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Radio Resource Management for D2D-based V2V
Communication

Wanlu Sun, Erik G. Ström, Fredrik Brännström, Kin CheongSou, and Yutao Sui

Abstract—Direct device-to-device (D2D) links have been pro-
posed as a possible enabler for vehicle-to-vehicle (V2V) com-
munications, where the incurred intra-cell interference and the
stringent latency and reliability requirements are challenging
issues. In this paper, we investigate the radio resource manage-
ment problem for D2D-based V2V communication. Firstly, we
analyze and transform the latency and reliability requirements
of V2V communication into optimization constraints that are
computable using only the slowly varying channel information.
This transformation opens the possibility of extending certain
existing D2D techniques to cater for V2V communication.
Secondly, we propose a problem formulation that fulfills the
different requirements of V2V communication and traditional
cellular communication. Moreover, a Separate resOurce bLock
and powEr allocatioN (SOLEN) algorithm is proposed to solve
this problem. Finally, simulations are presented to evaluate
different schemes, which illustrate the necessity of careful design
when extending D2D methods to V2V communication and also
show promising performance of the proposed SOLEN algorithm.

I. I NTRODUCTION

A. Motivation

Recently, vehicle-to-vehicle (V2V) communications have
attracted great interest due to the potential to improve traffic
safety, reduce energy consumption, and enable new services
related to intelligent transportation systems. Usually, these
types of applications have a strongly localized nature, i.e.,
requiring cooperation between vehicles in close proximity.
Furthermore, other common features to most applications
are real-time requirements, as well as strict requirementson
reliability and access availability. For instance, the EU project
METIS considers that a maximum end-to-end latency of5 ms,
with transmission reliability of99.999% of 1600 bytes packets
should be guaranteed to deliver traffic safety and efficiency
applications [1].
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Current legacy solutions for V2V communication are ad-
hoc communications over the 802.11p standard and backend-
based communications over the Long Term Evolution (LTE)
cellular standard. The main problem with the 802.11p legacy
system is that the physical (PHY) layer is regular 802.11
OFDM with 10 MHz channel spacing option and that the
medium access control (MAC) layer is regular 802.11 carrier
sense multiple access (CSMA). As such, these are mainly
optimized for a WLAN-type of environment with no or
very slow mobility, and thus not optimized for vehicles with
high mobility. Furthermore, the lack of stringent quality of
service (QoS) provisioning and centralized management in the
802.11p standard challenges the fulfilment of the requirements
on V2V applications as well. On the other hand, in LTE
systems, as analyzed in [2], the performance for vehicular
communication is not always satisfactory, especially in terms
of latency and reliability. Therefore, there is a strong desire of
finding better solutions to support V2V communication.

Device-to-device (D2D) communication is identified as one
of the technology components for future cellular systems.
For example, the third generation partnership project (3GPP)
agrees that D2D communication will become one of the
new features to be studied during 3GPP Rel-12 and Rel-13
timeframes [3]. Also, the METIS project regards D2D as one
of the horizontal topics which are the main technical solutions
in the fifth generation (5G) networks [1]. In a D2D underlaying
cellular infrastructure, two physically close user equipment
(UE) devices can directly communicate with each other by
sharing the same resources used by regular cellular UEs (C-
UEs). Correspondingly, three promising gains, i.e., proximity
gain, reuse gain, and hop gain, may be offered [4].

By comparing the QoS requirements of V2V communica-
tion and the potential benefits of D2D communication, it turns
out that the direct D2D link can be a possible enabler for V2V
communication due to the following reasons. Firstly, the local-
ized nature of V2V services is exactly the motivating idea for
D2D communication. Moreover, the low latency requirement
of V2V applications fits the hop gain of D2D transmissions.
Last but not least, V2V’s requirement on high reliability is
consistent with the proximity gain provided by D2D links.
Nevertheless, using D2D underlay for V2V communication, if
performed blindly, may cause significant degradation to system
performance due to the interference introduced by resource
reuse. Also, to guarantee the required latency and reliability is
still a challenge that needs to be tackled for V2V services.
Hence, radio resource management (RRM) becomes a key



design aspect to enable D2D-based V2V communication.

B. State of the Art

Even though the D2D underlay network is an appealing
solution for V2V communication, to the best of our knowl-
edge, only a few studies [1], [5]–[8] have been conducted
along this direction. The suitability of D2D techniques to V2V
applications was systematically discussed in [1], [5], [6]. The
authors in [7] proposed a heuristic location dependent resource
allocation scheme to protect vehicular users. The performance
of C-UEs, however, is not optimized. Besides, we have in [8]
proposed a two-stage RB allocation and power control scheme
SRBP for D2D-based V2V communication when taking into
account the QoS requirements of both vehicular UEs (V-UEs)
and C-UEs.

On the other hand, extensive researches have been carried
out in the context of traditional D2D systems, where one of the
most critical challenges is the interference between the primary
cellular network and the D2D underlay. To cope with this new
interference situation, one crucial issue is the RRM strategy,
which includes how C-UEs and potential D2D UEs choose
the resources to share, and how each UE allocates its transmit
power among its used resources. There have been many efforts
investigating the RRM problem in such a system. Due to the
space limitation, we will only name a few in this field. The
interested readers can find more information in the excellent
survey papers [4], [9]–[11], and the references therein.

To maximize the sum rate of the whole network, the
authors in [12]–[18] proposed various algorithms. The work
in [13] presented mode selection and power control scheme
for one D2D link and one C-UE. To generalize the system
model, [12] studied the resource allocation for multiple D2D
links and C-UEs. The authors in [14] increased the sum rate
by avoiding the near-far interference from C-UEs to D2D
links. Recently, more advanced mathematical techniques have
been exploited in RRM problems. An iterative combinatorial
auction game was utilized in [15] to derive a spectrum resource
allocation mechanism. Also, a near optimal resource sharing
algorithm was proposed in [17] by formulating the interference
relationships among different D2D and cellular links as an
interference-aware graph. Particularly, a sophisticatedthree-
step resource allocation and power control scheme was derived
in [16] to maximize the sum rate while guaranteeing the signal
to interference plus noise ratio (SINR) requirements for both
D2D users and C-UEs, which showed promising performance.

Nevertheless, none of the above D2D approaches can be
directly applied to V2V communication, which has strict
requirements on latency and reliability, due to the following
limitations.

Firstly, most existing work aim to maximize the sum rate
and prioritize cellular links. Whereas, the D2D underlay is
only considered as opportunistic when their interference to
the cellular links is controlled at acceptable levels.

Secondly, most papers interpret the QoS requirement di-
rectly from the SINR viewpoint, i.e., the achieved SINR
should be above a particular target value. However, it is not

straightforward and clear that how to obtain this target value
from the original requirements of V2V communication, which
usually refer to the reliable transmission of a certain amount
of data within certain frequency bandwidth and time period
[1].

Last but not least, the majority of the literature assume
that the eNB is aware of the full instantaneous channel state
information (CSI) of all the cellular and D2D links, which
might be possible when the D2D users are static or slowly
moving. However, this assumption is too optimistic for fast
moving D2D-based V2V communication, where the vehicle
related channels change rapidly.

C. Contributions

The problem under study is centralized RRM for D2D-
based V2V communication with strict latency and reliability
requirements and with access only to slowly time-varying CSI.
From now on, we denote the D2D-based V2V users as V-UEs.
The main contributions are

• A method to transform the latency and reliability re-
quirements of V2V communication into optimization
constraints that are computable with only slowly varying
CSI. The method allows us to extend certain existing
D2D RRM algorithms, e.g., [12]–[17], to cater also for
V2V communication with strict latency and reliability
requirements and still maintain good performance. In con-
trast, a naive modification of existing algorithms performs
poorly.

• An RRM problem formulation for allocating multiple
RBs and transmit power to a set of C-UEs and V-
UEs. The problem is stated as an optimization problem
with the objective to maximize the C-UE sum rate with
proportional bandwidth fairness under the constraint of
satisfying the V-UEs’ requirements on latency and relia-
bility.

• A heuristic method to approximately solving the RRM
optimization problem with reduced complexity, but still
with very promising performance.

II. SYSTEM MODEL

A. System Model

Sets are denoted by calligraphic lettersX and their car-
dinalities are denoted by|X |. Besides,E[·] indicates the
expectation.

