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A Survey on Evolutionary Computation Approaches
to Feature Selection

Bing Xue, Member, IEEE, Mengjie Zhang, Senior Member, IEEE, Will N. Browne, Member, IEEE
and Xin Yao, Fellow, IEEE

Abstract—Feature selection is an important task in data mining
and machine learning to reduce the dimensionality of the data
and increase the performance of an algorithm, such as a clas-
sification algorithm. However, feature selection is a challenging
task due mainly to the large search space. A variety of methods
have been applied to solve feature selection problems, where
evolutionary computation techniques have recently gained much
attention and shown some success. However, there are no compre-
hensive guidelines on the strengths and weaknesses of alternative
approaches. This leads to a disjointed and fragmented field
with ultimately lost opportunities for improving performance
and successful applications. This paper presents a comprehensive
survey of the state-of-the-art work on evolutionary computation
for feature selection, which identifies the contributions of these
different algorithms. In addition, current issues and challenges
are also discussed to identify promising areas for future research.

Index Terms—Evolutionary computation, feature selection,
classification, data mining, machine learning.

I. INTRODUCTION
In data mining and machine learning, real-world problems

often involve a large number of features. However, not all
features are essential since many of them are redundant or even
irrelevant, which may reduce the performance of an algorithm,
e.g. a classification algorithm. Feature selection aims to solve
this problem by selecting only a small subset of relevant
features from the original large set of features. By removing
irrelevant and redundant features, feature selection can reduce
the dimensionality of the data, speed up the learning process,
simplify the learnt model, and/or increase the performance [1],
[2]. Feature construction (or feature extraction) [3], [4], [5],
which can also reduce the dimensionality, is closely related to
feature selection. The major difference is that feature selection
selects a subset of original features while feature construction
creates novel features from the original features. This paper
focuses mainly on feature selection.

Feature selection is a difficult task due mainly to a large
search space, where the total number of possible solutions is
2™ for a dataset with n features [1], [2]. The task is becoming
more challenging as n is increasing in many areas with the
advances in the data collection techniques and the increased
complexity of those problems. An exhaustive search for the
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best feature subset of a given dataset is practically impossible
in most situations. A variety of search techniques have been
applied to feature selection, such as complete search, greedy
search, heuristic search, and random search [1], [6], [7], [8],
[9]. However, most existing feature selection methods still suf-
fer from stagnation in local optima and/or high computational
cost [10], [11]. Therefore, an efficient global search technique
is needed to better solve feature selection problems. Evolution-
ary computation (EC) techniques have recently received much
attention from the feature selection community as they are
well-known for their global search ability/potential. However,
there are no comprehensive guidelines on the strengths and
weaknesses of alternative approaches along with their most
suitable application areas. This leads to progress in the field
being disjointed, shared best practice becoming fragmented
and ultimately, opportunities for improving performance and
successful applications being missed. This paper presents a
comprehensive survey of the literature on EC for feature
selection with the goal of providing interested researchers with
the state-of-the-art research.

Feature selection has been used to improve the quality
of the feature set in many machine learning tasks, such as
classification, clustering, regression, and time series prediction
[1]. This paper focuses mainly on feature selection for clas-
sification since there is much more work on feature selection
for classification than for other tasks [1]. Recent reviews on
feature selection can be seen from [7], [8], [12], [13], which
focus mainly on non-EC based methods. De La Iglesia [14]
presents a summary of works using EC for feature selection
in classification, which is suitable for a non-EC audience
since it focuses on basic EC concepts and genetic algorithms
(GAs) for feature selection. The paper [14] reviewed only
14 papers published since 2010 and in total 21 papers since
2007. No papers published in the most recent two years were
reviewed [14], but there have been over 500 papers published
in the last five years. Research on EC for feature selection
started around 1990, but it has become popular since 2007
when the number of features in many areas became relatively
large. Fig. 1 shows the number of papers on the two most
popular EC methods in feature selection, i.e. GAs and particle
swarm optimisation (PSO), which shows that the number of
papers, especially on PSO, has significantly increased since
2007 (Note that the numbers were obtained from Google
Scholar on September 2015. These numbers might not be
complete, but they show the general trend of the field. The
papers used to form this survey were collected from all the
major databases, such as Web of Science, Scopus, and Google
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Fig. 1. Number of Papers on GAs and PSO for Feature Selection (from
Google Scholar, September 2015).

Scholar). We aim to provide a comprehensive survey of the
state-of-the-art work and a discussion of the open issues and
challenges for future work. We expect this survey to attract
attention from researchers working on different EC paradigms
to further investigate effective and efficient approaches to
addressing new challenges in feature selection. This paper
is also expected to encourage researchers from the machine
learning community, especially classification, to pay much
attention to the use of EC techniques to address feature
selection problems.

The remainder of this paper is organised as follows. Section
IT describes the background of feature selection. Section III
reviews typical EC algorithms for feature selection. Section IV
discusses different measures used in EC for feature selection.
Section V presents the applications of EC based feature
selection approaches. Section VI discusses current issues and
challenges, and conclusions are given in Section VII.

II. BACKGROUND

Feature selection is a process that selects a subset of
relevant features from the original large set of features [9]. For
example, feature selection is to find key genes (i.e. biomark-
ers) from a large number of candidate genes in biological
and biomedical problems [15], to discover core indicators
(features) to describe the dynamic business environment [9],
to select key terms (features, e.g. words or phrases) in text
mining [16], and to choose/construct important visual contents
(features, e.g. pixel, color, texture, shape) in image analysis
[17]. Fig. 2 shows a general feature selection process and all
the five key steps, where “Subset Evaluation” is achieved by
using an evaluation function to measure the goodness/quality
of the selected features. Detailed discussions about Fig. 2 can
be seen in [1] and a typical iterative evolutionary workflow of
feature selection can be seen in [18].

Based on the evaluation criteria, feature selection algorithms
are generally classified into two categories: filter approaches
and wrapper approaches [1], [2]. Their main difference is that
wrapper approaches include a classification/learning algorithm
in the feature subset evaluation step. The classification algo-
rithm is used as a “black box” by a wrapper to evaluate the
goodness (i.e. the classification performance) of the selected
features. A filter feature selection process is independent
of any classification algorithm. Filter algorithms are often
computationally less expensive and more general than wrapper
algorithms. However, filters ignore the performance of the
selected features on a classification algorithm while wrappers
evaluate the feature subsets based on the classification perfor-
mance, which usually results in better performance achieved
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Fig. 2. General Feature Selection Process [1].

by wrappers than filters for a particular classification algorithm
[1], [7], [8]. Note that some researchers categorise feature
selection methods into three groups: wrapper, embedded and
filter approaches [7], [8]. The methods integrating feature
selection and classifier learning into a single process are called
embedded approaches. Among current EC techniques, only
genetic programming (GP) and learning classifier systems
(LCSs) are able to perform embedded feature selection [19],
[20]. Thus, to simplify the structure of the paper, we follow
the convention of classifying feature selection algorithms
into wrappers and filters only [1], [2], [21] with embedded
algorithms belonging to the wrapper category.

Feature selection is a difficult problem not only because of
the large search space, but also feature interaction problems.
Feature interaction (or epistasis [22]) happens frequently in
many areas [2]. There can be two-way, three-way or complex
multi-way interactions among features. A feature, which is
weakly relevant to the target concept by itself, could sig-
nificantly improve the classification accuracy if it is used
together with some complementary features. In contrast, an
individually relevant feature may become redundant when
used together with other features. The removal or selection of
such features may miss the optimal feature subset(s). Many
traditional measures evaluating features individually cannot
work well and a subset of features needs to be evaluated as
a whole. Therefore, the two key factors in a feature selection
approach are the search techniques, which explore the search
space to find the optimal feature subset(s), and the evaluation
criteria, which measure the quality of feature subsets to guide
the search.

Feature selection involves two main objectives, which are to
maximise the classification accuracy and minimise the number
of features. They are often conflicting objectives. Therefore,
feature selection can be treated as a multi-objective problem to
find a set of trade-off solutions between these two objectives.
The research on this direction has gained much attention only
in recent years, where EC techniques contribute the most
since EC techniques using a population based approach are
particularly suitable for multi-objective optimisation.

A. Existing Work on Feature Selection

This section briefly summarises them from three aspects,
which are the search techniques, the evaluation criteria, and
the number of objectives.

1) Search techniques: There are very few feature selection
methods that use an exhaustive search [1], [7], [8]. This is
because even when the number of features is relatively small
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Fig. 3. Overall categories of EC for feature selection.

