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1. Introduction

First, we recall some necessary definitions and
mathematical preliminaries of the generalized fractional
integrals which are defined by Sarikaya and Ertugral [1].

Let which satisfies the following condition:

J.; —d(pgt) t <o

We define the following left-sided and right-sided
generalized fractional integral operators, respectively, as
follows:

()= j;% f(yde, x>a, (1D

L =] PO cyar x<h (1.9)
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The most important feature of generalized fractional
integrals is that they generalize some types of fractional
integrals such as Riemann-Liouville fractional integral,
k-Riemann-Liouville fractional integral, Katugampola
fractional integrals, conformable fractional integral, Hadamard
fractional integrals, etc. These important special cases of
the integral operators (1.1) and (1.2) are mentioned below.

a) If we take ¢@(¢t)=t, the operator (1.1) and (1.2)

reduce to the Riemann integral as follows:

1, f@)=[ f(dt.x>a,

1_f(x)= jf F(O)dt, x <b.

a

t
b) If tak 1) = ,
) If we take ¢() @)

the operator (1.1) and (1.2)

reduce to the Riemann-Liouville fractional integral as follows:

LT =30 )j (=0 f(0dr, x> a,
@) _ﬁ j t-x)*"f@)dr, x<b.
c) If we take o(¢t) = m the operator (1.1) and (1.2)

reduce to the k-Riemann-Liouville fractional integral as
follows:

Iy J6)= j (x— t)k f(t)dt x>a,
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are given by Mubeen and Habibullah in [2].

Recently, in [1], Sarikaya and Ertugral established the
following Trapezoid inequalities for generalized fractional
integrals:

Theorem 1.1. Let f:[a,b] >R be a differentiable

mapping on (a,b) with a<b. If|f’| is convex on [a,b].

then the following inequality for generalized fractional
integrals holds:
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where

At) = j;Mdu <o,
Theorem 1.2. Let f:[a,b] >R be a differentiable
mapping on (a,b) with a<b. If | f'|1 is convex on
[a,b], p,q>1, i+$=1, then the following inequality

for generalized fractional integrals holds:
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Recently, in [3], Ertugral and Sarikaya established the
following Trapezoid inequalities for generalized fractional

integrals:
Theorem 1.3. Let f:[a,bp]cR >R be an absolutely

continuous mapping on 1° such that f"e Li(a,b)),

where a,be I’ with a<b. If the mapping |f'| is
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Theorem 1.4. Let f:[a,b] >R be a differentiable
mapping on (a,b) with a <b. If the mapping | f'7,q >1
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where —+—=1.
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In [4], Varosanec introduced the following class of
functions.
Definition 1.1. Let f:J <R — R be a positive function.
We say that f:/cR—>R is & -convex, or that f
belongs to the class SX(4,1),if f is nonnegative and for

all x,y el and ¢ €(0,1) we have

Sx+A=0)y) <h@) f(x)+h(1=1) f(¥).

If inequality (1.3) is reversed, then f is said to be
h -concave, i.e. feSV(h,1).

The systematic study of h-convex functions with their
various applications has been given by many authors, see
[6-10].

In this paper, we establish some trapezoid type

inequalities via generalized fractional integrals for
h-convex functions.

(1.3)

2. New Integral Inequalities via
P-preinvexity
For our results, we need the following important

fractional integrtal identity [3]:
Lemma 2.1. Let f:I —> R be an absolutely continuous

mapping on 1° such that f'e L;([a,b)), where a,b e’
with a <b. Then the following equality holds:
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where
A(t) = L] Mdu <o
and
V() = I:Mdu <o,

Theorem 2.1. Let f:/ =[a,b]c R — R be an absolutely
continuous mapping on [ O Such that [ e Li([a,b]),
where a,be1’ with a<b. If the mapping |f’| is

h-convex on [a,b], then we have the following inequality
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Proof. By Lemma 2.1 and h-convexity of | f*| on [a,b],

we have
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this is the required result.
Remark 2.1. Under assumptions of Theorem 2.1, if
h(t) =t, then Theorem 2.1 reduces to Theorem I in [3].
Remark 2.2. Under assumptions of Theorem 2.1, if
o(t) = h(t) =t, then Theorem 2.1 reduces to Theorem 4 in
[5].

Corollary 2.1. Under assumptions of Theorem 2.1,
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Remark 2.3. Under assumptions of Theorem 2.1,
. “
) if o@)=
(1) if o) r@

reduces to Corollary 2 in [3].
o

and Ah(z)=t, then Theorem 2.1

tk
2) if (1) = and A(t)=t, then Theorem 2.1
(2) if o(1) T, (@) (1)

reduces to Corollary 3 in [3].

Theorem 2.2. Let f:1=[a,b]c R —> R be an absolutely
continuous mapping on 1° such that f" € Li(a,b]),
where a,be[o with a <b. If the mapping | |1, q>1
is h-convex on [a,b], then we have the following

inequality
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Proof. Using the A-convexity of | f '|q on [a,b], Lemma 2.1,
and Holder's inequality, we have
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Remark 2.4. Under assumptions of Theorem 2.2, if

h(t) =t, then Theorem 2.2 reduces to Theorem 2 in [3].

Remark 2.5. Under assumptions of Theorem 2.2, if
o(t) = h(t) =t, then Theorem 2.2 reduces to Theorem 5 in

[3].

Corollary 2.2. Under assumptions of Theorem 2.2, if

a

o(t) = and t =1/2, then

e
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Remark 2.6. Under assumptions of Theorem 2.2,

a

o(t) = ! and h(t)=t, then Theorem 2.2 reduce to
[(a)

Corollary 4 in [3].
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