We consider a single cell environment whereM ′ C-UEs
and K ′ V-UEs (counted in terms of transmitters) share the
available uplink radio resources, and the D2D underlay is
only used by V-UEs1. In general, broadcasting strategies
are used for vehicular communication. In this paper, we
consider the least favorable receiving vehicle inside the in-
tended broadcast region of each transmitting vehicle, i.e., the
vehicle that has the smallest average channel gain from the
transmitting vehicle. The user sets for C-UEs and V-UEs are
M′ , {1, 2, ...,M ′} and K′ , {1, 2, ...,K ′}, respectively.

1The extension to the coexistence of both traditional D2D UEsand V-UEs
is left for future work.
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In our study, the available resources are two dimensional,
i.e., including both frequency and time domains, where the
whole uplink frequency bandwidth is divided intoF subbands,
with F , {1, 2, ..., F}, for each transmission time unit, as
illustrated in Fig. 1. Besides, one subband over one scheduling
time unit is defined as one resource block (RB). The C-UEs
use orthogonal RBs to communicate with the eNB, and the
V-UEs use orthogonal RBs among each other. However, an
RB can be used by both a C-UE and a V-UE. In this way,
interference between the V2V and cellular transmissions will
occur.

Fig. 2 illustrates the interference situation. Assume them′th
C-UE and thek′th V-UE are using the same RB. Then they
will cause intra-cell interference to each other.H ′

m′ andHk′

are the channel power gains of the desired transmissions
for the m′th C-UE and thek′th V-UE, respectively.Gm′k′

denotes the power gains of the interference channel from the
m′th C-UE to thek′th V-UE receiver, andG′

k′ represents
the interference channel power gain from thek′th V-UE to
the eNB. To perform RRM, the eNB needs CSI (at least
with certain level) for all these involved links, whereH ′

m′

and G′
k′ can be measured at the eNB itself, butHk′ and

Gm′k′ have to be measured at the corresponding V-UE receiver
and then reported back to the eNB. All channel power gains
include path loss and shadowing fading, but ignore small scale
fading. For this reason, we will call{H ′

m′ , Hk′ , Gm′k′ , G′
k′},

for m′ ∈ M′ andk′ ∈ K′, for the slow CSI.

B. Time Scale and Channel Acquisition for RRM

Besides proximity gain, reuse gain, and hop gain, another
potential advantage of D2D communication is to offload the
eNB scheduler [4]. To indeed achieve this offloading gain,
the time scale of interactions between the eNB and D2D UEs

should be much longer than the traditional LTE scheduling
time interval (1 ms). Furthermore, when D2D communication
is used for V2V services, the channels related to V-UEs could
change very fast. In this case, if the eNB wants meaningful
short-term RRM, such as every millisecond, the V-UEs need to
report their channels (i.e.,Hk′ andGm′k′ ) every millisecond,
which will cause potentially large overheads. For these two
reasons, we claim that the eNB should do long-term, e.g.,
a few hundred milliseconds, RRM for D2D-based V2V com-
munication. Long-term RRM can also be beneficial for V-UEs
that are temporarily out of coverage, as it guarantees resources
for these V-UEs.

Regarding channels related to V-UEs, during the considered
long-term time period, slow fading effects including path loss
and shadowing are quite similar and correlated, but the small
scale fading (SSF) changes very fast due to high mobility.
Therefore, the available channel information at the eNB should
only take the slow fading effects into account since the RRM
results must be valid for the next few hundred milliseconds.
In this way, the V-UEs merely need to report the slow fading
related channel information to the eNB every few hundred
milliseconds, which gives a fairly low signaling overhead.
Since path loss and shadowing components are not greatly
influenced by the RB indexf , the slow CSI in Section II-A
is assumed to be independent off .

III. R EQUIREMENTS ONV-UES AND C-UES

Usually, V-UEs and traditional C-UEs usually have different
types of interests. Hence, their QoS requirements should be
different. In this section, we will clarify what our real goal is,
and mathematically formulate the requirements of both V-UEs
and C-UEs.

A. Requirements of V-UEs

V2V services usually have stringent latency and reliability
requirements but are less interested in high data rate. Hence,
their requirements can be modeled as strict constraints in
our formulation. Now we will study how to consider these
requirements in a mathematical way.

Due to the latency constraints in V2V communication, the
RBs assigned to each V-UE should be contained in a limited
time span. Besides, the considered frequency bandwidth is also
limited. Hence, the number of RBs that are used for each
V-UE’s transmission is limited. As analyzed in [19], when
assuming a finite number of RBs,Eall

k′ , for the k′th V-UE’s
transmission, the outage probability evaluated at a required
number of bitsNk′ is defined as

pout
k′ , Pr







Eall
k′
∑

i=1

ρ log2 (1 + γi) < Nk′






, (1)

where ρ is the number of complex symbols per RB,γi ,

P̄ r
i |hi|

2/(σ2 + S̄r
i|gi|

2) is the instantaneous SINR on theith
RB; P̄ r

i and S̄r
i are average received power from the desired

and interfering users, respectively;hi and gi are random
variables which represent the SSF effects of the desired



channel and interference channel respectively; andσ2 is the
noise power. Then, similar to [1], the reliability requirement
is interpreted from the perspective of outage probability and
can be expressed as

pout
k′ ≤ po, (2)

wherepo is the maximum tolerable outage probability.
Furthermore, as explained in Section II-B, the eNB only

has knowledge of the slow fading effects of the channels.
In this case, the reliability constraint considered by the eNB
for implementing RRM should only involve the slow fading
information. To achieve this, we will replace the requirement
in (2) by a more strict requirement. We first upper-boundpout

k′

via the following Lemma 1.

Lemma 1. pout
k′ is upper-bounded by

pout
k′ ≤ Pr







Eall
k′

∑

i=1

ρ log2

(

1 + γ̄i|hi|
2 min

{
1

|gi|2
, 1

})

< Nk′






,

(3)

where γ̄i , P̄ r
i /(σ

2 + S̄r
i) only includes slow CSI2.

Proof: First we notice that

γi = γ̄i|hi|
2 σ2 + S̄r

i

σ2 + S̄r
i|gi|

2
. (4)

Let us define the functionw(x) , (σ2 + x)/(σ2 + x|gi|
2)

for x ≥ 0. The first derivative ofw(x) with respect tox is
calculated as

∂w(x)

∂x
=

σ2(1 − |gi|
2)

(σ2 + x|gi|2)2
> 0, if and only if |gi|2 < 1. (5)

Therefore, we have

w(x) ≥ min
x≥0

w(x) = min

{
1

|gi|2
, 1

}

. (6)

Finally, by considering thēSr
i in (4) asx, we obtain

γi ≥ γ̄i|hi|
2 min

{
1

|gi|2
, 1

}

, (7)

which concludes the proof.
It can be shown that the bound proposed in Lemma 1 is

tighter than the upper bound derived in [8]. The tightness will
be further numerically evaluated in Section VI-C.

In this way, if the upper-bounded probability in (3) is
smaller thanpo, the original inequality in (2) is always
satisfied. Then, we further restrict the new outage probability
requirement into the following two constraints,

Pr







Eall
k′
∑

i=1

ρ log2

(

1 + γ̄T
k′ |hi|

2 min

{
1

|gi|2
, 1

})

< Nk′






≤ po

(8)

γ̄i ≥ γ̄T
k′ , ∀i = 1, 2, ..., Eall

k′ . (9)

2Note thatγ̄i 6= E[γi], i.e., γ̄i does not represent the average SINR.

Constraints (8) and (9) mean that, for thek′th V-UE, by
deriving γ̄T

k′ from (8) and forcing the actual̄γi on each
used RB larger than̄γT

k′ , we can guarantee that (2) will be
satisfied. Note that̄γi contains our decision variables that
will be introduced later. From now on, with a slight abuse
of terminology, we denote (9) as the SINR constraint.

For a givenρ, Nk′ , po, and the probability density function
(pdf) of hi as well asgi, γ̄T

k′ andEall
k′ can be considered as

functions of each other. Usually, the choice ofEall
k′ depends on

the traffic load of the network. In this paper, we assume a fixed
Eall

k′ and then derivēγT
k′ from Eall

k′ , e.g., by Monte Carlo (MC)
simulation methods. The joint optimization ofEall

k′ with other
parameters in the proposed problem, which will be described
later in Section IV, is left for future work.