(e.g. 50), in many situations such methods are computationally
too expensive to perform. Therefore, different heuristic search
techniques have been applied to feature selection, such as
greedy search algorithms, where typical examples are se-
quential forward selection (SFS) [23], sequential backward
selection (SBS) [24]. However, both methods suffer from the
so-called “nesting effect” because a feature that is selected
or removed cannot be removed or selected in later stages.
“plus-I/-take-away-r" [25] compromises these two approaches
by applying SFS [ times and then SBS r times. This strategy
can avoid the nesting effect in principle, but it is hard to
determine appropriate values for [ and r in practice. To avoid
this problem, two methods called sequential backward floating
selection (SBFS) and sequential forward floating selection
(SFES) were proposed in [26]. Both floating search methods
are claimed to be better than the static sequential methods.
Recently, Mao and Tsang [27] proposed a two-layer cutting
plane algorithm to search for the optimal feature subsets. Min
et al. [28] proposed a heuristic search and a backtracking
algorithm, which performs exhaustive search, to solve feature
selection problems using rough set theory. The results show
that heuristic search techniques achieved similar performance
to the backtracking algorithm, but used a much shorter time.
In recent years, EC technique as they are effective methods
have been applied to solve feature selection problems. Such
methods include GAs, GP, particle swarm optimisation (PSO),
and ant colony optimisation (ACO). Details will be described
in the next section.

Feature selection problems have a large search space, which
is often very complex due to feature interaction. Feature
interaction leads to individually relevant features becoming
redundant or individually weakly relevant features becoming
highly relevant when combined with other features. Compared
with traditional search methods, EC techniques do not need
domain knowledge and do not make any assumptions about
the search space, such as whether it is linearly or non-linearly
separable, and differentiable. Another significant advantage of
EC techniques is that their population based mechanism can
produce multiple solutions in a single run. This is particularly
suitable for multi-objective feature selection in order to find
a set of non-dominated solutions with the trade-off between
the number of features and the classification performance.
However, EC techniques have a major limitation of requiring
a high computational cost since they usually involve a large
number of evaluations. Another issue with EC techniques

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see htt

is their stability since the algorithms often select different
features from different runs, which may require a further
selection process for real-world users. Further research to
address these issues is of great importance as the increasingly
large number of features increases the computational cost and
lowers the stability of the algorithms in many real-world tasks.

2) Evaluation criteria: For wrapper feature selection ap-
proaches, the classification performance of the selected fea-
tures is used as the evaluation criterion. Most of the popular
classification algorithms, such as decision tree (DT), support
vector machines (SVMs), Naive Bayes (NB), K-nearest neigh-
bour (KNN), artificial neural networks (ANNSs), and linear
discriminant analysis (LDA), have been applied to wrappers
for feature selection [7], [8], [29]. For filter approaches,
measures from different disciplines have been applied, includ-
ing information theory based measures, correlation measures,
distance measures, and consistency measures, and [1].

Single feature ranking based on a certain criterion is a
simple filter approach, where feature selection is achieved by
choosing only the top-ranked features [7]. Relief [30] is a
typical example, where a distance measure is used to measure
the relevance of each feature and all the relevant features are
selected. Single feature ranking methods are computationally
cheap, but do not consider feature interactions, which often
leads to redundant feature subsets (or local optima) when
applied to complex problems, e.g. microarray gene data, where
genes possess intrinsic linkages [1], [2]. To overcome such
issues, filter measures that can evaluate the feature subset
as a whole have become popular. Recently, Wang et al.
[31] developed a distance measure evaluating the difference
between the selected feature space and all feature space to
find a feature subset, which approximates all features. Peng
et al. [32] proposed the minimum Redundancy Maximum
Relevance method based on mutual information, where the
proposed measures have been introduced to EC for feature
selection due to their powerful search abilities [33], [34].

Mao and Tsang [27] proposed a novel feature selection
approach by optimizing multivariate performance measures
(which can also be viewed as an embedded method since the
proposed feature selection framework was to optimise the gen-
eral loss function and was achieved based on SVMs). However,
the proposed method resulted a huge search space for high-
dimensional data, which required a powerful heuristic search
method to find the optimal solutions. Statistical approaches,
such as T-test, logistic regression, hierarchical clustering, and
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CART, are relatively simple and can achieve good performance
[35]. Sparse approaches have recently become popular, such
as sparse logistic regression for feature selection [36], which
has been used for feature selection tasks with millions of
features. For example, the sparse logistic regression method
[36] automatically assigns a weight to each feature showing
its relevance. Irrelevant features are assigned with low weights
close to zero, which has the effect of filtering out these
features. Sparse learning based methods tend to learn simple
models due to their bias to features with high weights. These
statistical algorithms usually produce good performance with
high efficiency, but they often have assumptions about the
probability distribution of the data. Furthermore, the used
cutting plan search method in [36] works well when the search
space is unimodal, but EC approaches can deal well with both
unimodal and multimodal search space and the population
based search can find a Pareto front of non-dominated (trade-
off) solutions. Min et al. [28] developed a rough set theory
based algorithm to address feature selection problems under
the constraints of having limited resources (e.g. money and
time). However, many studies show that filter methods do not
scale well to problems with more than tens of thousands of
features [13].

3) Number of objectives: Most of the existing feature selec-
tion methods aim to maximise the classification performance
only during the search process or aggregate the classification
performance and the number of features into a single objective
function. To the best of our knowledge, all the multi-objective
feature selection algorithms to date are based on EC techniques
since their population based mechanism producing multiple
solutions in a single run is particularly suitable for multi-
objective optimisation.

B. Detailed Coverage of This Paper

As shown in Fig. 3, according to three different criteria,
which are the EC paradigms, the evaluation, and the num-
ber of objectives, EC based feature selection approaches are
classified into different categories. These three criteria are the
key components in a feature selection method. EC approaches
are mainly used as the search techniques in feature selection.
Almost all the major EC paradigms have been applied to
feature selection and the most popular ones are discussed in
this paper, i.e. GAs [37], [38], [39] and GP [19], [40], [41] as
typical examples in evolutionary algorithms, PSO [10], [29],
[42] and ACO [43], [44], [45], [46] as typical examples in
swarm intelligence, and other algorithms recently applied to
feature selection, including differential evolution (DE) [47],
[48]!, memetic algorithms [49], [50], LCSs [51], [52], evolu-
tionary strategy (ES) [53], artificial bee colony (ABC) [54],
[55], and artificial immune systems (AISs) [56], [57]. Based
on the evaluation criteria, we review both filter and wrapper
approaches, and also include another group of approaches
named “Combined”. “Combined” means that the evaluation
procedure includes both filter and wrapper measures, which
are also called hybrid approaches by some researchers [9],
[14]. The use here of “Combined” instead of “hybrid” is

'Some researchers classify DE as a swarm intelligence algorithm.
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Fig. 4. Different measures in EC based filter approaches.

to avoid confusion with the concept of hybrid algorithms in
the EC field, which hybridise multiple EC search techniques.
According to the number of objectives, EC based feature selec-
tion approaches are classified into single objective and multi-
objective approaches, where the multi-objective approaches
correspond to methods aiming to find a Pareto front of trade-
off solutions. The approaches that aggregate the number of
features and the classification performance into a single fitness
function are treated as single objective algorithms in this paper.

Similar to many earlier survey papers on traditional (non-
EC) feature selection [1], [7], [8], [9], this paper further
reviews different evolutionary filter methods according to
measures that are driven from different disciplines. Fig. 4
shows the main categories of measures used in EC based filter
approaches. Wrapper approaches are not further categorised
according to their measures because the classification algo-
rithm in wrappers is used as a “black box” during the feature
selection process such that it can often be easily replaced by
another classification algorithm.

The reviewed literature is organised as follows. Typical
approaches are reviewed in Section III, where each subsection
discusses a particular EC technique for feature selection (e.g.
Section III-A: GAs for feature selection, as shown by the left
branch in Fig. 3). Within each subsection, the research using
an EC technique is further detailed and discussed according
to the evaluation criterion and the number of objectives. In
addition, Section IV discusses the research on EC based filter
approaches for feature selection. The applications of EC for
feature selection are described in Section V.

