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Single-cell RNA sequencing (scRNA-seq) techniques have been very powerful in analyzing
heterogeneous cell population and identifying cell types. Visualizing scRNA-seq data can
help researchers effectively extract meaningful biological information and make new discov-
eries. While commonly used scRNA-seq visualization methods, such as t-SNE, are useful
in detecting cell clusters, they often tear apart the intrinsic continuous structure in gene
expression profiles. Topological Data Analysis (TDA) approaches like Mapper capture the
shape of data by representing data as topological networks. TDA approaches are robust
to noise and different platforms, while preserving the locality and data continuity. More-
over, instead of analyzing the whole dataset, Mapper allows researchers to explore biological
meanings of specific pathways and genes by using different filter functions. In this paper,
we applied Mapper to visualize scRNA-seq data. Our method can not only capture the
clustering structure of cells, but also preserve the continuous gene expression topologies of
cells. We demonstrated that by combining with gene co-expression network analysis, our
method can reveal differential expression patterns of gene co-expression modules along the
Mapper visualization.
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1. Introduction

Single-cell RNA sequencing (scRNA-seq) has provided an unprecedented view of heterogene-
ity in cell populations. While traditional bulk RNA-seq experiments quantify molecular states
of cells by estimating mean expression profiles of millions of cells, scRNA-seq techniques can
generate expression profiles of individual cells. Such improvement of resolution has made
scRNA-seq a powerful tool to discover previously unknown cellular heterogeneity and func-
tional diversity.1

However, the improvement of scRNA-seq techniques also provides new challenges in data
analysis and interpretation. Firstly, the dimensionality of scRNA-seq data is very high. Typical
scRNA-seq data usually contains RNA sequencing profile of over thousands of genes. Secondly,
the number of cells is large. Recent high-throughput platforms are capable of generating data
for thousands of cells. Thirdly, different scRNA-seq platforms and biological experiments may
produce data with different biases or distributions, which introduces difficulty in comparing
data across different platforms.

To address the aforementioned challenges, many computational tools have been developed
to analyze and visualize high-dimensional scRNA-seq data, including Monocle,2 Wishbone,3

SMILE4 and FVFC.5 However, due to its advantage of detecting clusters in low dimensional
space, t-distributed Stochastic Neighbor Embedding (t-SNE)6 has become the most commonly
used technique in scRNA-seq data visualization to identify cell type clusters.7,8 However, cells
in a population do not always form clustering structures. Oftentimes, they show continuous
trajectories in space of gene expression profiles.3 Therefore there is a need for a scalable method
to capture such continuous gene expression topologies of cells.

Mapper9 is a Topological Data Analysis (TDA) approach that extracts descriptions of high
dimensional datasets in the form of simplicial complexes. As a method of representing data us-
ing topological networks, Mapper possesses several advantages when analyzing and visualizing
scRNA-seq data. Firstly, similar to t-SNE, Mapper can preserve small-scale similarities among
data points. However, while methods like t-SNE often tear apart the continuous structure in
the original high dimensional space, Mapper can instead capture such continuous variation.
Secondly, topological features are robust to small distortions of data, which makes Mapper
robust to noise. Thirdly, Mapper captures the shape of the data by the distance functions
chosen instead of depending on a specific coordinate system. Such coordinate-free approach
gives Mapper the ability to compare data across different platforms.10 Fourthly, Mapper pro-
duces a compressed representation of the shape of the dataset using a graph, where each node
represents a cluster of data points. While t-SNE relies on approximation approaches11 to scale
to large datasets, Mapper is highly scalable to recent scRNA-seq datasets with large number of
cells. Finally, Mapper can view data at multiple resolution.9 This means that Mapper is able to
discover patterns at different scales and capture details in large datasets with complex struc-
tures. Mapper has been applied to many biomedical problems, including identifying patient
subsets in breast cancer,12 analyzing murine embryonic stem cell (mESC) differentiation13 and
studying dynamical organization of the brain.14