Moreover, to meet the latency constraint, theEall
k′ RBs have

to be allocated within the RB regionF × Ltol, as shown in
Fig. 1, whereLtol is the maximum tolerable latency of V2V
communication in terms of the number of scheduling time
units. Notice that in reality we have multiple V-UEs which
may appear at different times. So it is hard to find a common
two dimensional region to implement RB allocation for all
the V-UEs. Therefore, we will reduce the two dimensional
RB allocation problem into a sequence of one-dimensional
problems, i.e., only over frequency. Correspondingly, there-
quirements on latency and reliability become

Ek′ = dEall
k′ /Ltole (10)

γ̄i ≥ γ̄T
k′ , ∀i = 1, 2, ..., Ek′ , (11)

whereEk′ is the number of RBs allocated to thek′th V-UE
during each scheduling time unit, and we have

∑K′

k′=1 Ek′ ≤
F . The calculation ofEk′ in (10) ensures that at leastEall

k′

RBs will be allocated to thek′th V-UE within Ltol time units.
In this way, we transformed the original V2V requirements

on latency and reliability into constraints onEk′ and γ̄T
k′ . To

summarize, if thek′th V-UE is assignedEk′ RBs during each
time unit where the actual̄γi on theith used RB is larger than
γ̄T
k′ , then the original latency and reliability requirements will

be satisfied for this V-UE.

B. Requirements of C-UEs

In contrast to V2V safety communications, for traditional
cellular traffic, the latency requirement is less strict, and the
system usually aims at maximizing the sum throughput under
certain fairness considerations. Therefore, the maximization of
the C-UEs’ sum rate (as defined in Section IV) will be used
as the objective of our optimization problem.

With regard to fairness, we assume proportional bandwidth
fairness [20] among C-UEs, i.e., the number of RBs allocated
to the m′th C-UE, E′

m′ , during one scheduling time unit is
given for allm′ ∈ M′ and

∑M ′

m′=1 E
′
m′ = F .

IV. PROBLEM FORMULATION

In this section, we detail the RRM problem formulation
for D2D-based V2V communication, which considers the
requirements of V-UEs and C-UEs at the same time. To
summarize, our objective is to maximize the C-UEs’ sum rate



with fairness considerations, under the condition of satisfying
V-UEs’ requirements on latency and reliability, i.e., constraints
(10) and (11).

To handle the allocation of multiple RBs for one UE, we
introduce the concepts of sub-users and extended user sets.
Firstly, we include one dummy V-UE, i.e., the(K ′ + 1)th V-
UE, with the number of allocated RBs beingEK′+1 = F −
∑K′

k′=1 Ek′ . Besides, to complete the dummy V-UE related
information, we letHK′+1 = +∞, G′

K′+1 = 0, γ̄T
K′+1 = 0,

andGm′(K′+1) = 0 for all m′ ∈M′. Then, we divide thek′th
V-UE into Ek′ sub-V-UEs for allk′ ∈ K̃ , {1, 2, ...,K ′+1},
and divide them′th C-UE intoE′

m′ sub-C-UEs for allm′ ∈
M′, where each sub-user uses exactly one RB. Moreover, we
define two extended user setsK , {1, 2, ..., F} andM ,

{1, 2, ..., F} for sub-V-UEs and sub-C-UEs, respectively. In
this way, we haveK = M = F , whereK = |K| andM =
|M|. To relate the original user sets and the extended user sets,
we definêk: K → K̃ such thatk′ = k̂(k) is the V-UE to which
the sub-V-UEk belongs. Similarly, the function̂m:M→M′

is such thatm′ = m̂(m) is the C-UE to which the sub-C-UE
m belongs. We further defineKk′ , {k|k ∈ K, k̂(k) = k′}
andMm′ , {m|m ∈ M, m̂(m) = m′} as the collection of
sub-users for thek′th V-UE andm′th C-UE, respectively.

Based on the above definitions, the problem is mathemati-
cally formulated as maximizing the C-UEs’ sum rate, i.e.,

max

M∑

m=1

F∑

f=1

log2



1 +
SfmH

′

m̂(m)

σ2 +
∑K

k=1 PfkG
′

k̂(k)



 (12)

subject to

qfk ∈ {0, 1}, lfm ∈ {0, 1}, ∀f, k,m (12a)
F∑

f=1

∑

k∈K
k′

Pfk ≤ Pmax, ∀k′ (12b)

F∑

f=1

∑

m∈M
m′

Sfm ≤ Smax, ∀m′ (12c)

0 ≤ Pfk ≤ Pmaxqfk, ∀f, k (12d)

0 ≤ Sfm ≤ Smaxlfm, ∀f,m (12e)
K∑

k=1

qfk = 1,

M∑

m=1

lfm = 1, ∀f (12f)

F∑

f=1

qfk = 1,
F∑

f=1

lfm = 1, ∀k,m (12g)

PfkHk̂(k)

σ2 +
∑M

m=1 SfmG
m̂(m)k̂(k)

≥ qfkγ̄
T
k̂(k)

, ∀f, k (12h)

where f ∈ F , k ∈ K, m ∈ M, k′ ∈ K̃, and m′ ∈ M′.
Moreover,qfk (lfm) is a binary variable equal to1 if the kth
sub-V-UE (mth sub-C-UE) is assigned to thef th RB and0
otherwise;Pfk (Sfm) is the transmit power of thekth sub-V-
UE (mth sub-C-UE) on thef th RB. (12b) and (12c) represent
the max transmit power constraints for each V-UE and C-
UE, respectively. Constraint (12d) (constraint (12e)) forces the

transmit power of thekth sub-V-UE (themth sub-C-UE) on
thef th RB to be0 in caseqfk = 0 (lfm = 0). (12f) guarantees
the orthogonal RB allocation among V-UEs and among C-
UEs. (12g) ensures the number of RBs assigned to each sub-
V-UE and each sub-C-UE is exactly one. Last but not least,
(12h) enforces the SINR constraint for each sub-V-UE, where
the LHS is interpreted as̄γk.

In problem (12), the inputs areF , M ′, K ′, E′
m′ , Ek′ , σ2,

γ̄T
k′ , Pmax, Smax, H

′

m′ , G
′

k′ , Hk′ , and Gm′k′ . The outputs
(also the optimization/decision variables) areqfk, lfm, Pfk,
andSfm for all f ∈ F , k ∈ K, andm ∈M.

Unfortunately, the proposed problem (12) is NP-hard, which
can be shown by reducing a partition problem into an instance
of problem (12). As a result, there is no polynomial time
algorithm to solve problem (12) optimally (unless P= NP),
and thus heuristic solutions will be applied here.

V. RRM SOLUTIONS

In this section, we will first propose a novel RRM scheme
called SOLEN in Section V-A to solve problem (12). In
Section V-B, we will show how to extend the algorithm in
[16] for its application to D2D-based V2V communication.

A. The Proposed SOLEN Algorithm

There are two stages in the Separate resOurce bLock and
powEr allocatioN (SOLEN) algorithm. Firstly, by replacing
the max sum power constraint for each UE with the max
power constraint on each sub-user, the eNB allocates RBs to
both V-UEs and C-UEs in an optimal and time efficient way
by transforming the RB allocation problem into an maximum
weight matching (MWM) problem for bipartite graphs. See
[21] for general background on MWM. Secondly, based on
the RB allocation results from the first stage, the eNB further
optimally adjusts the transmit power for each V-UE and C-
UE when taking the max sum power constraint into account.
This is realized via transforming the power allocation problem
into a convex optimization problem and then solving it with
a dual decomposition method [22] which can be efficiently
computed. In this way, even though the proposed SOLEN
method is heuristic by dividing the whole process into two
stages, we can achieve the optimal solution for each stage,
which to some extent promises good performance of the
SOLEN algorithm, which is indeed confirmed by numerical
results in Section VI-C.

In the following, we first derive the RB allocation scheme
in Section V-A1, then present the power allocation algorithm
in Section V-A2, and finally summarize the proposed SOLEN
scheme in Section V-A3.

