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1. Let σs(n) denote the sum of the sth powers of the divisors of n (including 1 and n), and
let

σs(0) =
1
2ζ(−s),

where ζ(s) is the Riemann Zeta-function. Further let

∑

r,s

(n) = σr(0)σs(n) + σr(1)σs(n − 1) + · · · + σr(n)σs(0). (1)

In this paper I prove that

∑

r,s

(n) =
Γ(r + 1)Γ(s+ 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s+ 1)

ζ(r + s+ 2)
σr+s+1(n)

+
ζ(1− r) + ζ(1− s)

r + s
nσr+s−1(n) +O{n 2

3
(r+s+1)}, (2)

whenever r and s are positive odd integers. I also prove that there is no error term on the
right-hand side of (2) in the following nine cases: r = 1, s = 1; r = 1, s = 3; r = 1, s =
5; r = 1, s = 7; r = 1, s = 11, r = 3, s = 3; r = 3, s = 5; r = 3, , s = 9; r = 5, s = 7. That
is to say

∑

r,s(n) has a finite expression in terms of σr+s+1(n) and σr+s−1(n) in these nine
cases; but for other values of r and s it involves other arithmetical functions as well.
It appears probable, from the empirical results I obtain in §§ 18-23, that the error term on
the right-hand side of (2) is of the form

O{n 1

2
(r+s+1+ǫ)}, (3)

where ǫ is any positive number, and not of the form

o{n 1

2
(r+s+1)}. (4)

But all I can prove rigorously is (i) that the error is of the form

O{n 2

3
(r+s+1)}

in all cases, (ii) that it is of the form

O{n 2

3
(r+s+ 3

4
)} (5)

if r + s is of the form 6m, (iii) that it is of the form

O{n 2

3
(r+s+ 1

2
)} (6)
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if r + s is of the form 6m+ 4, and (iv) that it is not of the form

o{n 1

2
(r+s)}. (7)

It follows from (2) that, if r and s are positive odd integers, then

∑

r,s

(n) ∼ Γ(r + 1)Γ(s + 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s+ 1)

ζ(r + s+ 2)
σr+s+1(n). (8)

It seems very likely that (8) is true for all positive values of r and s, but this I am at present
unable to prove.

2. If
∑

r,s(n)/σr+s+1(n) tends to a limit, then the limit must be

Γ(r + 1)Γ(s+ 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s + 1)

ζ(r + s+ 2)
.

For then

lim
n→∞

∑

r,s(n)

σr+s+1(n)
= lim

n→∞

∑

r,s(1) +
∑

r,s(2) + · · · +∑

r,s(n)

σr+s+1(1) + σr+s+1(2) + · · ·+ σr+s+1(n)

= lim
x→1

∑

r,s(0) +
∑

r,s(1)x+
∑

r,s(2)x
2 + · · ·

σr+s+1(0) + σr+s+1(1)x + σr+s+1(2)x2 + · · ·

= lim
x→1

SrSs

Sr+s+1
,

where

Sr =
1
2ζ(−r) +

1rx

1− x
+

2rx2

1− x2
+

3rx3

1− x3
+ · · · (9)

Now it is known that, if r > 0, then

Sr ∼
Γ(r + 1)ζ(r + 1)

(1− x)r+1
, (10)

as x → 1 ∗. Hence we obtain the result stated.

3. It is easy to see that

σr(1) + σr(2) + σr(3) + · · ·+ σr(n)

= u1 + u2 + u3 + u4 + · · ·+ un,

∗Knopp, Dissertation (Berlin, 1907), p.34.
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where
ut = 1r + 2r + 3r + · · ·+

[n

t

]r
.

From this it is easy to deduce that

σr(1) + σr(2) + · · ·+ σr(n) ∼
nr+1

r + 1
ζ(r + 1) ∗ (11)

and

σr(1)(n − 1)s + σr(2)(n − 2)s + · · · + σr(n − 1)1s ∼ Γ(r + 1)Γ(s+ 1)

Γ(r + s+ 2)
ζ(r + 1)nr+s+1,

provided r > 0, s ≥ 0. Now
σs(n) > ns,

and
σs(n) < ns(1−s + 2−s + 3−s + · · ·) = nsζ(s).