TABLE I
CATEGORISATION OF GA APPROACHES
Single Objective Multi-Objective
[31, [37], [58], [38], [39], [44],
[59], [60], [61], [62], [63], [64],
[65], [66], [67], [68], [69], [70],

[88], [89], [90], [91],

Wrapper | 1211 (721, [73]. [74]. [75]. [76. [g?’ [gg]’ (941, 1951,
[771. 1781, [791. (801, [81], (825, |16} 197
[83]. [84], [85]. [86]. [87]

e | U731, (981, 991, (100, [T0TT [T02], (1037, (1041,

[102]
Combined | [107], [108], [109]

[105], [106]

III. EC FOR FEATURE SELECTION
A. GAs for Feature Selection

GAs are most likely the first EC technique widely applied
to feature selection problems. One of the earliest works was
published in 1989 [37]. GAs have a natural representation of
a binary string, where “1” shows the corresponding feature is
selected and “0” means not selected. Table I shows the typical
works on GAs for feature selection. It can be seen that there
are more works on wrappers than filters, and more on single
objective than multi-objective approaches.
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For wrapper approaches, different classification algorithms
have been used to evaluate the goodness of the selected
features, e.g. SVMs [68], [71], [72], [73], [75], [79], [80], [81],
[86], [107], KNN [39], [74], [76], [77], [80], [81], [86], [95],
[107], ANNs [61], [69], [78], [81], [83], [85], DT [60], [80],
[107], NB [80], [107], [109], multiple linear regression for
classification [59], extreme learning machines (ELMs) [110],
and discriminant analysis [66], [67], [82]. SVMs and KNN are
the most popular classification algorithms due to their promis-
ing classification performance and simplicity, respectively. For
filter approaches, different measures have been applied to GAs
for feature selection, e.g. information theory [102], [105],
[106], consistency measures [98], [105], rough set theory [103]
and fuzzy set theory [99].

Many different new enhancements to GAs have been pro-
posed to improve the performance, which focus mainly on
the search mechanisms, the representation, and the fitness
function. Some early works [59], [62] introduced GAs to fea-
ture selection by investigating the influence of the population
size, mutation, crossover, and reproduction operators, but with
limited experiments.

Recently, Derrac et al. [76] proposed a cooperative co-
evolutionary algorithm for feature selection based on a GA
with three populations, where the first focused on feature se-
lection, the second focused on instance selection, and the third
focused on both feature selection and instance selection. The
proposed algorithm addressed feature selection and instance
selection in a single process, which reduced the computational
time. Such approaches should be further investigated in the
future given that large datasets (i.e. with thousands or tens of
thousands of features) may include not only irrelevant features,
but also noisy instances. Li et al. [75] also proposed a multiple
populations based GA for feature selection, where every two
neighbour populations shared two individuals to exchange
information for increasing the search ability. Local search was
performed on the best individual in each population to further
increase the performance. The proposed scheme was tested
with different filter and wrapper measures, and was shown to
be effective for feature selection, but it was tested only on
datasets with a maximum number of 60 features.

Chen et al. [71] proposed to address feature selection prob-
lems through GAs for feature clustering, where a GA was used
to optimise the cluster centre values of a clustering method to
group features into different clusters. Features in each cluster
were then ranked according to their distance values to the
cluster centre. Feature selection was achieved by choosing
the top-ranked features as representatives from each cluster.
The proposed algorithm was shown to be effective on datasets
with thousands of features. Lin et al. [111] proposed a GA
based feature selection algorithm adopting domain knowledge
of financial distress prediction, where features were classified
into different groups and a GA was used to search for feature
subsets consisting of top candidate features from each group.
This work may have a similar problem to [71] in terms of
ignoring feature interactions. A GA was used in a two-stage
approach, where a filter measure was used to rank features
and only the top-ranked ones were used in GA based feature
selection [72], [85]. In contrast, Zamalloa et al. [67] used

a GA to rank features directly and feature selection was
achieved by choosing only the top-ranked features. A potential
limitation in [67], [72] and [85] is that the removed lowly-
ranked features might become highly useful when combined
with other features because of feature interaction.

Traditional feature selection methods have also been
adopted in GAs to improve the performance. Jeong et al. [39]
developed a partial SFFS mutation operator in GAs, where
SFFS was performed to improve the feature subset selected
by a chromosome. The proposed algorithm was shown to be
effective for feature selection, but it may have a potential
problem of being computationally expensive due to the extra
calculation of SFFS. Gheyas and Smith [38] developed a
hybrid algorithm named SAGA based on a GA and simulated
annealing (SA), and compared it with different EC algorithms
and traditional methods for feature selection, including a GA,
ACO, PSO, SFS, SFFS, SFBS, and SA. The results showed
that SAGA performed the best in terms of the classification
performance. The combination of the global search ability of
GAs and the local search ability of SA may be the reason for
the superior performance of SAGA.

In terms of representation, Hong and Cho [69] proposed a
binary vector to represent each chromosome (i.e. genotype),
where a predefined small number (pd) of binary bits are
converted to an integer number ¢ indicating that the tth
feature is selected. Therefore, the length of the represen-
tation/genotype was determined by multiplying pd and the
desired number of features. It reduced the dimensionality
of the GA search space on high-dimensional datasets with
thousands of features, which resulted in better performance
than the traditional representation. Chen et al. [82] also
developed a binary representation, which included two parts,
where the first part was converted to an integer representing
the number of features to be selected while the second showed
which features were selected. Jeong et al. [39] proposed a
new representation to further reduce the dimensionality, where
the length of the chromosome was equal to the number of
desired features. The values in chromosomes indicated the
indexes of features. When the index of a feature(s) appeared
multiple times, a partial SFFS operator was applied to choose
alternative features to avoid duplication. One limitation in
[39], [69] and [82] is that the number of features needs to be
pre-defined, which might not be the optimal size. To address
this limitation, Yahya et al. [112] developed a variable length
representation, where each chromosome showed the selected
features only and different chromosomes may have different
lengths. New genetic operators were accordingly developed
to cope with the variable length representation. However, the
performance of the proposed algorithm was not compared with
other GAs based methods.

Li et al. [77] proposed a bio-encoding scheme in a GA,
where each chromosome included a pair of strings. The first
string was binary-encoded to show the selection of features and
the second was encoded as real-numbers indicating the weights
of features. By combining this with an Adaboost learning
algorithm, the bio-encoding scheme achieved better perfor-
mance than the traditional binary encoding. Winkler et al.
[81] proposed a new representation that included both feature
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selection and parameter optimisation of a certain classification
algorithm, e.g. an SVM. The length was the total number of
features and parameters. Souza et al. [83] developed a three-
level representation in a GA and multilayer perceptron (MLP)
for feature selection, which indicated the selection of features,
the pruning of the neurons, and the architecture of the MLP,
respectively. These three examples [77], [81], [83] suggest that
combining the selection of features and the optimisation of
a classification algorithm is an effective way to improve the
classification performance since both the data and the classifier
are optimised, which can also be evident from [66], [71], [79].

In terms of the fitness function, Da Silva et al. [80] aggre-
gated the classification accuracy and the number of features
into a single fitness function. Yang and Honavar [61] proposed
to combine the maximisation of the classification accuracy
and the minimisation of the cost of an ANN into a single
fitness function. Winkler et al. [81] proposed several fitness
functions, which considered the number of features, the overall
classification performance, the class specific accuracy, and the
classification accuracy using all the original features. Sousa et
al. [109] employed a fitness function using area under curve
(AUC) of the receiver operating characteristic (ROC) of a
NB classifier. In [107], a filter measure (Pearson correlation
measure) and a wrapper measure (classification accuracy) were
combined to form a single fitness function in a GA for feature
selection to utilise the advantages of each measure.

GAs for multi-objective feature selection started much later
(around 10 years later) than for single objective feature
selection. Most of the multi-objective approaches are based
on non-dominated sorting GA II (NSGA-II) or its variations
[92], [94], [96], [97], [102], [103], [105]. Although there are
more works on multi-objective feature selection using GAs
than using other EC techniques, the potential of GAs for
multi-objective feature selection has still not been thoroughly
investigated since feature selection is a complex task that
requires specifically designed multi-objective GAs to search
for the non-dominated solutions.

In summary, GAs have been applied to feature selection
for around 25 years and have achieved reasonably good per-
formance on problems with hundreds of features. Researchers
introduced GAs to address feature selection problems includ-
ing thousands of features with limited success, where most
are wrapper approaches. This leads to a high computational
cost since GAs usually involve a large number of evaluations
and each evaluation in a wrapper approach usually takes a
relatively long time, especially when the number of instances
is large. As a result, although GAs approaches have been
proposed for some feature selection tasks with thousands
of features, almost all these feature selection tasks have
a relatively small number of instances, i.e. less than one
thousand [70], [71]. Such approaches struggle to solve “big
data” tasks, where both the number of features and the number
of instances are huge. This is not only an issue for GAs,
but also for other EC techniques for feature selection. To use
GAs to address such tasks, a novel representation which can
reduce the dimensionality of the search space will be needed.
The design of genetic operators, e.g. crossover and mutation,
provides opportunities to identify good building blocks (i.e.
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feature groups) and combine or adjust complementary features
to find optimal feature subsets, but this is a challenging task.
Furthermore, when and how to apply these operators, and the
parameter settings in GAs are also key factors influencing their
performance on feature selection.