In this paper, we used Mapper to visualize scRNA-seq data in order to extract different cell
types and understand the lineage relationship among them. Our approach is innovative in the
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following ways. Firstly, we visualize scRNA-seq data as combinatorial graphs through Mapper
to capture topological features of the data. Mapper can visualize the continuous trajectory of
cells over the space of gene expression profiles, which compliments the methods that recover the
clusters of cells. Secondly, Mapper enables researchers to explore different biological meanings
of scRNA-seq data by using different filter functions. In this paper, we took advantage of
gene co-expression network analysis (GCNA) and focused on gene co-expression modules with
biological functions. We further summarized gene modules into ”eigengenes” and incorporated
them into Mapper as filter functions or coloring of nodes. We applied our method on two large
scRNA-seq datasets (melanoma and pancrease cell) and demontrated that our method can
capture topological structures of scRNA-seq data. Combined with GCNA, Mapper also reveals
that gene co-expression modules are differentially expressed between certain branches in the
visualization and each is enriched with biological functions relevant to the corresponding cell
types.

2. Methods

2.1. Data

In this paper, we applied our method on two large scRNA-seq datasets of melanoma tumor
cells (GSE72056)7 and human pancreas cells (GSE85241).8 Details of datasets are summarized
in Table 1 and both datasets can be accessed through NCBI Gene Expression Omnibus.

Table 1. Summary of datasets used in this study.

Dataset Number of cells Number of genes Cell types(number of cells)

GSE72056 4645 23686
unresolved(132), malignant(1257)

non-malignant(3256: T(2040), B(512), Macro(119),
62(Endo), CAF(56), NK(51), other(416))

GSE85241 2126 19126
acinar(219), alpha(812), beta(448), delta(193),

ductal(245), endothelial(21), epsilon(3),
mesenchymal(80), pp(101), unclear(4)

The expression level of gene i in cell j was quantified as Gij = log2(TPMij/10 + 1), where
TPMij is transcript-per-million (TPM) for gene i in cell j. In scRAN-seq, due to the low
number of RNA transcriptomes, dropout events, where expression measurements of some
random transcripts are missed as zeroes, often occur. To account for the dropout events, we
filtered out genes with the lowest m thr percent of mean expression level or the lowest v thr
percent of variance. We used m thr = 95 and v thr = 95 for the melanoma cell dataset and
retained 775 genes after pre-processing. We used m thr = 90 and v thr = 90 for the pancreas
cell dataset and retained 500 genes after pre-processing.
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2.2. Mapper

Mapper, introduced by Singh et al.,9 is one of the most commonly used TDA approaches.
Mapper contains four steps: filtering, binning, clustering and graph generation and we reiterate
them as Algorithm 1.

Algorithm 1 Mapper on scRNA-seq data

Input: a pre-processed gene expression matrix G
Output: a graph Grph capturing topological features of G
1. filtering: apply a filter function f on G
2. binning: fragment the range of f into overlapping intervals and separate G into over-
lapping bins {B1, B2, ..., Bn}
3. clustering: apply hierarchical clustering on each bin and get a series of overlapping
clusters C
4. graph generation: create a graph Grph to capture the shape of G based on C

Filtering step uses a filter function f to project gene expression data G to a lower dimen-
sional space, usually R or R2. Different filter functions may generate networks with different
shapes and researchers could view data from different perspectives by choosing different filter
functions. One of the commonly used filter functions is eccentricity, which is a family of func-
tions capturing the geometry of data. For cell ci ∈G, given p with 1 ≤ p < +∞, we define the
eccentricity of ci as

Ep(ci) = (

∑
cj∈G d(ci, cj)

p

N
)1/p (1)

where ci, cj ∈ G. d(ci, cj) is the distance between ci and cj and N is the number of cells in
G. When p = +∞, we define L∞ eccentricity as E∞(ci) = maxcj∈Gd(ci, cj). L∞ eccentricity
has being used as a filter function to identify patient subtypes in breast cancer.10 Dimension
reduction methods such as Principle Component Analysis (PCA),10 Multi-Dimensional Scaling
(MDS)13 and t-SNE14 can also be used as filter functions. Researchers can also choose their
own pre-computed data as filter functions.