From these inequalities and (1) it follows that

lim

∑

r,s(n)

nr+s+1
≥ Γ(r + 1)Γ(s + 1)

Γ(r + s+ 2)
ζ(r + 1), (12)

if r > 0 and s ≥ 0; and

lim

∑

r,s(n)

nr+s+1
≤ Γ(r + 1)Γ(s + 1)

Γ(r + s+ 2)
ζ(r + 1)ζ(s), (13)

if r > 0 and s > 1. Thus n−r−s−1
∑

r,s(n) oscillates between limits included in the interval

Γ(r + 1)Γ(s+ 1)

Γ(r + s+ 2)
ζ(r + 1),

Γ(r + 1)Γ(s + 1)

Γ(r + s+ 2)
ζ(r + 1)ζ(s).

On the other hand n−r−s−1σr+s+1(n) oscillates between 1 and ζ(r+s+1), assuming values
as near as we please to either of these limits. The formula (8) shews that the actual limits
of indetermination of n−r−s−1

∑

r,s(n) are

Γ(r + 1)Γ(s + 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s+ 1)

ζ(r + s+ 2)
,

Γ(r + 1)Γ(s + 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s+ 1)ζ(r + s+ 1)

ζ(r + s+ 2)
. (14)

Naturally

ζ(r + 1) <
ζ(r + 1)ζ(s+ 1)

ζ(r + s+ 2)
<

ζ(r + 1)ζ(s + 1)ζ(r + s+ 1)

ζ(r + s+ 2)
< ζ(r + 1)ζ(s) .†

∗(10) follows from this as an immediate corollary.
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What is remarkable about the formula (8) is that it shews the asymptotic equality of two
functions neither of which itself increases in a regular manner.

4. It is easy to see that, if n is a positive integer, then

cot 1
2θ sinnθ = 1 + 2 cos θ + 2cos 2θ + · · ·+ 2cos(n− 1)θ + cosnθ.

Suppose now that

(

1
4 cot

1
2θ +

x sin θ

1− x
+

x2 sin 2θ

1− x2
+

x3 sin 3θ

1− x3
+ · · ·

)2

= (14 cot
1
2θ)

2 + C0 + C1 cos θ + C2 cos 2θ + C3 cos 3θ + · · · ,

where Cn is independent of θ. Then we have

C0 = 1
2

(

x

1− x
+

x2

1− x2
+

x3

1− x3
+ · · ·

)

+ 1
2

{

(

x

1− x

)2

+

(

x2

1− x2

)2

+

(

x3

1− x3

)2

+ · · ·
}

= 1
2

{

x

(1− x)2
+

x2

(1− x2)2
+

x3

(1− x3)2
+ · · ·

}

= 1
2

{

x

1− x
+

2x2

1− x2
+

3x3

1− x3
+ · · ·

}

. (15)

Again

Cn = 1
2

xn

1− xn
+

xn+1

1− xn+1
+

xn+2

1− xn+2
+

xn+3

1− xn+3
+ · · ·

+
x

1− x
· xn+1

1− xn+1
+

x2

1− x2
· xn+2

1− xn+2
+

x3

1− x3
· xn+3

1− xn+3
+ · · ·

− 1
2

{

x

1− x
· xn−1

1− xn−1
+

x2

1− x2
· xn−2

1− xn−2
+ · · ·+ xn−1

1− xn−1
· x

1− x

}

.

Hence

Cn

xn
(1− xn) = 1

2 +

(

x

1− x
− xn+1

1− xn+1

)

+

(

x2

1− x2
− xn+2

1− xn+2

)

+ · · ·

− 1
2

{(

1 +
x

1− x
+

xn−1

1− xn−1

)

+

(

1 +
x2

1− x2
+

xn−2

1− xn−2

)

†For example when r = 1 and s = 9 this inequality becomes 1.64493 . . . < 1.64616 . . . < 1.64697 . . . <
1.64823 . . ..



178 Paper 18

+ · · ·+
(

1 +
xn−1

1− xn−1
+

x

1− x

)}

=
1

1− xn
− n

2
.

That is to say

Cn =
xn

(1− xn)2
− nxn

2(1− xn)
. (16)

It follows that
(

1
4 cot

1
2θ +

x sin θ

1− x
+

x2 sin 2θ

1− x2
+

x3 sin 3θ

1− x3
+ · · ·

)2

=
(

1
4 cot

1
2θ

)2
+

x cos θ

(1− x)2
+

x2 cos 2θ

(1− x2)2
+

x3 cos 3θ

(1− x3)2
+ · · ·

+1
2

{

x

1− x
(1− cos θ) +

2x2

1− x2
(1− cos 2θ) +

3x3

1− x3
(1− cos 3θ) + · · ·

}

. (17)

