view. Plot shows the ensemble
feature weight versus the PLATYPUS feature weight. (d) Same as (c), but showing feature weight
changes in the Oncogenic (OncogenicAll in (b)) view.
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3.3. Key features from PLATYPUS models

Each machine-learning algorithm used by a view has its own internal feature selection. We
extracted features from these models to evaluate the most informative features. Fig. 3(a-b)
show changes in single view model performance and average feature importance within those
models, before and after PLATYPUS training. Fig. 3(c-d) show feature changes and enrich-
ment of those features within one of the views. Fig. 3(c) highlights how PLATYPUS is able
to remove feature weights of spurious correlations between cell line mutations and the true
mutation features of importance, NRAS and BRAF. While the overall feature weights in the
single view model do not have large changes from the ensemble to PLATYPUS frameworks,
there is a large shift in 2 key features which are known to be significantly associated with
sensitivity to this particular drug. PLATYPUS is able to avoid overfitting the model whereas
the ensemble is unable to draw from external information. In Fig. 3(d), the model has signif-
icantly changed both in AUC and in feature weights between the ensemble and PLATYPUS
experiments.

Fig. S8 shows a closeup of the changes within the Fig. 3(d) view between PLATYPUS and
a general ensemble. It focuses on one feature from the view, MTOR up V1 up kurtosis, which
had the biggest increase in feature weight from ensemble to PLATYPUS. At a glance, this gene
set is not associated with cancer– it describes genes that are regulated by an inhibitor used to
prevent graft rejection by blocking cell proliferation signals via mTOR. However, the gene set
kurtosis correlates with ActArea and with our binary drug sensitivity labels (Fig. S8(a-b)). A
closer look shows that this is because of gene-gene correlations within the gene set. Kurtosis
features are intended to capture large changes within the gene set. Mean and median gene
set correlation values do not capture cell line differences in the co-correlated gene clusters,
whereas kurtosis highlights extreme values. No one gene expression correlates strongly with
the kurtosis of the whole set (Fig. S8(c,e)), and so the set cannot be replaced with a single
gene expression value. Clusters within the gene set are linked to EGFR signaling (cluster IV,
genes marked E), metastasis and Basal vs Mesenchymal BRCA (cluster V, genes marked M
and B respectively), and resistance to several cancer drugs (clusters II and V, genes marked
R). Gene-gene correlations shown in Fig. S8(d) combine to form the overall kurtosis score. As
shown in Fig. S8(e), many genes related to cancer processes are the driving force in the gene
set kurtosis score. This highlights how small overall changes combine to improve PLATYPUS
accuracy over the ensemble.

Many of the highly ranked features from other models (Fig. S7 shows expression view for
PD-0325901, other data not shown) are known oncogenes, for example ETV4 was previously
found to be correlated with MEK inhibitor sensitivity.15 SPRY2, a kinase inhibitor, corre-
lates with BRAF mutation status, both of which are predictive of sensitivity to PD-0325901,
AZD6244, and PLX4720. DUSP6 has been named as a marker of FGFR inhibitor sensitivity4

and a previous study shows a weak inverse correlation between DUSP6 expression and sensi-
tivity to MEK1/2 inhibitors.3 Thus PLATYPUS recapitulates several known markers of drug
sensitivity.
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4. Conclusions

When compared to a traditional ensemble and to single view predictors, PLATYPUS often
has higher AUC (Fig. 2). The multi-view approach uses the set of unlabeled samples as links
between different views to find agreement in the different feature spaces. Since label learn-
ing validation shows that labels are learned correctly in most cases, the increase in improve
model performance may be due to doubling the number of samples that can be considered
while training. In 96% of our experiments, PLATYPUS outperforms an ensemble (Fig. S4).
Furthermore, PLATYPUS outperforms 85% of the single views and has higher AUC than all
of the single views for 17 of the 24 drugs. No one single view consistently outperforms any
of the PLATYPUS models In order to retain such high performance without PLATYPUS, a
user would need to test all single view models.

Important features from PLATYPUS views (both baseline and interpreted) have previously
been linked to drug sensitivity. The approach generally improves AUC while incorporating sig-
nificantly more data and allowing uncertainty– a necessity in medical research. By combining
extracted features from each of the MVL model views, the user is provided a clearer picture
of the key facets of sensitivity to each drug. We also investigated the generality of PLATY-
PUS by applying it to the prediction of an aggressive subtype of prostate cancer and found
it generalized to an external validation set not used during training (see Supplemental Sec-
tion S7). Overall, PLATYPUS enables the use of samples with missing data, benefits from
views without high correlation, and is a flexible form of MVL amenable to biological problems.

The PLATYPUS co-training approach has several important advantages. First, it is ideal
when samples have missing data, a common scenario in bioinformatics. Imagine a new pa-
tient entering a clinic for whom not all of the same data is available as was collected for a
large drug trial. A PLATYPUS model trained on the drug trial data is able to predict drug
response for this patient without retraining, simply by restricting to views for which there is
patient data. For example, a sample with only expression data could be provided predictions
using the expression–based views. Predicted label confidence for that sample will be much
lower since there are no scores from the missing views, ensuring that labels for samples with
complete data will be inferred in earlier iterations than those with missing data. PLATYPUS
automatically sets weights for view predictions, implicitly accounting for missing data, and
ensuring future predictions are not constrained by limited data. Second, co-training allows for
the use of different classification methods for each data type, capturing the strengths of each
data type and increasing flexibility in the framework. Third, PLATYPUS is effective when
using information–divergent views. Fourth, co–training combines predictions at a later stage
in the algorithm, so that views are trained independently. This is ideal for ensemble learning,
which has shown to be highly effective when models/views are independent, even with low
individual model accuracy.5,17

It is worth mentioning some distinct limitations of the approach as a pointer toward future
work. First, if missing data correspond to cases that are more difficult to classify, rather than
missing at random, the poorer performance of individual views may result in appreciably
lower agreement, and thus little benefit in combining views. Second, combining multiple views
introduces the need for setting additional parameters (e.g. the agreement threshold). This

Pacific Symposium on Biocomputing 2019 

146



requires a user to gain familiarity with the performance of newly incorporated views in test runs
before final results can be obtained. Finally, highly correlated views can inflate the agreement
voting and down-weigh other, uncorrelated views. A future adjustment could incorporate
prediction correlation on the labeled samples for the voting of unlabeled samples.
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