TABLE I
CATEGORISATION OF GP APPROACHES

Multi-Objective

Single Objective

[19], [20], [40], [113], [114],
[115], [116], [117], [15], [118],
[119], [120], [121], [122], [123],
[124], [125], [126]

[41], [127], [128]

Wrapper

Filter [129], [130]

B. GP for Feature Selection

Table II shows typical works on GP for feature selection.
Compared with GAs and PSO, there are a much smaller
number of works on GP for feature selection. GP is used more
often in feature construction than feature selection because of
its flexible representation. In feature selection, most GP works
use a tree-based representation, where the features used as the
leaf nodes of a tree are the selected features. GP can be used
as a search algorithm and also a classification algorithm. In
filter approaches, GP is mainly used as the search algorithm.
In most wrapper (or embedded) approaches, GP is used as
both the search method and the classification algorithm. In a
very few cases, GP was used as a classification algorithm only
in a feature selection approach [81].

One of the early works on GP for feature selection was
published in 1996 [123], where a generalised linear machine
was used as the classifier to evaluate the fitness of the selected
features. Later, Neshatian and Zhang [128] proposed a wrapper
feature selection approach based on GP, where a variation of
NB algorithm was used for classification. A bit-mask encoding
was used to represent feature subsets. Set operators were
used as primitive functions. GP was used to combine feature
subsets and set operators together to find an optimal subset of
features. Hunt et al. [115] developed GP based hyper-heuristics
for wrapper feature selection, where two function operators
for removing and adding features were proposed. The results
showed that the proposed algorithm improved the classification
performance and reduced the number of features over using
standard GP.

For filter approaches, GP was applied to feature selection
using an improved information theory based measure [41].
Further, a GP based relevance measure was proposed to
evaluate and rank feature subsets [130], which was a single
objective algorithm but could provide solutions with different
sizes and accuracies. However, it may suffer from the problem
of high computational cost.

In most works, GP was used to search for the optimal feature
subset and simultaneously trained as a classifier. Muni et al.
[19] developed a wrapper feature selection model based on
multi-tree GP, which simultaneously selected a good feature
subset and learned a classifier using the selected features.
Two new crossover operations were introduced to increase the
performance of GP for feature selection. Based on the two
crossover operations introduced by Muni et al. [19], Purohit
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et al. [40] further introduced another crossover operator, which
was randomly performed for selecting a subtree from the first
parent and finding its best place in the second parent. Both [19]
and [40] showed the powerful ability of GP for simultaneously
performing feature selection and learning a classifier. They are
similar to the works [71], [79] using GAs to simultaneously
select features and optimise a classifier, but the main difference
is that GP itself was used as both a search technique for
selecting features and as a classifier for classification (i.e.
embedded feature selection) while GAs were used as search
techniques only.

Two-stage approaches have been investigated in GP for
feature selection. Venkatraman et al. [124] proposed to use
a mutual information measure to rank individual features
and remove weakly relevant or irrelevant features in the first
stage and GP was then applied to select a subset of the
remaining features [124]. Later, to take different advantages
of different measures, multiple filter measures were used to
rank features and a set of features were selected according to
each measure. The combination of these features was used as
input to GP for further feature selection [116], [119]. How-
ever, a potential limitation is that individual feature ranking
may remove potentially useful features without considering
their interactions with other features. Neshatian and Zhang
[120] proposed another type of individual feature ranking
approach, where each feature was given a score according
to its frequency of appearance in the best GP individuals.
Feature selection was achieved by using only the top-ranked
features for classification. This way of evaluating individual
features took other features into account, which could avoid
the limitation of most single feature ranking methods.

A GP based multi-objective filter feature selection approach
was proposed for binary classification problems [129]. Unlike
most filter methods that usually could measure only the
relevance of a single feature to the class labels, the proposed
algorithm could discover hidden relationships between subsets
of features and the target classes, and achieve better classifica-
tion performance. There are only a few works on GP for multi-
objective feature selection. It will be interesting to investigate
this in the future since GP has shown its ability in addressing
feature selection and multi-objective problems [131].

In summary, GP for feature selection has achieved some
success, but with much less work than GAs. Compared with
GAs, GP is able to perform embedded feature selection to
be used as both a search technique and a classifier. GAs are
easier to implement and have a straightforward representation
easily indicating the selection of features, which can be a
good choice for relatively low-dimensional problems, e.g. less
than one thousand. Due to the flexible representation, GP
can also perform feature construction to create new high-level
features to further increase the classification performance, and
GP has a potential to handle large-scale feature selection
since the representation does not have to include the selection
information (or the index) of all features. Further, many real-
world problems, such as gene selection, include a large number
(i.e. tens of thousands) of features, but a very small number
(less than 100) of instances, which is a challenge not only
in machine learning, but also in statistics and biology. GP
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can handle tasks with a very small number of instances [132],
which provides an opportunity to better solve feature selection
tasks with a small number of instances. When and how to
apply genetic operators is also important in GP, but the design
and the use of the genetic operators in GP is more difficult
than in GAs due to the flexible representation and the different
return types of the functions. The parameter settings in GP is
also very important. Because of the large population size, GP
may suffer from the issue of being computationally expensive.

TABLE III
CATEGORISATION OF PSO APPROACHES

Single Objective Multi-Objective

[10], [42], [70], [133], [134], [135],
[136], [137], [138] [139], [140],
[141], [142], [143], [144], [145],
[146], [147], [148], [149], [150],
[151], [152], [153], [154], [155],
[156], [157], [158], [159], [160]

Wrapper [29], [161], [162]

[34], [163], [164], [165], [166],
[167], [168], [169], [170]

[171], [172],

Filter [173], [174]

Combined | [11], [33], [175], [176], [177]

C. PSO for Feature Selection

Both continuous PSO and binary PSO have been used for
both filter and wrapper, single objective and multi-objective
feature selection. The representation of each particle in PSO
for feature selection is typically a bit-string, where the di-
mensionality is equal to the total number of features in the
dataset. The bit-string can be binary numbers in binary PSO
or real-value numbers in continuous PSO. When using binary
representation, “1” means the corresponding feature is selected
and “0” means not. When using the continuous representation,
a threshold 6 is usually used to determine the selection of
a particular feature, i.e. if the value is larger than 6, the
corresponding feature is selected. Otherwise, it is not selected.

As can be seen from Table III, there has been more research
on PSO for single objective than multi-objective, and more
research on wrapper than filter feature selection. For wrapper
approaches, different classification algorithms have been used
with PSO to evaluate the goodness of the selected features, e.g.
SVMs [33], [70], [134], [135], [137], [141], KNN [148], [149],
[151], [152], [160], LDA [144], ANNs [42], [147], [178],
logistic regression classification model [10], and Adaboost
[142]. SVMs and KNN are the most popular classification al-
gorithms because of their promising classification performance
and simplicity, respectively. For filter approaches, different
measures have been applied to PSO for feature selection and
details can be seen in Section IV.

A number of new PSO algorithms have been proposed to
improve performance on feature selection problems, including
initialisation strategies, representation, fitness functions, and
the search mechanisms. Xue et al. [158] developed a new
initialisation strategy to mimic the typical forward and back-
ward feature selection methods in the PSO search process,
which showed that good initialisation significantly increased
the performance of PSO for feature selection.

There are only a few works on developing new representa-
tions in PSO for feature selection. The typical representation
has been slightly modified to simultaneously perform feature

://creativecommons.org/licenses/by/3.0/,

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from ?he IEEE by emailing pubs-permissions@ieee.org.