Similarly, using the equation

cot2 1
2θ(1− cosnθ) =

(2n− 1) + 4(n − 1) cos θ + 4(n− 2) cos 2θ + · · ·+ 4cos(n− 1)θ + cosnθ,

we can shew that
{

1
8 cot

2 1
2θ +

1
12 +

x

1− x
(1− cos θ) +

2x2

1− x2
(1− cos 2θ)+

3x3

1− x3
(1− cos 3θ) + · · ·

}2

=
(

1
8 cot

2 1
2θ +

1
12

)2

+ 1
12

{

13x

1− x
(5 + cos θ) +

23x2

1− x2
(5 + cos 2θ) +

33x3

1− x3
(5 + cos 3θ) + · · ·

}

. (18)

For example, putting θ = 2
3π and θ = 1

2π in (17), we obtain

(

1
6 +

x

1− x
− x2

1− x2
+

x4

1− x4
− x5

1− x5
+ · · ·

)2

= 1
36 + 1

3

(

x

1− x
+

2x2

1− x2
+

4x4

1− x4
+

5x5

1− x5
+ · · ·

)

, (19)

where 1, 2, 4, 5, . . . are the natural numbers without the multiples of 3; and

(

1
4 +

x

1− x
− x3

1− x3
+

x5

1− x5
− x7

1− x7
+ · · ·

)2
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= 1
16 + 1

2

(

x

1− x
+

2x2

1− x2
+

3x3

1− x3
+

5x5

1− x5
+ · · ·

)

, (20)

where 1, 2, 3, 5, . . . are the natural numbers without the multiples of 4.

5. It follows from (18) that

(

1

2θ2
+

θ2

2!
S3 −

θ4

4!
S5 +

θ6

6!
S7 − · · ·

)2

=
1

4θ4
+ 1

2S3 − 1
12

(

θ2

2!
S5 −

θ4

4!
S7 +

θ6

6!
S9 − · · ·

)

, (21)

where Sr is the same as in (9). Equating the coefficients of θn in both sides in (21), we
obtain

(n− 2)(n + 5)

12(n + 1)(n + 2)
Sn+3 =

(

n

2

)

S3Sn−1 +

(

n

4

)

S5Sn−8+

(

n

6

)

S7Sn−5 + · · · +
(

n

n− 2

)

Sn−1S3, (22)

where
(

n

r

)

=
n!

r!(n− r)!
,

if n is an even integer greater than 2.
Let us now suppose that

Φr,s(x) =
m=∞
∑

m=1

n=∞
∑

n=1

mrnsxmn, (23)

so that
Φr,s(x) = Φs,r(x),

and

Φ0,s(x) =
1sx

1− x
+

2sx2

1− x2
+

3sx3

1− x3
+ · · · = Ss − 1

2ζ(−s),

Φ1,s(x) =
1sx

(1− x)2
+

2sx2

(1− x2)2
+

3sx3

(1− x3)2
+ · · ·



















. (24)

Further let

P = −24S1 = 1− 24

(

x

1− x
+

2x2

1− x2
+

3x3

1− x3
+ · · ·

)

∗,

Q = 240S3 = 1 + 240

(

13x

1− x
+

23x2

1− x2
+

33x3

1− x3
+ · · ·

)

,

R = −540S5 = 1− 504

(

15x

1− x
+

25x2

1− x2
+

35x3

1− x3
+ · · ·

)







































. (25)
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The putting n = 4, 6, 8, . . . in (22) we obtain the results contained in the following table.

TABLE 1

1. 1− 24Φ0,1(x) = P.
2. 1 + 240Φ0,3(x) = Q.
3. 1− 504Φ0,5(x) = R.
4. 1 + 480Φ0,7(x) = Q2.
5. 1− 264Φ0,9(x) = QR.
6. 691 + 65520Φ0,11(x) = 441Q3 + 250R2.
7. 1− 24Φ0,13(x) = Q2R.
8. 3617 + 16320Φ0,15(x) = 1617Q4 + 2000QR2.
9. 43867 − 28728Φ0,17(x) = 38367Q3R+ 5500R3.
10. 174611 + 13200Φ0,19(x) = 53361Q5 + 121250Q2R2.
11. 77683 − 552Φ0,21(x) = 57183Q4R+ 20500QR3.
12. 236364091 + 131040Φ0,23(x) = 49679091Q6 + 176400000Q3R2

+10285000R4.
13. 657931 − 24Φ0,25(x) = 392931Q5R+ 265000Q2R3.
14. 3392780147 + 6960Φ0,27(x) = 489693897Q7 + 2507636250Q4R2

+395450000QR4.
15. 1723168255201 − 171864Φ0,29(x) = 815806500201Q6R

+881340705000Q3R3 + 26021050000R5 .
16. 7709321041217 + 32640Φ0,31(x) = 764412173217Q8

+5323905468000Q5R2 + 1621003400000Q2R4.
In general

1
2ζ(−s) + Φ0,s(x) =

∑

Km,nQ
mRn, (26)

where Km,n is a constant and m and n are positive integers (including zero) satisfying the
equation

4m+ 6n = s+ 1.