1) RB Allocation: Initially, the max sum power constraints
(12b) and (12c) for each V-UE and C-UE are replaced with
certain other constraints. In our previous work [8], we consider
equal power allocation for each V-UE and C-UE on each
of their used RBs in the RB allocation stage. In this paper,
instead, we assume max power constraints for each V-UE and
C-UE on each of their used RBs, i.e., for thek′th V-UE, the
max power on each of its used RBs išPmax

k′ , Pmax/Ek′ .



Likewise, for them′th C-UE, the max power on each of its
used RBs isŠmax

m′ , Smax/E′
m′ . In this way, the constraints

(12b) and (12c) will be replaced withPfk ≤ P̌max
k̂(k)

and

Sfm ≤ Šmax
m̂(m), respectively; and the new problem, which is

similar to the formulation in (12) by including the updated
constraints (12b) and (12c), is denoted as theRB allocation
problem.

In the following, we will transform the RB allocation
problem into another equivalent formulation3, and then present
an algorithm to solve the equivalent problem optimally and
efficiently. The basic track is as follows. Firstly, Theorem1
is proposed to prove that the RB allocation problem can be
transformed into the optimization problem (13) to get rid ofthe
RB indexf . Furthermore, we will propose Lemma 2 to show
that problem (13) can be transformed into an MWM problem
for bipartite graphs, and thus can be solved optimally by the
Hungarian algorithm [21].

Theorem 1. The RB allocation problem can be transformed
into the following equivalent optimization problem (13).

max

M∑

m=1

K∑

k=1

xmk log2

(

1 +
SmH

′

m̂(m)

σ2 + PkG
′

k̂(k)

)

(13)

subject to

xmk ∈ {0, 1}, ∀m ∈M, k ∈ K (13a)
K∑

k=1

xmk = 1, ∀m ∈M,

M∑

m=1

xmk = 1, ∀k ∈ K (13b)

Sm ≤ Šmax
m̂(m), ∀m ∈M, Pk ≤ P̌max

k̂(k)
, ∀k ∈ K (13c)

xmkPkHk̂(k)

σ2 + SmG
m̂(m)k̂(k)

≥xmkγ̄
T
k̂(k)

, ∀m ∈ M, k ∈ K, (13d)

where the optimization variables are xmk, Sm, and Pk for all
m ∈M and k ∈ K; and the outputs are xmk for all m ∈M
and k ∈ K.

Proof: See Appendix A.
In fact, problem (13) has its own meaning. Based on the

definition of sub-users, the binary variablexmk is equal to1
if the mth sub-C-UE and thekth sub-V-UE are sharing the
same RB and is equal to0 otherwise. Also, each sub-C-UE is
required to share the same RB with exactly one sub-V-UE, and
vice versa. Besides,Sm andPk stand for the transmit power of
themth sub-C-UE and thekth sub-V-UE, respectively. Then,
problem (13) is maximizing the sum rate of sub-C-UEs under
the condition of satisfying the max power constraint on each
RB for each sub-user, and the SINR constraint for each sub-V-
UE. Note that, even thoughxmk, Sm, andPk are all optimiza-
tion variables, the output of problem (13) only involvesxmk,
while Sm andPk serve as intermediate variables. Furthermore,
as analyzed in Section II-B, the available channel information
of all the involved links is the same in the whole considered

3As in [23], here we use the notion of equivalence of optimization problems
in an informal way. We call two problems equivalent if from a solution of
one, a solution of the other is readily found, and vice versa.

frequency range. Also, the SSF is assumed to be independent
over different RBs. Hence, after pairing a sub-C-UEs with
the corresponding sub-V-UEs, there is no difference which
RB each pair is using as long as different pairs are using
orthogonal RBs4.

In a further way, we will propose Lemma 2 to reformulate
problem (13) into the pure integer program (14) which fits the
MWM for bipartite graphs.

Lemma 2. Problem (13) is equivalent to

max
M∑

m=1

K∑

k=1

xmk log2

(

1+

T ∗
mkH

′

m̂(m)Hk̂(k)

σ2H
k̂(k)+G

′

k̂(k)̄
γT
k̂(k)

σ2+T ∗
mkG

′

k̂(k)̄
γT
k̂(k)

G
m̂(m)k̂(k)

)

, (14)

subject to (13a) and (13b), where

T ∗
mk=min

{

Šmax
m̂(m),

P̌max
k̂(k)

H
k̂(k)−γ̄

T
k̂(k)

σ2

γ̄T
k̂(k)

G
m̂(m)k̂(k)

}

, ∀m ∈M, k ∈ K.

(15)

Proof: Since the objective function (13) is nonincreasing
in terms of{Pk}

K
k=1, the optimalP̌ ∗

k must be achieved at

P̌ ∗
k =

1

H
k̂(k)

M∑

m=1

xmk

(

γ̄T
k̂(k)

σ2+Smγ̄T
k̂(k)

G
m̂(m)k̂(k)

)

, ∀k ∈ K

(16)

which is obtained from (13d). Then, by substitutinǧP ∗
k into

(13), we can eliminate{Pk}
K
k=1 and transform the objective

function in (13) into

M∑

m=1

K∑

k=1

xmk log2

[

1+

SmH
′

m̂(m)Hk̂(k)

σ2H
k̂(k)+G

′

k̂(k)

∑M

m=1 xmk

(

γ̄T
k̂(k)

σ2+Smγ̄T
k̂(k)

G
m̂(m)k̂(k)

)

]

(17)

=

M∑

m=1

K∑

k=1

xmk log2

(

1+

TmkH
′

m̂(m)Hk̂(k)

σ2H
k̂(k)+G

′

k̂(k)̄
γT
k̂(k)

σ2+TmkG
′

k̂(k)̄
γT
k̂(k)

G
m̂(m)k̂(k)

)

, (18)

whereTmk , xmkSm.
It can be shown that (18) is nondecreasing in terms of

Tmk ≥ 0. Hence, by taking into account the constraint (13c),
the maximum of (18) must be reached at the optimalT ∗

mk in
(15), which concludes the proof.

Now, due to the properties of the MWM for bipartite graphs,
the Hungarian algorithm [21] is an efficient way to solve
problem (14) and derive the optimal solutionx∗

mk within

4The instantaneous rate, in fact, depends on which RB to use due to SSF
effects. However, this SSF knowledge is not available at theeNB, and thus
the eNB cannot include the SSF information when optimizing the allocation.



polynomial time, where the number of operations is upper-
bounded byO(F 3) [21].

2) Power Allocation: The second stage of the proposed
SOLEN algorithm is power allocation. According tox∗

mk

obtained by solving problem (14), we definēk∗: M → K
such thatk̄∗(m) is the sub-V-UE which is sharing the same
RB with mth sub-C-UE. Similarly, the function̄m∗: K →M
is such thatm̄∗(k) is the sub-C-UE which is sharing the same
RB with kth sub-V-UE. In this way, thepower allocation
problem can be formulated as

max

M∑

m=1

log2

(

1 +
SmH

′

m̂(m)

σ2 + Pk̄∗(m)G
′

k̂(k̄∗(m))

)

(19)

subject to

Sm ≥ 0, Pk ≥ 0, ∀m ∈ M, k ∈ K (19a)
∑

m∈M
m′

Sm ≤ Smax, ∀m′ ∈M′ (19b)

∑

k∈K
k′

Pk ≤ Pmax, ∀k′ ∈ K′ (19c)

PkHk̂(k)

σ2 + Sm̄∗(k)Gm̂(m̄∗(k))k̂(k)

≥ γ̄T
k̂(k)

, ∀k ∈ K (19d)

where the optimization variables areSm and Pk for all
m ∈ M and k ∈ K. Note that the original max sum
power constraints (12d) and (12e) are included in the power
allocation problem. Since the objective function in (19) isnot
concave with respect to{Pk}

K
k=1, this problem is a non-convex

optimization problem. Nevertheless, we propose Lemma 3 to
transform the power allocation problem (19) into the convex
optimization problem (20).

Lemma 3. Given the RB allocation results, the power al-
location problem (19) can be transformed into the convex
optimization problem (20).