This article has been accepted foil hisbliddtecmtharfuversiisswd afithisiphethat, lastbeenruitiese fully thditielnGah €ht nges ehenegn pdiototohfismub pidii datidre. Slibdtshar pfoontat jonbikaxian. 1109/ TEVC.2015.2504420, IEEE

The final version dfansactanawmilivielationary Combtttaticix.doi.org/10.1109/TEVC.2015.2504420

JOURNAL OF KIgX CLASS FILES, VOL. , NO. ,

selection and parameter optimsation of a classification algo-
rithm, mostly optimising the parameters in the kernel functions
of SVMs [138], [141], [153], [179]. The length of the new
representation is equal to the total number of features and
parameters. The representation was encoded in three differ-
ent ways, being continuous encoding [138], binary encoding
[153], and a mixture of binary and continuous encoding [141],
[179]. Since PSO was originally proposed for continuous
optimisation, continuous encoding performed better than the
other two encoding schemes. Lane et al. [154] proposed the
use of PSO and statistical clustering (which groups similar
features into the same cluster) for feature selection, where
a new representation was proposed to incorporate statistical
feature clustering information during the search process of
PSO. In the new representation, features from the same cluster
were arranged together and only a single feature was selected
from each cluster. The proposed algorithm was shown to
be able to significantly reduce the number of features. Lane
et al. [157] further improved the algorithm by allowing the
selection of multiple features from the same cluster to further
improve the classification performance. Later, Nguyen et al.
[155] proposed a new representation, where the dimensionality
of each particle was determined by the maximum number of
desired features. The dimensionality of the new representation
is much smaller than the typical representation, however, it is
not easy to determine the desired number of features.

Learning from neighbours’ experience, i.e. social interac-
tion through gbest, and learning from each individual’s own
experience through pbest, are the key ideas in PSO. Chuang et
al. [140] developed a gbest resetting mechanism by including
zero features in order to guide the swarm to search for small
feature subsets. Xue et al. [158] considered the number of
features when updating pbest and gbest during the search
process of PSO, which could further reduce the number of
features over the traditional updating pbest and gbest mecha-
nism without deteriorating the classification performance. Tran
et al. [156] used the gbest resetting mechanism in [140] to
reduce the number of features and performed a local search
process on pbest to increase the classification performance.
Each evaluation in the local search was sped up by calculating
fitness based only on the features being changed (from selected
to not selected or from not selected to selected) instead of
based on all the selected features. The proposed algorithm
further reduced the number of features and improved the
classification performance over the previous method [140] and
standard PSO. PSO with multiple swarms to share experience
has also been applied to feature selection [11], [180], but may
lead to the problem of high computational cost.

The fitness function plays an important role in PSO for
feature selection. For filter approaches, the fitness function is
formed by using different measures, which will be discussed
in detail in Section IV. For wrapper approaches, many existing
works used only the classification performance as the fitness
function [11], [134], [135], [137], [138], [139], [140], [142],
[160], which led to relatively large feature subsets. However,
most of the fitness functions used different ways to combine
both the classification performance and the number of features
into a single fitness function [70], [136], [141], [180], [148],
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[181]. However, it is difficult to determine in advance the
optimal balance between them without a priori knowledge.
Multi-objective feature selection can help solve this problem
by simultaneously optimising these two objectives to obtain a
set of trade-off solutions.

Research on PSO for multi-objective feature selection
started only in the last two years, where Xue et al. [29],
[161] conducted the first work to optimise the classification
performance and the number of features as two separate
objectives. Continuous and binary PSO in multi-objective
feature selection were directly compared in [161], where the
results showed that continuous PSO can usually achieve better
performance than binary PSO since binary PSO has potential
limitations, such as the position of a particle in binary PSO
is updated solely based on the velocity while the position
in standard PSO is updated based on both the velocity and
current position [182]. Further, the performance of the multi-
objective PSO algorithm for feature selection was compared
with three other popular evolutionary multi-objective algo-
rithms, NSGAII, SPEA2 and PAES [29], where the multi-
objective PSO approach was shown to be superior to the other
three methods. PSO was also applied to multi-objective filter
feature selection, where information based theory [171], [173]
and rough set theory [172], [174] were used to evaluate the
relevance of the selected features. These works showed that
PSO for multi-objective feature selection provided multiple
and better solutions/choices to users.

To sum up, there has been rapid development on PSO for
feature selection. PSO has a similar advantage to GAs in terms
of a straightforward representation, but neither of them can be
used for feature construction (unlike GP with its flexible repre-
sentation). However, the representation of GAs and PSO might
not scale well on problems with thousands or tens of thousands
of features, since it forms a huge search space. In other
important aspects GAs and PSO take different approaches
to evolving good feature subsets. GAs address combinatorial
optimisation problems by identifying good building blocks of
information, combining complementary blocks via crossover
and adjustment via mutation. Thus, GAs are likely to be suited
to domains where there are groups of interacting features,
potentially with multiple good subsets, to consider. PSO has
a more structured neighbourhood guiding its recombination
method than GAs, as well as a velocity term that enables fast
convergence to a solution. PSO should suit domains where
there is a structure in how features interact, i.e. low sensitivity
to the inclusion of each feature in a solution, and where
fast convergence does not lead to local optima. PSO has an
advantage over GAs and GP of being easy to implement.
Developing novel PSO algorithms, particularly novel search
mechanisms, parameter control strategies and representation,
for large-scale feature selection, is still an open issue.

D. ACO for Feature Selection

Table IV shows typical works on ACO for feature selection,
where the earliest work was proposed around 2003 [183].
Table IV shows that there are more papers on wrapper methods
than filter and embedded methods. Most of work focuses on
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TABLE IV
CATEGORISATION OF ACO APPROACHES

Multi-Objective

Single Objective
[43], [44], [45], [46], [184], [185],

Wrapper |[186], [187], [188], [16], [189], [194]
[190], [191], [192], [193]
Filter [183], [195], [196], [197], [198], [204]

[199], [200], [201], [202], [203]
Combined | [47], [205]

single objective methods and there are only a few papers on
multi-objective approaches.

In one of the early works, ACO and an SVM were used
for wrapper feature selection for face recognition, where the
original features were extracted by principal component anal-
ysis (PCA) from the images in the preprocessing stage [43].
Ke et al. [197] proposed the use of limited pheromone values
in ACO for feature selection and the proposed algorithm also
updated the pheromone trails of the edges connecting every
two different features of the best-so-far solution. Experimental
results showed that the proposed algorithms achieved better
performance than SA, a GA, and Tabu search based algorithms
in terms of both the classification performance and the number
of features. O’Boyle et al. [188] proposed to use ACO to
simultaneously select features and optimise the parameters
of an SVM, where a weighting method was also proposed
to determine the probability of an ant selecting a particular
feature. Khushaba et al. [47] combined ACO and DE for
feature selection, where DE was used to search for the optimal
feature subset based on the solutions obtained by ACO. A
traditional feature selection algorithm, forward selection, was
also introduced to ACO [206], where ACO started with a small
set of core features. Vieira et al. [190] proposed a cooperative
ACO algorithm with two colonies for feature selection, where
the first one decided the number of features needed and
the second colony was to select individual features. Santana
et al. [44] compared the performance of ACO with a GA
based feature selection method for ensemble classifiers. The
results showed that ACO performed better when the number
of individual classifiers was small while the GA performed
better when this number was large.

The representation of ACO for feature selection is typically
a graph, where features are encoded as nodes to construct
a graph model. Each ant represents a feature subset, where
the features selected are the nodes it visited. In most ACO
based algrithms [188], [16], features/nodes are fully connected
to each other in the graph, but in [189], each feature was
connected only to two features. The final solution [189] was
a binary set, whose length was equal to the number of nodes
(features) that the ant visited. The value of “1” means the
corresponding feature is selected and “0”, otherwise. Chen et
al. [45] proposed a new representation scheme to reduce the
size of the search space (i.e. graph), where each feature/node
was connected only to the next node using two edges showing
“selected” or “not selected”. This representation scheme sig-
nificantly reduced the total number of edges that ACO needed
to traverse. Kashef and Nezamabadi [192], [193] also proposed
a new representation, where each feature had two nodes, one
for selecting that feature and the other for removing. At the
end of a tour, each ant had a binary vector with the length
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as the total number of features, where “1” indicated selecting
and “0” indicated removing the corresponding feature.

In most ACO based wrapper approaches, the classification
performance was used as the fitness evaluation criterion. In
[185], [47], the fitness of ants (feature subsets) was evaluated
using the overall classification performance, but the perfor-
mance of individual features was also considered to further
improve the performance. The fitness functions in [187], [16]
included both the classification performance and the number
of features. Later, by extending the work on single objective
ACO and a fuzzy classifier for feature selection [186], Vieira et
al. [194] developed a multi-objective wrapper approach, where
ACO aimed to minimise both the classification error and the
number of features. Recently, Ke et al. [204] developed new
multi-objective ACO for filter feature selection, which adopted
an elitism strategy to speed up the convergence performance,
used the non-dominated solutions to add pheromone so as to
reinforce the exploitation, and applied a crowding comparison
operator to maintain the diversity of the solutions. The results
showed that the proposed multi-objective approaches achieved
similar or better performance than single objective approaches,
so it will be interesting to further investigate the use of multi-
objective ACO for feature selection in the future.