This is easily proved by induction, using (22).

∗If x = q2, then in the notation of elliptic functions

P =
12ηω

π2
=

(

2K

π

)

2
(

3E

K
+ k

2
− 2

)

,

Q =
12g2ω

4

π4
=

(

2K

π

)

4

(1− k
2 + k

4),

R =
216g3ω

6

π6
=

(

2K

π

)

6

(1 + k
2)(1− 2k2)(1− 1

2
k
2).
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6. Again from (17) we have

(

1

2θ
+

θ

1!
S1 −

θ3

3!
S3 +

θ5

5!
S5 − · · ·

)2

=
1

4θ2
+ S1 −

θ2

2!
Φ1,2(x) +

θ4

4!
Φ1,4(x)−

θ6

6!
Φ1,6(x) + · · ·

+1
2

(

θ2

2!
S3 −

θ4

4!
S5 +

θ6

6!
S7 − · · ·

)

. (27)

Equating the coefficients of θn in both sides in (27) we obtain

n+ 3

2(n+ 1)
Sn+1 − Φ1,n(x) =

(

n

1

)

S1Sn−1 +

(

n

3

)

S3Sn−3+

(

n

5

)

S5Sn−5 + · · · +
(

n

n− 1

)

Sn−1S1, (28)

if n is a positive even integer. From this we deduce the results contained in Table II.

TABLE II

1. 288Φ1,2(x) = Q− P 2.
2. 720Φ1,4(x) = PQ−R.
3. 1008Φ1,6(x) = Q2 − PR.
4. 720Φ1,8(x) = Q(PQ−R).
5. 1584Φ1,10(x) = 3Q3 + 2R2 − 5PQR.
6. 65520Φ1,12(x) = P (441Q3 + 250R2)− 691Q2R.
7. 144Φ1,14(x) = Q(3Q3 + 4R2 − 7PQR).

In general

Φ1,s(x) =
∑

Kl,m,nP
lQmRn, (29)

where l ≤ 2 and 2l + 4m+ 6n = s+ 2. This is easily proved by induction, using (28).

7. We have

x
dP

dx
= − 24Φ1,2(x) =

P 2 −Q

12
,

x
dQ

dx
= 240Φ1,4(x) =

PQ−R

3
,

x
dR

dx
= − 504Φ1,6(x) =

PR−Q2

2































(30)

Suppose now that r < s and that r + s is even. Then

Φr,s(x) =

(

x
d

dx

)r

Φ0,s−r(x), (31)
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and Φ0,s−r(x) is a polynomial in Q and R. Also

x
dP

dx
, x

dQ

dx
, x

dR

dx

are polynomials in P,Q and R. Hence Φr,s(x) is a polynomial in P,Q and R. Thus we
deduce the results contained in Table III.

TABLE III

1. 1728Φ2,3(x) = 3PQ− 2R− P 3.
2. 1728Φ2,5(x) = P 2Q− 2PR+Q2.
3. 1728Φ2,7(x) = 2PQ2 − P 2R−QR.
4. 8640Φ2,9(x) = 9P 2Q2 − 18PQR+ 5Q3 + 4R2.
5. 1728Φ2,11(x) = 6PQ3 − 5P 2QR+ 4PR2 − 5Q2R.
6. 6912Φ3,4(x) = 6P 2Q− 8PR + 3Q2 − P 4.
7. 3456Φ3,6(x) = P 3Q− 3P 2R+ 3PQ2 −QR.
8. 5184Φ3,8(x) = 6P 2Q2 − 2P 3R− 6PQR +Q3 +R2.
9. 20736Φ4,5(x) = 15PQ2 − 20P 2R+ 10P 3Q− 4QR− P 5.
10. 41472Φ4,7(x) = 7(P 4Q− 4P 3R+ 6P 2Q2 − 4PQR) + 3Q3 + 4R2.

In general

Φr,s(x) =
∑

Kl,m,nP
lQmRn, (32)

where l − 1 does not exceed the smaller of r and s and

2l + 4m+ 6n = r + s+ 1.