Proof: Similar to the proof of Lemma 2, the optimalP ∗
k

is achieved by satisfying the equality point in (19d). Then,
substituteP ∗

k into the power allocation problem (19) and set
k = k̄∗(m), we can eliminate{Pk}

K
k=1 and transform (19)

into (20) (on bottom of this page), subject to

Sm ≥ 0, ∀m ∈M, (20a)
∑

m∈M
m′

Sm ≤ Smax, ∀m′ ∈ M′ (20b)

∑

m:k̄∗(m)∈K
k′

γ̄T
k̂(k̄∗(m))

σ2

H
k̂(k̄∗(m))

+ Sm

γ̄T
k̂(k̄∗(m))

G
m̂(m)k̂(k̄∗(m))

H
k̂(k̄∗(m))

≤ Pmax, ∀k′ ∈ K′, (20c)

where the optimization variables areSm for all m ∈ M.

Via verifying the positive semidefinite property of the cor-
responding Hessian matrix, it can be proved that the objective
function in (20) is convex with respect to{Sm}

M
m=1. It can also

be shown that the feasible set decided by constraints (20a)-
(20c) is a convex set. Therefore, the transformed problem (20)
is a convex optimization problem.

Even though problem (20) is convex and we can adopt some
well known algorithms, e.g., interior point method or Newton’s
method, to solve it optimally, it may require high complexity
especially for large size problems. Therefore, we will utilize
the dual decomposition method [22] to separate problem (20)
into subproblems that can be solved in parallel. For a convex
optimization problem with satisfied Slater’s condition [22], the
dual decomposition method can guarantee the optimal solution
as the strong duality holds for this case.

Detailed derivations of the proposed power allocation
scheme are given in Appendix B. For readers’ convenience,
the processes are presented in Algorithm 1.

Algorithm 1 Proposed power allocation algorithm to solve
problem (20)

Input : γ̄T
k′ , H

′

m′ , G
′

k′ , Hk′ , andGm′k′ for all m′ ∈ M′ and
k′ ∈ K′, σ2, Smax, andPmax

Output : S∗
m for all m ∈ M

Initialization: (i) definez, am, bm, cm, vk′m, andrk′m for
all m ∈M andk′ ∈ K′ based on (28)-(33) in Appendix B;
(ii) set t = 0 andλ(0) equal to some nonnegative vector.
1. Solve subproblems (38) (in parallel) for givenλ(t). To
solve them′th subproblem,

calculatez̃∗m(λ) from (41),
if
∑

m∈M
m′

z̃∗m ≤ Smax then
z∗m(λ) = z̃∗m(λ)

else
a) deriveµ∗

m′ from (56),
b) calculatez∗m(λ) from (55)

end if
2. Updateλ by λ(t+1) =

[

λ(t) − α(t)
∑M ′

m′=1 ηm′(λ(t))
]

,

whereα(t) is an appropriate step size, andηm′(λ(t)) is
obtained from (40).
3. t ← t+ 1 and go to step 1 (until satisfying termination
criterion).
4. ObtainS∗

m from z∗.

Remark 1. In fact, there is a hard upper limit on the
acceptable number of V-UEs for different Ek′ , since V-UEs
can only use orthogonal RBs among each other in this work.
For instance, when F = 100, the upper limits on K ′ are
50 and 20 for Ek′ = 2 and Ek′ = 5, respectively. Due
to the stringent requirements of V2V communications, it is

min−

M∑

m=1

log2

(

1 +
SmH

′

m̂(m)Hk̂(k̄∗(m))

σ2H
k̂(k̄∗(m))+G

′

k̂(k̄∗(m))̄
γT
k̂(k̄∗(m))

σ2+SmG
′

k̂(k̄∗(m))̄
γT
k̂(k̄∗(m))

G
m̂(m)k̂(k̄∗(m))

)

(20)



of paramount importance to notify the V-UE if it can be
serviced or not, which depends on the feasibility of problem
(12). Obviously, problem (12) is infeasible if

∑K′

k′=1 Ek′ > F .
Hence, as in [24], we can use an Availability Indicator to
include the information of the feasibility5.

3) Summary of the SOLEN scheme: To summarize, the
procedures of the proposed SOLEN algorithm for solving
problem (12) are illustrated in Algorithm 2.

B. Application of [16] to D2D-based V2V

As stated in Section I-C, the proposed mathematical model
for V-UE requirements opens the feasibility of applying the
existing D2D techniques to V2V scenarios. Now we will
extend the algorithm in [16] for its application in D2D-based
V2V communication, which is referred to V2V-[16]. Firstly,
we involve the constraints on the number of RBs and the SINR
target value for V-UEs, which are derived in Section III-A, into
its problem formulation. Then, the concepts of sub-C-UE and
sub-V-UE are introduced to allow the allocation of multiple
RBs for one UE. Correspondingly, the max power constraints
becomeŠmax

m′ and P̌max
k′ for each sub-C-UE and each sub-V-

UE, respectively. Furthermore, we change the objective in the
second and third steps of the scheme from maximizing the
sum rate of both C-UEs and V-UEs into maximizing the sum
rate of C-UEs, and also revise the derivations of the algorithm
accordingly.

VI. PERFORMANCEEVALUATION

A. Scenarios and Parameters

We assume a single cell outdoor system with a carrier
frequency of800 MHz and that each RB has a bandwidth of
180 kHz for uplink communication. In particular, we consider
test case2 [25] defined by METIS, which describes an urban
environmental model similar to the Manhattan grid layout. In
this topology, the entire region is a444 m × 444 m square
and the size of each building is120 m × 120 m.

The used channel models are specified by [25], which
describes the large scale modeling for different propagations
scenarios (PSs). Specifically, we refer to PS#3 in [25] for the
links connected to the eNB (i.e.,H ′

m′ andG′
k′ ); and PS#9 in

[25] for the links between UEs (i.e.,Hk′ andGm′k′ ).
Simulation parameters are summarized as follows:ρ = 84,

Pmax = Smax = 24 dBm. Besides, the antenna height is26
m at the eNB and1.5 m at each UE. The intended broadcast
range of each vehicle is18 m. Also, the noise floor is−117
dBm at the eNB and each V-UE. The SSF of the channels
is assumed to be Rayleigh distributed with unit power gain.

5How to best resolve an infeasibility situation, e.g., by offering the service
to only a subset of V-UEs, is application-dependent and outside the scope of
this paper.

6As analyzed in Section V-A1, after pairing the sub-C-UEs with the
corresponding sub-V-UEs, there is no difference in which RBeach pair is
using as long as different pairs are using orthogonal RBs. This is because
the available channel information of all the involved linksmerely includes
the slow fading effects, which are roughly the same in the whole considered
frequency range. Also, the SSF is assumed to be independent over different
RBs.

Algorithm 2 Procedures of the proposed SOLEN algorithm
to solve problem (12)

Input : F , M ′, K ′, E′
m′ , Ek′ , σ2, γ̄T

k′ , Pmax, Smax, H
′

m′ ,
G

′

k′ , Hk′ , andGm′k′

Output : l∗fm, S∗
fm, q∗fk, andP ∗

fk

1. Use the Hungarian algorithm to solve problem (14), and
obtain the optimal solutionx∗

mk for all m ∈ M andk ∈ K.
2. Based onx∗

mk, calculatem̄∗(k) for all k ∈ K andk̄∗(m)
for all m ∈M.
3. Given the definitions in (28)-(33), apply Algorithm 1 to

solve problem (20), and obtain the optimal solutionS∗
m for

all m ∈M.
4. Calculate the optimalP ∗

k for all k ∈ K from (16).
5. Allocate the sub-C-UE& sub-V-UE pairs to RBs in an

arbitrarily orthogonal manner6:
for f = 1 : F do

Denotem̌ = f
l∗fm̌ = 1, S∗

fm̌ = S∗
m̌

l∗fm = 0, S∗
fm = 0 for all m 6= m̌

Denoteǩ = k̄∗(m̌)
q∗
fǩ

= 1, P ∗
fǩ

= P ∗
ǩ

q∗fk = 0, P ∗
fk = 0 for all k 6= ǩ

end for

Finally, one scheduling time unit (i.e., the time period of one
RB) is 0.5 ms and the time scale of RRM is100 ms.