An interesting finding in ACO approaches is that a large
number of the filter works are based on rough set theory
[183], [196], [197], [204], [206], where [204] is the only
discovered work on ACO for multi-objective filter feature
selection. Jensen and Shen [183] first applied ACO to find
a small feature subset in rough set to address feature selection
problems. Later, Ming [206] proposed a filter algorithm to
use the core features from the rough set as the starting
point of ACO for feature selection. Jensen [196] proposed a
filter feature selection model based on ACO and fuzzy-rough
theory for classification of web content and complex systems
monitoring. The popularity of rough set theory in ACO for
feature selection is likely because the rough set based measures
are easy to update when adding or removing features during
the travel of ants.

In summary, in ACO for feature selection, the proportion
of filter approaches is much higher than that in GAs, GP,
and PSO for feature selection. The graph representation in
ACO is more flexible than the representation in GAs and
PSO, but the order of encoding the features as nodes may
influence the performance. Building feature subsets through
ants traversing nodes is similar to many traditional ways of
gradually adding or removing features to a subset, which
makes it easy to adopt existing filter measures in ACO for
feature selection. However, the graph representation may not
scale well to problems with thousands of features, which might
be the reason why current ACO approaches focus mainly
on relatively small-scale problems. Further, investigating the
parameter settings in ACO and the capabilities of ACO for
multi-objective feature selection are still open issues.

E. Other EC Techniques for Feature Selection

Table V shows other EC techniques for feature selection,
including DE, memetic algorithms, LCSs, ES, ABC, AISs,
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TABLE V
CATEGORISATION OF OTHER APPROACHES
DE Memetic Others
Filter [209], [213] [[214] LCSs[215]; ES [208];
ES [53]; ABC [54], [55], [220],
{‘1‘% 512} [221], [222], [223]; AISs [56],
‘Wrapper [217’] [218’] [219] [57]; EDA [224]; GSA [152],
[207]’ ’ [225]; TS [139], [226]; SA
[38], [79]
[49], [50], [100],
. [177], [227],
Combined |[47] [228]. [229],
[230], [231]

estimated distribution algorithm (EDA), gravitational search
algorithm (GSA), Tabu search (TS), and SA?, where only
[207], [208] are multi-objective approaches. There are many
more works on DE and memetic algorithms than on other
algorithms listed in Table V.

DE was introduced to solve feature selection problems
in recent years, mainly since 2008. Most of the works fo-
cus on improving the search mechanisms of DE, while the
representation scheme has also been investigated. Khushaba
et al. [47] combined DE with ACO for feature selection,
where DE was used to search for the optimal feature subset
based on the solutions obtained by ACO. Experiments showed
that the proposed algorithm achieved better performance than
other traditional feature selection algorithms on EEG brain-
computer-interface tasks. Ghosh et al. [17] applied an adaptive
DE algorithm to feature selection, where the parameters in
DE were self-adapting depending on the problems. The results
showed that the proposed algorithms outperformed a GA [65],
ACO [199], DE [209], and the combination of ACO and
DE [47] on image problems. Khushaba et al. [47], [210]
proposed a new representation with each individual encoded
as a vector of floating numbers and the dimensionality was
the desired number of features. The results showed that the
proposed DE algorithm achieved better performance than PSO
and a GA on EEG brain-computer-interface tasks. DE has also
been applied to multi-objective feature selection [207], which
showed that the proposed multi-objective approach obtained
better feature subsets than single objective approaches in terms
of the classification performance and the number of features.
However, DE has not been applied to filter multi-objective
feature selection, which is an opportunity for future work.
Further, DE has achieved success in large-scale optimisation
[211], [212], but it has not been investigated for feature
selection with a large number of features, e.g. more than 500
or thousands of features.

Memetic algorithms, which combine population based
search (an EC technique) with local search, provide a great
opportunity to combine wrapper and filter methods. Therefore,
in most memetic based feature selection approaches, an EC
technique was used for wrapper feature selection and a local
search algorithm was used for filter feature selection. Zhu
et al. [49], [227], [228] proposed memetic algorithms for
feature selection, i.e. GAs for wrapper feature selection and a
local search using Markov blanket for filter feature selection.
Similarly, local search for filter feature selection using mutual

2TS and SA are not EC techniques, but we include them here since they
have often been used together or compared with EC algorithms.
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information was applied together with GAs and PSO for
wrapper feature selection to develop memetic approaches in
[50], [177] and [229]. A two-stage feature selection algorithm
was proposed in [214], where a Relief-F algorithm was used
to rank individual features and then the top-ranked features
were used as input to the memetic wrapper feature selection
algorithm. In addition, a memetic algorithm was used for
feature selection to improve the performance of LCSs in [231],
where a LCS was used as a classification algorithm to evaluate
the fitness of the selected features.

Other EC techniques have also been applied to feature
selection, mainly including LCSs, ES, ABC, AISs, GSAs,
EDAs, TS, and SA. Some of them were combined with other
EC techniques [38], [53], [139] while most were applied
individually to address feature selection problems [232], [54],
[56], [79], [152], [220], [221], [222], [224], [225], [226].
Almost all of them are wrapper based methods.

In summary, a variety of EC techniques have recently
been applied to address feature selection problems. Since
all algorithm have their own advantages and disadvantages,
they can be used for potential further investigation to address
different new challenges in the feature selection area.

IV. MEASURES IN FILTER APPROACHES
Feature selection measures have previously been classified

into five categories [1]: information measures, consistency
measures, dependency (or correlation) measures, distance mea-
sures, and precision measures (i.e. wrapper approaches). As
this section aims to study typical filter measures used in EC
for feature selection, only the first four types of filter measures
are reviewed. Since rough set theory and fuzzy set theory are
important feature selection measures in computational intelli-
gence, they are also listed as another two separate categories.
The six categories of filter measures in EC for feature selection
can be seen from Table VI

Information theory based measures are used more often
than all other measures. The use of information measures
is mainly in four ways: (1) Use an information measure
to rank individual features before using an EC technique.
Symmetrical uncertainty or mutual information was used for
filter feature ranking and then the top-ranked features were
used in ACO [202] or a GA [72] based wrapper feature
selection. (2) Use an information measure in the local search
of a memetic algorithm. Mutual information [177], [227],
symmetrical uncertainty [50], and Markov blanket [228] were
used in local search to perform a filter feature selection to
refine the solutions obtained by a GA or PSO for wrapper
feature selection. (3) Incorporate an information measure
into the updating/search mechanism. Mutual information was
incorporated in the position updating procedure of PSO in
[33] to help improve the performance of PSO and an SVM
for wrapper feature selection. Based on information theory
and GP, a new relevance measure was proposed in [41] to
improve the feature selection and classification performance
of GP. (4) Use information theory to form a fitness function
in an EC algorithm. This is considered the most popular
way to use information theory for feature selection. Based
on the idea of “Max-relevance and min-redundancy” [32],
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TABLE VI
MEASURES IN FILTER APPROACHES
Measure References
. [33], [34], [41], [50], [55], [72], [102], [105], [106],
%fséfla“o“ [116], [118] [173], [177], [195], [201], [202], [203],
Y [205], [229]
Correlation
Measure [75], [107], [116], [203], [208]
Distance
Measure [11], [15], [118], [136], [171]
Consistency
Measure [98], [105], [166], [203]
Fuzzy Set
Theory [99], [104], [164], [166], [169]
Rough Set [103], [163], [167], [168], [170], [172], [174], [183],
Theory [197], [198], [200], [204]

mutual information was used to measure the redundancy
within a feature subset and the relevance between features
and the class labels. Different EC methods have been used
to maximise the relevance and minimise the redundancy in
both single objective and multi-objective manners [34], [102],
[106], [195], [201]. However, most of these measures evaluate
features individually except for [41], [34], [102].

Correlation measures qualify the ability to predict the value
of one variable based on the value of another. Two correlation
measures were proposed in [208] to evaluate the relevance
and redundancy in ES and NSGAII for feature selection on
two credit approval datasets. Li et al. [75] proposed a multiple
populations based GA for feature selection, and the correlation
between features and the class labels were used as a filter
measure to test the performance of the proposed GA.

Distance measures are also known as separability, diver-
gence, or discrimination measures. Iswandy and Koenig [136]
used two distance measures, the overlap measure and the com-
pact measure, in PSO for feature selection and successfully
reduced the dimensionality. Signal-to-noise ratio was also used
for feature selection in [15], where GP was used for classi-
fication and the features used by GP were ranked by signal-
to-noise ratio with only the top-ranked ones being selected.
Signal-to-noise ratio was also used to evaluate the goodness
of each individual feature in PSO for feature selection [171].