After applying f on G, range of f is fragmented into overlapping intervals S =

{S1, S2, ..., Sn}. The size of each interval is determined by several parameters: number of inter-
vals n, fraction of overlap between adjacent intervals p and the interval generation method,
which includes generating each interval with the same size or with the same number of cells.
Cells in G are then put into a series of overlapping bins B = {B1, B2, ..., Bn} according to S.

Hierarchical clustering is used to cluster cells in each bin Bi and researchers could choose
from different distance metrics and linkage functions. A histogram is plot with the threshold
values for each transition in the hierarchical clustering dendrogram and the number of clusters
ki is determined by the number of local maximas in the histogram.

After the clustering step, cells in G have been separated into a series of clusters C =

{C1,1, C1,2, ..., C1,k1
, ..., Cn,kn

}. A graph Grph is constructed where each cluster Ci ∈ C is repre-
sented as a node and an edge is drawn between Ci and Cj if Ci ∩ Cj 6= ∅. Grph is the output
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of Mapper and can capture the topological features of the original data G.

2.3. Gene co-expression network analysis

For GCNA, we applied local maximal Quasi-Clique Merger (lmQCM)15 to identify densely
connected modules such as quasi-cliques in weighted gene co-expression networks. Different
from methods like WGNCA,16 which partition genes into disjoint sets and do not allow overlap
between clusters, lmQCM is a greedy approach that allows genes to be shared among multiple
clusters. This is consistent with the fact that genes could participate in multiple biological
processes. The lmQCM algorithm has four parameters: γ, α, t and β. γ determines if a new
module can be initiated by setting the weight threshold for the first edge of the module,
and has the largest influence on the result. We used γ = 0.2, α = 1, t = 1 and β = 0.4 in
our experiments. After identifying gene co-expression modules, we further summarized them
into ”eigengenes” by taking the first principle component of gene expression profiles of the
modules.

We used ToppGene Suite17 for gene set functional enrichment analysis to determine if
gene modules detected by lmQCM are biologically meaningful. ToppGene finds biological
annotations such as Gene Ontoogy (GO) items that are significant in a set of genes. To provide
meaningful results, we only performed functional enrichment analysis on gene modules that
contain at least 10 genes and at most 500 genes.

2.4. Visualizing networks

The output of Mapper on scRNA-seq data is a network where each node is a cluster of cells and
each edge means that two clusters share some common cells. We used a force directed layout
algorithm to calculate the position of each node, which means the positions of individual nodes
do not have particular meanings and only the connections between nodes are informative.

Figure 1. Cursor hovering for detailed information: hovering over a node (left) and hovering
over an edge(right).

Each node contains several features of the cluster it represents. The size of a node is
proportional to the number of cells in the node. The color of each node represents a specific
property of cells, which could be determined by users. For quantitative features, such as
the expression level of a gene or an eigengene, mean value is used to represent the cluster.
For categorical features, such as types of cells, the majority category is used to represent
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the cluster. Pie charts is another option to visualize the category composition of the nodes,
but it could clutter the visualization, making perception of composition difficult. However,
to compensate the information loss by using the majority as representation, we utilized an
interactive visualization technique that allows users to get the cell type composition of a node
or an edge by hovering over it. An example of this is shown in Figure 1.

3. Results

3.1. Visualizing melanoma cells using Mapper

We first compared Mapper with several commonly used dimensionality reduction algorithms
(t-SNE,6 PCA, Isomap,18 LLE19 and Spectral Embedding20) by visualizing the melanoma
cell dataset and the results are shown in Figure 2. We also compared Mapper with one of
the state-of-the-art scRNA-seq visualization methods, Monocle 2.2 Each node in the Mapper
visualization represents a cluster of cells while each point in other visualizations represents a
cell.

Figure 2. Visualization of melanoma cells.