B. Performance Metrics and Baseline Methods

We base our evaluation on four metrics:
• C-UEs’ sum rate when SSF is disregarded, i.e., the value

of the objective in (12);
• transmit power per V-UE and per C-UE;
• cumulative distribution function (CDF) of C-UEs’ sum

rate;
• CDF of one V-UE’s transmitted bits within5 ms, i.e., the

LHS of the inner inequality in (1).
The last two metrics are evaluated when considering SSF in
simulations.

Moreover, we compare the SOLEN and V2V-[16] with the
following baseline methods.

1) Modified-[12]. In [12], the eNB selects the C-UE with
highest desired channel gain to share its RB with the V-UE
which suffers the lowest interference from this C-UE. The
method is executed with the max power. To fit the scheme
into our framework, we first use the concepts of sub-C-UE
and sub-V-UE instead of C-UE and V-UE. Besides, to meet
the SINR constraint for each sub-V-UE, we simply decrease
the transmit power of the corresponding sub-C-UEs until the
SINR constraint is just satisfied.

2) Modified-[16]. In [16], a three-step scheme is derived to
maximize the sum rate of both C-UEs and V-UEs. Here, we
replace C-UEs and V-UEs with sub-C-UEs and sub-V-UEs,
respectively.

3) SRBP in [8]. In [8], it is firstly derived an upper bound
on the outage probabilitypout

k′ in (1) using only the slowly
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varying channel information. Moreover, similar to SOLEN, it
is also proposed a two-stage SRBP scheme which separates
RB allocation and power control. However, in its RB allocation
stage, power is equally allocated for each V-UE and C-UE on
each of their used RBs.

4) Optimal solution to problem (12), which is achieved
by firstly conducting the exhaustive search over all the RB
allocation possibilities, and then implementing the optimal
power allocation for each RB allocation result. Due to its
exponentially increased complexity, we only simulate the
optimal solution forF = 4.

C. Simulation Results

Based on the requirements specified by METIS [1], we have
Nk′ = 12800 bits,po = 10−5 (i.e., a transmission reliability of
99.999%), andLtol = 10 (i.e., a latency requirement of5 ms).
As analyzed in Section III-A, the relationship betweenEall

k′ and
γ̄T
k′ can be derived from (8) through a MC method. ThenEk′

can be calculated via (10). In this way, some possible valuesof
{Ek′ , γ̄T

k′ [dB]} are {2, 32.6}, {3, 23.2}, {4, 18.2}, {5, 14.9},
{6, 12.5}, {7, 10.8}, {8, 9.3}, {8, 9.3}, and{10, 7.2}.

Recall that the constraint in (10) is obtained on the basis
of Lemma 1. Therefore, we will first evaluate the tightness
of the upper bound given in Lemma 1. To do so, we com-

pare the CDFs of the random variables
∑Eall

k′

i=1 ρ log2 (1 + γi)
in (1), which corresponds to the actual outage probability,
∑Eall

k′

i=1 ρ log2

(

1 + γ̄i|hi|
2 min

{
1

|gi|2
, 1
})

given by the upper
bound in (3), and the upper bound proposed in [8]. The
numerical result shown in Fig. 3 demonstrates the validity of
the bound derived by Lemma 1 and its improvement compared
to the existing bound presented in [8].

Fig. 4 compares C-UEs’ sum rates of different schemes
whenF = 4, which is plotted to show the performance gap
with the optimal solution. The numbers in the labels represent
the achieved rates when the SSF is not taken into account. In
other words, the rate when the utilized channel knowledge
in the four RRM methods matches the actual channel in
the simulations. Besides, the CDF curves show C-UEs’ sum
rates when the SSF is also involved in simulated channels.
It can be seen that these long-term RRM schemes do not
incur big difference on the average performance when being
applied to realistic channels with SSF effects. Regarding the
evaluation of different methods, the performances of SOLEN
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rate of C-UEs. (b) CDF of transmitted bits within5 ms for each V-UE.

and SRBP achieve the optimal solution in this setup. V2V-
[16] exhibits slight degradation. On the other hand, Modified-
[12] and Modified- [16] yield significantly worse sum rates,
which illustrates the ineffectiveness of directly applying D2D
schemes to V2V communication.

Now consider more realistic scenarios withF = 100. Here
we define the traffic load as the number of V-UEs. For a low
load situation, i.e.,K ′ = 10, Fig. 5(a) and Fig. 5(b) illustrate
the performances of C-UEs and V-UEs, respectively.

In Fig. 5(a), the CDFs of C-UEs’ sum rates are evaluated.
By comparing the numbers in the labels and the CDF curves,
it is again demonstrated that long-term RRM schemes yield
effective results even when SSF effects are present. Besides,
compared to V2V- [16], SRBP and SOLEN, Modified- [12]
and Modified-[16] have obviously degraded performances due
to the inappropriateness of their models for D2D-based V2V
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communication. Moreover, SOLEN reveals slight superiority
over SRBP and V2V-[16].

Fig. 5(b) shows the CDFs of the transmitted bits within5
ms for one V-UE. It can be seen that the outage probability
constraint which represents the QoS requirements on V-UEs is
fulfilled for all the five schemes. We stress the fact that there
is no need to exceed the requirements for V-UEs. Indeed, the
fact that Modified-[12] and Modified-[16] do this to a higher
degree than V2V-[16], SRBP, and SOLEN explains why their
C-UE sum rates are worse in Fig. 5(a).

Next, C-UEs’ sum rates are plotted in Fig. 6 with respect
to different loads of vehicular network, i.e., different values
of K ′. As revealed in Fig. 6(a), compared to the algorithms
proposed for traditional D2D networks (i.e., Modified- [12]
and Modified- [16]), the proposed SOLEN shows significant
performance improvement and better robustness to network
loads. This result again demonstrates the necessity of care-
ful consideration when applying D2D network to vehicular
communication. Furthermore, the three algorithms that are
designed for D2D-based V2V communication are evaluated
in Fig. 6(b), where SOLEN exhibits slight superiority as well.
Besides, even though the best-performing SOLEN introduces
higher computational complexity than V2V- [16] and SRBP
due to the power allocation in the second stage, the power
allocation problem is decomposed into subproblems that can
be then solved in parallel. Furthermore, whenK ′ is varied
from 10 to 50, the satisfaction of V-UE’s requirements will not
be affected. Particularly, the CDF curves of the transmitted bits
within 5 ms for each V-UE are similar with the ones shown in
Fig. 5(b), and thus not included due to space limitation. The
reason is that we consider the QoS requirements of V-UEs as
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Figure 7. Average transmit power per UE versus number of V-UEs.F = 100,
M ′ = 5, E′

m′
= 20, andEk′ = 2. (a) Average transmit power per V-UE.

(b) Average transmit power per C-UE.

hard constraints in the optimization problem (12) and render
them higher priority over C-UE’s sum rate.

Fig. 7(a) and Fig. 7(b) show the average transmit power
in terms ofK ′ per V-UE and per C-UE, respectively. First,
from Fig. 7(a), it can be seen that V-UE’s transmit power of
Modified-[16] and Modified-[12] reaches the maximum, i.e.,
24 dBm, for all 10 ≤ K ′ ≤ 50. Whereas, V-UE’s transmit
power of RRM schemes V2V-[16], SRBP [8], and SOLEN is
much less than24 dBm, where the proposed SOLEN algorithm
yields the lowest power. Since the five schemes have the same
QoS requirements of V-UEs, the lower transmit power per
V-UE implies the better power efficiency. Besides, while the
transmit power of V2V-[16] and SRBP [8] varies slightly with
respect to different values ofK ′, the power of SOLEN is
almost a constant over the increasedK ′ which illustrates its
robustness to network loads. Second, when it comes to the
average transmit power of C-UEs, as revealed in Fig. 7(b),
V2V-[16], SRBP [8], and SOLEN achieve their max power,
i.e.,24 dBm. This means that the sum rates of C-UEs of these
three algorithms have been maximized as much as possible.
However, Modified- [16] and Modified- [12] exhibit slightly
less transmit power. This is because the C-UEs in these two
schemes have to sacrifice the transmit power to guarantee the
requirements of V-UEs, which again reveals the ineffectiveness
of the naive extension when applying D2D methods to V2V
communications.