Consistency measures are based on whether two instances,
which have the same feature values, have the same class
label. GAs were the first EC technique to use consistency
measures [98]. Later, a fuzzy set based consistency measure
was proposed in [166], which was different from most con-
sistency measures that required discrete data. The proposed
measure was used in PSO for feature selection and shown to
be faster than PSO with a fuzzy set based fitness function
[164]. Consistency measures are in general computationally
more expensive than other filter measures [1], which presents
an opportunity for further improvement.

Fuzzy set theory is able to measure imprecision and uncer-
tainty through a membership function, which can be used to
evaluate the quality of features. Both PSO and GAs have been
used together with a fuzzy fitness function for feature selec-
tion in both single objective [99], [164] and multi-objective
approaches [104]. Fuzzy set theory has been extensively used
for feature selection in non-EC methods and there is still great
potential to utilise it in EC based approaches.
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Rough set theory can deal with uncertainty and incomplete-
ness. It measures the consistency degree of a dataset through
the concept of approximations of a target set, which can be
used for feature selection [233]. Wang et al. [163] applied
standard rough set theory to form a fitness function in PSO
for feature selection. Later, Cervante et al. [167], [170] further
used probabilistic rough set theory in PSO for feature selection
and achieved better performance than using standard rough set
theory. Rough set theory has attracted much attention in ACO
for feature selection [183], [196], [204], [206], which has been
discussed in Section III-D. The use of rough set was further
extended for multi-objective feature selection in GAs [103],
PSO [172], [174], and ACO [204] to obtain a set of trade-off
feature subsets to better solve the problems. However, most
of the existing approaches focus mainly on datasets with a
relatively small number of features, say, less than 100.

Using multiple measures simultaneously in a single feature
selection algorithm has become popular in recent years since
each measure has its own advantages and disadvantages.
Spoladr et al. [105] investigated five different filter measures in
NSGAII for feature selection, including inconsistent example
pairs as a consistency measure, attribute-class correlation as
a dependency/correlation measure, inter-class distance mea-
sure, Laplacian score distance measure, and representation
entropy as an information measure. The results showed that
the combination of the inter-class distance measure and the
attribute-class correlation measure performed better than other
combinations. Sandin et al. [116] proposed to use information
gain, XQ, odds-ratio, and correlation coefficient, and Ahmed et
al. [118] proposed to use information gain and Relief-F to rank
individual features. Only the top-ranked features from each
measure were used as the input to GP for feature selection.
Tall6n-Ballesteros and Riquelme [203] tested a correlation
measure, a consistency measure, and their combination with
information gain in ACO for feature selection. These works
show that using multiple measures can help discover useful
information in features and improve the performance.

In summary, different types of filter measures have been
adopted in EC for feature selection. Among these measures,
information measures, correlation measures, and distance mea-
sures are computationally relatively cheap while consistency,
rough set, and fuzzy set theories based measures may handle
noisy data better. However, almost all of them were designed
for discrete data and the performance may deteriorate when
applied to continuous data, which appears in many real-word
problems. It is worth noting that almost all these measures
are existing ones (or with little modification), i.e. they were
originally used in traditional feature selection methods, e.g.
sequential search. EC techniques were used as a search method
in these approaches. There are also some measures that are
not suitable for using in EC for feature selection because they
are designed for a specific (traditional) search method. There
are only a few filter measures particularly designed for EC
based feature selection, where an example is from Neshatian
and Zhang [130] who developed a filter relevance measure
based on GP trees with a virtual structure, which improved
the performance of GP for feature selection. Compared with
wrapper approaches, the classification performance of filter
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APPLICATIONS
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Category

Applications

References

(O]

Image analysis

[17], [65], 661, [77],
[80], [199], [217]

1

Face recognition

[43], [68], [95], [108],
[165], [181], [187], [235]

@

Music instrument recognition

[53], [93]

[€)) Handwritten digit recognition [90]

(1) EEG brain-computer-interface [47], [210]
[€)) Speaker recognition [62], [67]
[€)) Personal identification [137], [213]
@) Human action recognition [84], [201]

[49], [103], [15], [118],
[119], [122], [139], [140],
[143], [145], [171], [189]
[48], [80], [147]

[54], [73], [87], [134],
[208]

[92]

[16]

[141]

[97], [184], [220]

2) Gene analysis

2) Disease diagnosis

3) Financial problems

3) Customer churn prediction
“4) Text mining

4) Web service

4) Network security

4) Email Spam detection [109]

5) Power system optimisation [79], [152]

5) Weed recognition in agriculture  [[191]
Melting point prediction in

) chemistry [188]

5) Weather forecast [86], [195]

approaches is usually worse, but they can be much cheaper
than wrapper approaches [234], which is critical in large
datasets. Therefore, developing filter measures specifically
according to the characteristics of an EC technique may
significantly increase the efficiency and effectiveness, which
offers an important future research direction.

V. APPLICATIONS

Table VII shows the applications of EC for feature selection.
It can be seen that EC based feature selection approaches have
been applied to a variety of areas.

Generally, the major applications can be grouped into the
following five categories: (1) Image and signal processing
including image analysis, face recognition, human action
recognition, EEG brain-computer-interface, speaker recogni-
tion, handwritten digit recognition, personal identification, and
music instrument recognition. (2) Biological and biomedical
tasks including gene analysis, biomarker detection, and disease
diagnosis, where selecting the key features and reducing the
dimensionality can significantly reduce the cost of clinic
validation, disease diagnosis and other related procedures. (3)
Business and financial problems including financial crisis,
credit card issuing in bank systems, and customer churn
prediction. (4) Network/web service including text mining,
web service, network security, and email spam detection. (5)
Others, such as power system optimisation, weed recognition
in agriculture, melting point prediction in chemistry, and
weather prediction.

All the above areas are important and essential to our society
or daily life. Of course, many other fields [236], such as
complex engineering tasks and language learning, also need
feature selection, but EC based approaches have not been
thoroughly investigated in those areas.
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VI. ISSUES AND CHALLENGES
Despiting the suitability, success and promise of EC for fea-
ture selection, there are still significant issues and challenges,
which will be discussed here.

A. Scalability

The most pressing issue is due to the trend in “big data”
[13], the size of the data becomes increasingly large. In
1989, selecting features from a dataset with more than 20
features was called large-scale feature selection [37]. However,
nowadays the number of features in many areas, such as gene
analysis, can easily reach thousands or even millions. This
increases computational cost and requires advanced search
mechanisms, but both of these aspects also have their own
issues so the problem cannot be solved by only increasing
computational power. Novel methods and algorithms will
become necessity.

A number of EC algorithms have been proposed to solve
large-scale feature selection problems [70], [72], [15], [118],
[140], [176], [202], where the dimensionality reaches a few
thousands or tens of thousands. Other computational intel-
ligence based techniques have been introduced to feature
selection tasks in the ranges of millions [13], [36]. Most of
the existing EC based large-scale feature selection approaches
employ a two-stage approach, where in the first stage, a mea-
sure is used to evaluate the relevance of individual features,
then ranks them according to the relevance value. Only the
top-ranked (better) features are used as inputs to the second
stage to further select features from them. However, the first
stage removes lowly-ranked features without considering their
interaction with other features. To solve large-scale feature
selection problems, new approaches are needed, including
new search algorithms and new evaluation measures. EC
approaches have shown their potential for large-scale (global)
optimisation [211], [212], [237], which provides a good op-
portunity to better address large-scale feature selection tasks.

B. Computational Cost

Most feature selection methods suffer from the problem
of being computationally expensive, which is a particularly
serious issue in EC for feature selection since they often
involve a large number of evaluations. Filter approaches are
generally more efficient than wrapper approaches, but exper-
iments have shown that this is not always true [234]. Some
filter measures, such as the rough set theory [28], [163], [168],
[183], [196], [197], [204], [206], may take a longer time than
a fast/simple wrapper method [234]. Although there exist fast
filter measures, such as mutual information [32], [33], [34],
[238], the classification performance is usually worse than
most wrapper approaches. Therefore, it is still a challenge to
propose efficient and effective approaches to feature selection
problems.

To reduce the computational cost, two main factors, an
efficient search technique and a fast evaluation measure, need
to be considered [1]. A fast evaluation criterion may produce
a greater influence than the search technique, since in current
approaches the evaluation procedure takes the majority of the

://creativecommons.org/licenses/by/3.0/,

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from ?he IEEE by emailing pubs-permissions@ieee.org.