We observe that all above algorithms are capable of separating malignant cells from non-
malignant ones. Particularly, t-SNE separates malignant cells from different tumors into dif-
ferent clusters, which implies that t-SNE may be influenced by batch effects of different cell
populations besides differentiating malignant and non-malignant cells. This also suggests that
t-SNE often tends to break the continuous trajectory of cells in the space of gene expression
profiles. On the other hand, by visualizing the shape of the data, Mapper not only sepa-
rates malignant cells from non-malignant cells, but also preserves the continuous structure
in scRNA-seq data by visualizing malignant cells as a branch separating from non-malignant
cells. Monocle 2 also provides an interesting visualization, where non-malignant cells branch
out into two clusters of malignant cells. However, further analysis did not find different patterns
in expression levels of gene co-expression modules between the two malignant cell clusters.
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Another advantage of Mapper is that it can view data under different resolutions and
capture patterns of different scales. Figure 3 shows a series of visualizations of melanoma cell
dataset with different number of bins (nbins) in the binning step. We observe that the graph
representation of the data is coarse when the number of bins is low, which captures the global
structure of the data. As the number of bins increases, more detailed structures are revealed
and we can detect patterns at a higher resolution.

Figure 3. Mapper visualization of melanoma cells with different number of bins.

Moreover, we could still take the advantage of t-SNE within the Mapper framework by
using t-SNE as the filter function. Using t-SNE as the filter function can produce a compressed
representation that captures the clustering structure of the t-SNE visualization.

3.2. Using eigengenes for node coloring in Mapper

GCNA can identify gene co-expression modules with potential biological meanings, which
helps the interpretation of our visualizations. One way to utilize information from GCNA is
to use expression profiles of eigengenes to color the nodes in graphs produced by Mapper, as
shown in Figure 4.

Figure 4. Mapper visualization of melanoma cells with coloring of eigengene expression profiles.

Two gene co-expression modules were identified in the melanoma dataset by applying
lmQCM on the pre-processed scRNA-seq data. Gene set enrichment analysis results with
false discovery rate corrected p values generated by ToppGene Suite are summarized in Table
2. Figure 4 shows obvious difference of the two eigengene expression profiles between the
malignant branch and non-malignant cells. This is consistent with the fact that biological

Pacific Symposium on Biocomputing 2019

356



processes such as cell activation, immune response and regulation of cell migration are strongly
associated with malignancy of cells.

Table 2. Gene co-expression modules in the melanoma dataset.

Module ID Number of genes Enriched GO items (p value)

1 26
GO:0001775 cell activation (1.983E-12)

GO:0006955 immune response (1.983E-12)
GO:0045321 leukocyte activation (1.983E-12)

2 16
GO:0042470 melanosome (7.681E-7)

GO:0030334 regulation of cell migration (5.356E-4)
GO:2000145 regulation of cell motility (5.356E-4)

We further investigated genes in eigengene 2 and two non-overlapping sub-modules were
discovered. One contains five genes (TYR, CTSB, MLANA, GPNMB, PMEL) which en-
riches with proteins associated with melanosome - a structure associated with melanocytes
and potentially melanoma. The other contains seven genes (TIMP1, TMSB4X, SGK1, GSN,
LGALS3, SERPINE2, APOD) and enriches with regulation of cell migration and extracellular
matrix. Figure 5 shows that genes in both sub-modules have lower expression level in malig-
nant cells than non-malignant cells, which indicates functions related to normal melanosome
and cell migration activities may be disrupted in malignant melanoma cells.

Figure 5. Using eigengene expression profiles of two sub-modules in eigengene 2 as coloring of
nodes. The first sub-module is enriched in melanosome proteins and the second sub-module
is enriched in cell migration and extracellular space.

3.3. Using eigengenes as filter functions in Mapper

By using different filter functions, researchers can rapidly explore different biological hypothe-
ses in scRNA-seq data through Mapper. So, we can also incorporate GCNA into Mapper by
using expression profiles of eigengenes as filter functions. Figure 6 shows L∞ eccentricity, a
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commonly used filter function, fails to separate different types of human pancreas cells. On
the other hand, t-SNE completely separate different cell types into different clusters. Since
similarities between points with long distances are not reliable in t-SNE visualization, we are
not able to investigate the relationships between different cell types through t-SNE. By using
the expression level of eigengene 2 as a filter function, Mapper can separate different types
of pancreas cells with a branch-shape visualization, which preserves the continuity of cells at
the same time. More specifically, the exocrine compartment of pancreas, including acinar cells
and ductal cells, is visualized as a branch separating from the endocrine compartment. The
shape of the visualization is consistent regardless of the linkage function in the clustering step
(single or complete linkage). Enrichment analysis shows that eigengene 2 is associated with
delta cells and PP cells of mouse adult pancreas in co-expression atlas, which indicates that
eigengene 2 may contain genes conserved between species. This suggests that the eigengene 2
is worthy of further investigation for deeper understanding in pancreatic biology.