Additionally, the CDF of V-UE’s transmit power is shown
by Fig. 8 for K ′ = 30. As revealed in Fig. 8, the trans-
mit power per V-UE for RRM schemes Modified- [16] and
Modified-[12] is constantly24 dBm, and thus their respective
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CDF is a step function with a ’step’ at24 dBm. Also, as
illustrated by the CDF curves, the proposed SOLEN exhibits
the best power efficiency. In fact, we have also evaluated
the CDF of V-UE’s transmit power for differentK ′, i.e.,
10 ≤ K ′ ≤ 50, and obtained almost identical simulation
results with the caseK ′ = 30. Hence. we will only include
Fig. 8 here as an example.

Fig. 9 shows the impact ofEk′ on the performances of
RRM schemes. Recall that differentEk′ gives differentγ̄T

k′ .
Generally, increasingEk′ causes less transmit power of the
V-UE on each of its used RBs due to the loweredγ̄T

k′ , which
then leads to the increased rate on that RB of the corre-
sponding C-UE. On the other hand, increasingEk′ implies
that more C-UEs’ RBs suffer from interference caused by V-
UEs. Therefore, it is not obvious that what value ofEk′ can
bring the best performance of C-UEs’ sum rate, which may
vary based on different system parameters. Nevertheless, it is
revealed in Fig. 9(a) that SOLEN dominates Modified- [12]
and Modified-[16] under variousEk′ possibilities. Moreover,

as illustrated in Fig. 9(b), compared to V2V-[16], SRBP and
SOLEN are more robust to the change ofEk′ . Last but not
least, SOLEN outperforms all the other schemes and shows
the most promising results.

VII. C ONCLUSIONS ANDFUTURE WORK

Due to the similarity between the QoS requirements of V2V
application and the benefits of D2D communication, the direct
D2D link is a promising enabler for V2V communication
as long as the RRM is conducted in a careful way. In this
paper, we first present a method to transform the actual
latency and reliability requirements of V2V communication
into optimization constraints that can be computed from only
slowly varying CSI. This transformation allows us to apply
certain existing D2D schemes to V2V communication, which,
however, need to be revised to cater for V-UEs’ specific
requirements. Moreover, we formulate a problem to optimize
the performance of both V-UEs and C-UEs, and propose the
SOLEN algorithm to solve this problem. By doing so, C-UEs’
sum rate can be maximized under the condition of satisfying
V-UEs’ constraints. Numerical results confirm that careful
RRM design is necessary when applying D2D network to
V2V communication. Moreover, the proposed SOLEN scheme
shows promising performance.

The current work assumes the orthogonal RB allocation
among V-UEs, i.e., the constraint in (12f). In the future, we
will relax this restriction by allowing multiple V-UEs to share
a common RB. By doing so, the number of supported V-UEs
will improve; however, the possible non-orthogonality of V-
UEs will likely require a more complex RRM design.

APPENDIX A
PROOF OFTHEOREM 1

The proof starts by defining new variablesxmkf , qfklfm
for all f ∈ F , k ∈ K andm ∈M. By this definition, we can
obtain the following constraints.

xmkf ∈ {0, 1}, ∀f ∈ F , m ∈ M, k ∈ K, (21)
F∑

f=1

xmkf ∈ {0, 1}, ∀m ∈M, k ∈ K, (22)

M∑

m=1

K∑

k=1

xmkf = 1, ∀f ∈ F . (23)

To prove the equivalent transformation from the RB alloca-
tion problem to problem (13), we need to take both objective
function and constraints into account.

Let us first investigate the objective function in the RB
allocation problem in (12), which is equal to

M∑

m=1

F∑

f=1

lfmlog2



1+
SfmH

′

m̂(m)

σ2+
∑K

k=1 qfkPfkG
′

k̂(k)



 (24)

=

M∑

m=1

F∑

f=1

K∑

k=1

qfklfm log2



1+
SfmH

′

m̂(m)

σ2+
∑K

k=1 qfkPfkG
′

k̂(k)





(25)



=

M∑

m=1

K∑

k=1

F∑

f=1

xmkf log2



1+
SfmH

′

m̂(m)

σ2+
∑K

k=1 qfkPfkG
′

k̂(k)





︸ ︷︷ ︸

,Ω(m,k)

,

(26)

where (25) is true by the constraint
∑K

k=1 qfk = 1 given in
(12f), and (26) follows by the definition ofxmkf .

Based on (22), we know that
∑F

f=1 xmkf can be either0
or 1. For calculatingΩ(m, k), we consider these two cases
separately.

If
∑F

f=1 xmkf = 1, for a given{m, k}, there is exactly
onef , denoted byf∗, satisfyingxmkf∗ = 1; and for allf ∈
F − {f∗}, we havexmkf = 0. Here, for two setsX andY,
X − Y represents the relative complement ofY in X . In a
further way, according to the definition ofxmkf , we know
that qf∗k = 1, andqfk = 0 for all f ∈ F − {f∗}. Therefore,
Ω(m, k) can be calculated as

Ω(m, k) = xmkf∗ log2



1 +
Sf∗mH

′

m̂(m)

σ2 +
∑K

k=1 qf∗kPf∗kG
′

k̂(k)





= log2

(

1 +
SmH

′

m̂(m)

σ2 + PkG
′

k̂(k)

)

. (27)

where (27) follows by knowingxmkf∗ = 1 as well as defining
Sm , Sf∗m andPk , Pf∗k.

On the other hand, if
∑F

f=1 xmkf = 0, we can easily obtain
Ω(m, k) = 0.

By consideringΩ(m, k) for the two cases and defining
xmk ,

∑F

f=1 xmkf , we can further simplify (26) to yield the
objective function in problem (13). Moreover, the equivalence
between the constraints of the two problems can be directly
obtained by the definitions of the corresponding variables.

According to the equivalence, we can we can easily acquire
the optimal solutionl∗fm and q∗fk to problem (13) based on
the optimal solutionx∗

mk to problem (13). Here one possible
manner is described in Algorithm 3. This concludes our proof.

Algorithm 3 One way to derivel∗fm andq∗fk based onx∗
mk

for f = 1 : F do
Denotem̌ = f
l∗fm̌ = 1, l∗fm = 0 for all m 6= m̌

Find ǩ such thatx∗
mǩ

= 1

q∗
fǩ

= 1, q∗fk = 0 for all k 6= ǩ

end for

APPENDIX B
DERIVATIONS OF ALGORITHM 1

To simplify the notation, we define new variables

z , [z1, z2, ..., zM ]T, wherezm , Sm, (28)

am , H
′

m̂(m)Hk̂(k̄∗(m)), (29)

bm , G
′

k̂(k̄∗(m))
γ̄T
k̂(k̄∗(m))

G
m̂(m)k̂(k̄∗(m)), (30)

cm , σ2H
k̂(k̄∗(m)) +G

′

k̂(k̄∗(m))
γ̄T
k̂(k̄∗(m))

σ2, (31)

vk′m ,

{
γ̄T
k̂(k̄∗(m))

G
m̂(m)k̂(k̄∗(m))

H
k̂(k̄∗(m))

if k̄∗(m) ∈ Kk′

0 otherwise
, (32)

rk′m ,

{
γ̄T
k̂(k̄∗(m))

σ2

H
k̂(k̄∗(m))

if k̄∗(m) ∈ Kk′

0 otherwise
, (33)

for all k′ ∈ K′ andm ∈ M, where(·)T denotes transposi-
tion. According to these definitions, the convex optimization
problem (20) can be re-written as

min
z

M∑

m=1

− log2

(

1 +
amzm

bmzm + cm

)

(34)

subject to

z � 0 (34a)
∑

m∈M
m′

zm ≤ Smax, ∀m′ ∈M′ (34b)

M∑

m=1

vk′mzm + rk′m ≤ Pmax, ∀k′ ∈ K′, (34c)

where� stands for element-wise inequality.
To utilize the dual decomposition method, we first form the

partial Lagrangian of (34) as

Lp(z,λ) =

M∑

m=1

− log2

(

1 +
amzm

bmzm + cm

)

+
K′

∑

k′=1

λk′

[(
M∑

m=1

vk′mzm + rk′m

)

− Pmax

]

(35)

=

M ′

∑

m′=1

{
∑

m∈M
m′

[

− log2

(

1 +
amzm

bmzm + cm

)

+

K′

∑

k′=1

λk′

(

vk′mzm + rk′m −
Pmax

M

)]}

, (36)

whereλ , [λ1, λ2, ..., λK′ ]T contains the Lagrange multipli-
ers associated with the inequality constraints in (34c).