This article has been accepted foil hisbliddtecmtharfuversiisswd afithisiphethat, lastbeenruitiese fully thditielnGah €ht nges ehenegn pdiototohfismub pidii datidre. Slibdtshar pfoontat jonbikaxian. 1109/ TEVC.2015.2504420, IEEE

The final version dfansactanawmilivielationary Combtttaticix.doi.org/10.1109/TEVC.2015.2504420

JOURNAL OF KIgX CLASS FILES, VOL. , NO. ,

computational cost. It is noted that the parallelisable nature of
EC is suited as Grid computing, GPU, and Cloud computing
that can be used to speed up the process.

C. Search Mechanisms

Feature selection is an NP-hard problem and has a large
complex solution space [239]. This requires a powerful global
search technique and current EC algorithms still have great
potential to be improved.

The new search mechanisms should have the ability to
explore the whole search space and also be able to exploit
the local regions when needed. New search mechanisms may
involve local search (to form novel memetic algorithms),
hybridisation of different EC search mechanisms, hybridisa-
tion of EC and conventional methods [39], [158], surrogate
approaches [240], etc.

A related issue is that the new search mechanisms should be
stable on feature selection tasks. EC algorithms are stochastic
approaches, which may produce different solutions when using
different starting points. Even when the fitness values of the
solutions are the same, they may select different individual
features. Therefore, the stability of the algorithms not only
involves the difference of the fitness values, but also involves
the consistency of the selected features. Therefore, to propose
new search algorithms with high stability is also an important
task.

D. Measures

The evaluation measure, which forms the fitness function,
is one of the key factors in EC for feature selection. It con-
siderably influences the computational time, the classification
performance, and the landscape of the search space.

Most of the computational time is spent on the evaluation
procedure for wrapper approaches and also for many filter
approaches [29], [158], [234]. Although there are some ex-
isting fast evaluation measures, such as mutual information
[32], [34], [241], [12], they evaluate features individually
rather than a group of features. Ignoring interactions be-
tween features results in subsets with redundancy and lack
of complimentary features [2], [242], which in turn cannot
achieve optimal classification performance in most domains
of interest. However, discovering complex feature interaction
is very challenging and only a few works have been conducted
on this direction [243]. There are some measures that can
evaluate groups of features [27], [31], [163], [174], but they
are usually computationally expensive, such as rough set based
measures [163], [174]. Furthermore, many studies show that
filter methods do not scale well above tens of thousands
of features [13]. Therefore, new measures still need to be
developed for feature selection, especially when dealing with
large-scale problems.

For feature selection problems, multiple different solutions
may have the same fitness values. A small (big) change
in the solution may cause a huge (small) difference in the
fitness value. This makes the problem even more challenging.
Therefore, developing new measures that can smooth the
fitness landscape will significantly reduce the difficulty of the
task and help the design of suitable search algorithms.
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E. Representation

The traditional representation in most EC approaches results
in a huge search space for feature selection problems, i.e. the
size is 2" for a dataset with n features, even when n is only
a few hundreds [1], [2].

A good representation scheme can help to reduce the search
space size. It in turn helps to design new search mecha-
nisms to improve the search ability. Another issue is that the
current representations usually reflect only whether a feature
is selected or not, but the feature interaction information is
not shown. Feature interaction usually involves a group of
features rather than a single feature. If the representation
can reflect the selection or removal of groups of features,
it may significantly improve the classification performance.
Furthermore, the interpretation of the solution is also an
important issue closely related to the representation. Most EC
methods are not good at this task except for GP and LCSs as
they produce a tree or a population of rules, which are easier
to understand and interpret. Therefore, a good representation
scheme may help users better understand and interpret the
obtained solutions.

F. Multi-Objective Feature Selection

Most of the existing evolutionary multi-objective (EMO)
algorithms are designed for continuous problems [244], but
feature selection is a discrete problem. When dealing with
large-scale problems, existing EMO methods do not scale well
[211], [212], [245], [246]. This requires the development of
novel EMO algorithms. Furthermore, the two main objectives
(minimising both the number of features and the classification
error rate) are not always conflicting with each other, i.e. in
some subspaces, decreasing the number of features can also
decrease the classification error rate as unnecessary features
are removed [29], [154], [158], [171], [173], [194]. This
makes it tricky to design an appropriate EMO algorithm.
Furthermore, developing new evaluation metrics and further
selection methods to choose a single solution from a set of
trade-off solutions is also a challenging topic.

Finally, besides the two main objectives, other objectives,
such as the complexity, the computational time, and the
solution size (e.g. tree size in GP and number of rules in
LCSs), could also be considered in multi-objective feature
selection.

G. Feature Construction

Feature selection does not create new features, as it only
selects original features. However, if the original features are
not informative enough to achieve promising performance,
feature selection may not work well, yet feature construction
may work well [3], [247].

One of the challenges for feature construction is to decide
when feature construction is needed. A measure to estimate the
properties of the data might be needed to make such a decision.
Meanwhile, feature selection and feature construction can be
used together to improve the classification performance and
reduce the dimensionality. This can be achieved in three
different ways: performing feature selection before feature
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construction, performing feature construction before feature
selection, and simultaneously performing both feature selec-
tion and construction [3].

H. Number of Instances

The number of instances in a dataset significantly influences
the performance and design of experiments [236]. It causes
problems when the number is too big or too small.

When the number of instances is too small, it is hard to
design appropriate experiments to test the performance of the
algorithms. For example, there might be tens of thousands of
features, but the number of instances can be smaller than one
hundred because of the high cost of collecting such instances
[117]. It is difficult to split the data into a training set and a test
set to represent the actual problem. Therefore, many existing
works have the problem of feature selection bias [248], [249],
especially when the whole set of data is used during the feature
selection process [44], [70], [117], [145], [189], [229], [215].
Although cross-validation or bootstrap sampling techniques
[250] can address the issue to some extent, they may have
the problem of it being hard to decide the final selection of
individual features because EC algorithms (and conventional
deterministic algorithms) often select different features from
different cross-validation runs.

When the number of instances is too big, one major problem
is the computational cost [29], [236]. In feature selection, each
evaluation usually needs to visit all the training examples.
The larger the data/training size, the longer each evaluation.
Meanwhile, for “big data” problems, it not only needs to
reduce the number of features, but also needs to reduce the
number of instances [251]. Combining feature selection and
instance selection into a single process may improve both the
effectiveness and efficiency of the data pre-processing process.

VII. CONCLUSIONS

This paper provided a comprehensive survey of EC tech-
niques in solving feature selection problems, which covered
all the commonly used EC algorithms and focused on the key
factors, such as representation, search mechanisms, and the
performance measures as well as the applications. Important
issues and challenges were also discussed.

This survey shows that a variety of EC algorithms have
recently attracted much attention to address feature selec-
tion tasks. A popular approach in GAs, GP and PSO is to
improve the representation to simultaneously select features
and optimise the classifiers, e.g. SVMs. Different algorithms
have their own characteristics, such as GAs are able to
preserve a small set of features during the evolutionary process
because of the nature of genetic operators, PSO is relatively
computationally cheap because of its simple updating mecha-
nisms, ACO can gradually add features because of the graph
representation, and GP can implicitly perform feature selection
through feature construction. Therefore, these EC techniques
or their combinations can be used with different measures to
solve different types of feature selection problems. This needs
further investigation in the future. Furthermore, all the major
EC algorithms, e.g. GAs, GP and PSO, have been used to
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address feature selection tasks with thousands of features, but
they suffer from the problem of high computational cost. As a
result, when are applied to large-scale feature selection tasks,
the current target datasets usually have a small number of
instances.

Although EC techniques for feature selection have achieved
some success, they still face challenges and their potential
has not been fully investigated. Scalability is one of the most
important issues since both the number of features and the
number of instances are increasing in many real-world tasks.
This is not only a challenging task in EC, but also in the ma-
chine learning, statistics, and biology communities. The recent
advances in EC for large-scale global optimisation motivate
further studies on EC for large-scale feature selection, but it
is challenging to develop promising approaches, where novel
search mechanisms and representation schemes are needed in
both single objective and multi-objective feature selection. To
improve their effectiveness and efficiency, it is necessary to
design a cheap evaluation measure according to the specific
representation and the search mechanism of a particular EC
technique. The proposal of novel approaches may involve
methods or measures from different areas, which encourages
research across multiple disciplines. A comprehensive compar-
ison between EC and non-EC approaches on a large number
of benchmark datasets/problems to test their advantages and
disadvantages can help develop novel effective approaches to
different kinds of problems. In addition, combining feature
selection with feature construction can potentially improve the
classification performance while combining feature selection
with instance selection can potentially improve the efficiency.
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