Figure 6. Visualization of pancreas cells using t-SNE and Mapper.

Moreover, we can combine multiple eigengene profiles as filter functions. From Figure 7, we
observe that using a single eigengene as the filter function can only differentiate some of the cell
types in the melanoma cell dataset. However, combining two eigenegenes as the filter function
can further differentiate different types such as macrocells and endothelial cells. Comparing to
t-SNE, Mapper visualization using two eigenegenes not only preserves the similarities between
B cells and T cells, but also reduces the batch effect by visualizing all malignant cells as a
group of tightly connected clusters.
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Figure 7. Visualization of melanoma cells using t-SNE and Mapper with eigengene expression
profiles as filter functions.

3.4. Mapper reveals potential functional relationships between exocrine
cells in pancreas

To further investigate the biological significance of Mapper visualization, we used the ex-
pression levels of established marker genes for each of the six main pancreatic cell types in
the human pancreas cell dataset to color the nodes in our visualization. From Figure 8, we
observe that expression levels of marker genes in endocrine cells show significant difference
in the corresponding cell types. However, KRT19 and PRSS1 could not well separate ductal
cells and acinar cells in the exocrine branch, which indicates potential relationships within
exocrine cells. We further applied GCNA on ductal cells and acinar cells separately, as well
as combined together. Two gene co-expression modules were identified across all three cell
populations. However, as shown in Figure 9, module 1 in the combined cell population shows
very small overlap with all the gene modules identified from the ductal-only and acinar-only
population. Enrichment analysis shows that module 1 in the combined cell population is asso-
ciated with neuron part (GO:0097458, p = 1.141E-3) and extracellular space (GO:0005615, p
= 5.735E-3), which could relate to enzymes production activities of acinar cells. Module 1 also
enriches secretory granule (GO:0030141, p = 7.314E-3), which could relate to the production
of bicarbonate-rich secretion in ductal cells.

4. Conclusion

The scRNA-seq technology is becoming a common approach to study cellular heterogeneity
and dynamic cellular process. Visualization techniques can help researchers effectively extract
that information from scRNA-seq data. In this paper, we applied a TDA algorithm, Mapper,
on two large scRNA-seq datasets. We showed that Mapper is able to preserve the continuous
structure in gene expression profiles while effectively differentiate different cell types at the
same time. This advantage allows us to investigate the relationships and connections between
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Figure 8. Mapper visualization of pancreas cells, with coloring of marker genes expression
levels.

Figure 9. Gene co-expression module detected only in combined cell population of acinar and
ductal cells.

different cell types through visualization. Mapper also allows researchers to explore different
biological hypotheses through different filter functions and generates results with rich bio-
logical information. We took this advantage by incorporating information from GCNA into
our visualization. GNCA helps to differentiate different cell types more effectively and en-
richment analysis of gene co-expression modules helps the interpretation of the visualization
results. Moreover, our method provides various options for researchers to explore the data
from different perspectives and is highly scalable to large number of cells.

While our method shows potential in effectively extracting biological insights from scRNA-
seq data, some limitations still exists. Firstly, although different filter functions could produce
networks with different structures, allowing researchers to explore data from different perspec-
tives, not all filter functions could generate networks with meaningful shapes. Researchers need
to work with the data experimentally in order to find informative visualizations. Secondly, en-
richment analysis only provides preliminary results of potential biological significance and
more rigorous experiments are needed to validate the findings. Finally, we plan to implement
our method as a web tool so that more researchers can easily access our method.
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