Then, the Lagrange dual functiong(λ) is derived by solving
the minimization problem

g(λ) = min
z

Lp(z,λ) (37)

subject to (34a) and (34b).
Problem (37) can be decoupled intoM ′ subproblems with

the optimal valuegm′(λ) for them′th subproblem, where the
m′th subproblem is formulated as



gm′(λ) = min
z
m′

∑

m∈M
m′

[

− log2

(

1 +
amzm

bmzm + cm

)

+

K′

∑

k′=1

λk′

(

vk′mzm + rk′m −
Pmax

M

)]

(38)

subject to

zm′ � 0, (38a)
∑

m∈M
m′

zm ≤ Smax. (38b)

Herezm′ is defined as a column vector consisting ofzm for
all m ∈Mm′ .

In this way, the master dual problem following (37) is

max
λ

g(λ) =
M ′

∑

m′=1

gm′(λ) subject toλ � 0, (39)

which can also yield the optimal value for problem (34)
because of the strong duality. To solve (39), the subgradient
method [26] becomes a convenient approach since it only
requires the knowledge of a subgradient for each−gm′(λ)
given byηm′(λ) , [η1m′(λ), η2m′(λ), ..., ηK′m′(λ)]T, where

ηk′m′(λ) =−
∑

m∈M
m′

(

vk′mz∗m(λ) + rk′m−
Pmax

M

)

, (40)

for all k′ ∈ K′, and z∗m(λ) is the optimal solution to
subproblem (38) for a givenλ. The global subgradient is
thenη(λ) =

∑M ′

m′=1 ηm′(λ). Hence, after obtainingz∗m(λ),
the minimum of problem (34) can be achieved by solving its
master dual problem (39) via the subgradient method.

Therefore, now the key point is to solve subproblem (38)
and derive the optimal solutionz∗m(λ). Through calculating
the gradient of the objective function in (38), we can prove that
this objective is a first nonincreasing and then nondecreasing
function in terms of each element of the vectorzm′ . Moreover,
if we disregard constraint (38b), the temporary optimal solu-
tion z̃∗

m′ can be calculated as follows by setting the gradient
of the objective function in (38) to be zero, i.e.,

z̃∗m =







√
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2bm
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cm

)2

+ 4
b2
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amcm
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−
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+ 1
cm

)

2
b2
m

amcm





+

, ∀m ∈ Mm′ , (41)

where [x]+ , max{x, 0}. Then, if z̃∗
m′ satisfies constraint

(38b), i.e.,
∑

m∈M
m′

z̃∗m ≤ Smax, we have solved problem
(38), as the optimal solution isz∗m = z̃∗m for all m ∈Mm′ .

On the other hand, if constraint (38b) is violated byz̃∗
m′ , the

optimal solutionz∗
m′ must be achieved at the equality point

of constraint (38b). In this case, we can replace the inequality
in (38b) with equality and obtain the equivalent problem

gm′(λ) = min
∑

m∈M
m′

[

− log2

(

1 +
amzm

bmzm + cm

)

+

K′

∑

k′=1

λk′

(

vk′mzm + rk′m −
Pmax

M

)]

(42)

subject to

zm′ � 0, (42a)
∑

m∈M
m′

zm = Smax, (42b)

which is still convex optimization.
Now, we will investigate on the solution to problem (42).

Based on the theory of Karush-Kuhn-Tucker (KKT) optimality
conditions [23], since problem (42) is convex optimization
and its Slater’s condition can be verified, strong duality holds
for problem (42). Therefore, the KKT conditions are not
only necessary, but also sufficient conditions for the optimal
solution to problem (42). As a result, we can derivez∗

m′ by
analyzing the KKT conditions.

Firstly, the LagrangianLm′ associated with problem (42) is

Lm′(zm′ ,β, µm′) =
∑

m∈M
m′

[

− log2

(
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amzm

bmzm + cm
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+
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∑
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M

)]

−
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m∈M
m′

βmzm + µm′
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m∈M
m′

zm − Smax
)

, (43)

whereβ , [β1, β2, ..., βE′

m′
]T andµm′ are the Lagrange mul-

tipliers associated with the inequality constraint in (42a) and
the equality constraint in (42b), respectively. Also, we refer
to z∗

m′ and (β∗, µ∗
m′) as primal and dual optimal solutions,

respectively.
Then, the KKT conditions to problem (42) are

z∗
m′ � 0, ∀m ∈ Mm′ (44)
∑

m∈M
m′

z∗m = Smax (45)

β∗
m ≥ 0, ∀m ∈Mm′ (46)

β∗
mz∗m = 0, ∀m ∈Mm′ (47)
∂Lm

∂z∗m
=

−amcm
(bmz∗m + cm)2 + amz∗m

+

K′

∑

k′=1

λk′vk′m − β∗
m + µ∗

m′ = 0, ∀m ∈Mm′ . (48)

We can directly solve these equations (44)-(48) to findz∗
m′

and (β∗, µ∗
m′). We start by noting thatβ∗

m acts as a slack
variable in the last equation (48), and

β∗
m =

−amcm
(bmz∗m + cm)2 + amz∗m

+

K′

∑

k′=1

λk′vk′m + µ∗
m′ . (49)



Substitute (49) back into (46) and (47), then we can obtain
the conditions

µ∗
m′ +

K′

∑

k′=1

λk′vk′m ≥
amcm

(bmz∗m + cm)2 + amz∗m

=
1

cm
am

+
(

2bm
am

+ 1
cm

)

z∗m +
b2
m

amcm
z∗2m

, (50)

and
[

µ∗
m′ +

K′

∑

k′=1

λk′vk′m −
amcm

(bmz∗m + cm)2 + amz∗m

]

z∗m = 0.

(51)

If µ∗
m′ +

∑K′

k′=1 λk′vk′m < 1/(cm/am), inequality (50) holds
only if z∗m > 0, which by the condition (51) implies that

µ∗
m′ +

K′

∑

k′=1

λk′vk′m =
amcm

(bmz∗m + cm)2 + amz∗m
. (52)

If µ∗
m′ +

∑K′

k′=1 λkvkm ≥ 1/(cm/am), then z∗m > 0 is
impossible, because it would imply

µ∗
m′ +

K′

∑

k′=1

λk′vk′m ≥ 1/(cm/am)

>
amcm

(bmz∗m + cm)2 + amz∗m
, (53)

which violates the complementary slackness condition (51).
Therefore we havez∗m = 0 if µ∗

m′ +
∑K′

k′=1 λk′vk′m ≥
1/(cm/am). Thus, by summarizing these two situations, we
can obtain

z∗m =

{

solution to(52), if µ∗
m′ +

∑K′

k′=1 λk′vk′m < am

cm

0, otherwise

(54)

⇒z∗m =

√
(
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am
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cm
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m

amcm

[

1
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+
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λ
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2
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amcm

−
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2bm
am
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cm

)

2
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. (55)

Substituting this expression ofz∗m into the condition (45) we
obtain

∑

m∈M
m′

√
(

2bm
am

+ 1
cm

)2

+4
b2
m

amcm

[

1

µ∗

m′
+
∑

K′
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λ
k′vk′m

− cm
am

]+

2
b2
m

amcm

−

(
2bm
am

+ 1
cm

)

2
b2
m

amcm

= Smax. (56)

For a givenλ, the LHS of (56) is a nonincreasing function of
µ∗
m′ > −

∑K′

k′=1 λk′vk′m, where the range ofµ∗
m′ is acquired

from (50). Also, this function reaches∞ whenµ∗
m′ approaches

−
∑K′

k′=1 λk′vk′m, and reaches0 when µ∗
m′ approaches∞.

So the equation (56) has a unique solution ofµ∗
m′ which is

readily determined. With establishedµ∗
m′ , we can calculate

z∗m(λ) from (55) and the corresponding optimal valuegm′(λ)
to them′th subproblem (38).

After obtaining the optimal solution to each subproblem
(38), we can substitutegm′(λ) back into problem (39) and
solve it through the subgradient method [26].
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