The results contained in these three tables are of course really results in the theory of
elliptic functions. For example Q and R are substantially the invariants g2 and g3, and the
formulæ of Table I are equivalent to the formulæ which express the coefficients in the series

℘(u) =
1

u2
+

g2u
2

20
+

g3u
4

28
+

g22u
6

1200
+

3g2g3u
8

6160
+ · · ·

in terms of g2 and g3. The elementary proof of these formulæ given in the preceding sections
seems to be of some interest in itself.

8. In what follows we shall require to know the form of Φ1,s(x) more precisely than is
shewn by the formula (29).
We have

1
2ζ(−s) + Φ0,s(x) =

∑

Km,nQ
mRn, (33)

where s is an odd integer greater than 1 and 4m+ 6n = s+ 1. Also

x
d

dx
(QmRn) =

(m

3
+

n

2

)

PQmRn −
(m

3
Qm−1Rn+1 +

n

3
Qm+2Rn−1

)

. (34)
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Differentiating (33) and using (34) we obtain

Φ1,s+1(x) =
1
12 (s+ 1)P{1

2ζ(−s) + Φ0,s(x)} +
∑

Km,nQ
mRn, (35)

where s is an odd integer greater than 1 and 4m+ 6n = s+ 3. But when s = 1 we have

Φ1,2(x) =
Q− P 2

288
. (36)

9. Suppose now that

Fr,s(x) = {1
2ζ(−r) + Φ0,r(x)}{1

2ζ(−s) + Φ0,s(x)}

−ζ(1− r) + ζ(1− s)

r + s
Φ1,r+s(x)−

Γ(r + 1)Γ(s + 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s+ 1)

ζ(r + s+ 2)

×{1
2ζ(−r − s− 1) + Φ0,r+s+1(x)}. (37)

Then it follows from (33), (35) and (36) that, if r and s are positive odd integers,

Fr,s(x) =
∑

Km,nQ
mRn, (38)

where
4m+ 6n = r + s+ 2.

But it is easy to see, from the functional equation satisfied by ζ(s), viz.

(2π)−sΓ(s)ζ(s) cos 1
2πs =

1
2ζ(1− s), (39)

that

Fr,s(0) = 0. (40)

Hence Q3 −R2 is a factor of the right-hand side in (38), that is to say

Fr,s(x) = (Q3 −R2)
∑

Km,nQ
mRn, (41)

where
4m+ 6n = r + s− 10.

10. It is easy to deduce from (30) that

x
d

dx
log(Q3 −R2) = P. (42)

But it is obvious that

P = x
d

dx
log[x{(1− x)(1 − x2)(1− x3) · · ·}24]; (43)
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and the coefficient of x in Q3 −R2 = 1728. Hence

Q3 −R2 = 1728x{(1 − x)(1− x2)(1 − x3) · · ·}24. (44)

But it is known that

{(1− x)(1 − x2)(1− x3)(1− x4) · · ·}3

= 1− 3x+ 5x3 − 7x6 + 9x10 − · · · (45)

Hence

Q3 −R2 = 1728x(1 − 3x+ 5x3 − 7x6 + · · ·)8. (46)

The coefficient of xν−1 in 1−3x+5x3−· · · is numerically less than
√

(8ν), and the coefficient
of xν in Q3 −R2 is therefore numerically less than that of xν in

1728x{
√

(8ν)(1 + x+ x3 + x6 + · · ·)}8.

But

x(1 + x+ x3 + x6 + · · ·)8 = 13x

1− x2
+

23x2

1− x4
+

33x3

1− x6
+ · · · , (47)

and the coefficient of xν in the right-hand side is positive and less than

ν3
(

1

13
+

1

33
+

1

53
+ · · ·

)

.

Hence the coefficient of xν in Q3 −R2 is of the form

ν4O(ν3) = O(ν7).

That is to say

Q3 −R2 =
∑

O(ν7)xν . (48)

Differentiating (48) and using (42) we obtain

P (Q3 −R2) =
∑

O(ν8)xν . (49)

Differentiating this again with respect to x we have

A(P 2 −Q)(Q3 −R2) +BQ(Q3 −R2) =
∑

O(ν9)xν ,

where A and B are constants. But

P 2 −Q = −288Φ1,2(x) = −288

{

12x

(1− x)2
+

22x2

(1− x2)2
+ · · ·

}

,
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and the coefficient of xν in the right-hand side is a constant multiple of νσ1(ν). Hence

(P 2 −Q)(Q3 −R2) =
∑

Oνσ1(ν)x
ν
∑

O(ν7)xν

=
∑

O(ν8){σ1(1) + σ1(2) + · · ·

+σ1(ν)}xν =
∑

O(ν10)xν ,

and so

Q(Q3 −R2) =
∑

O(ν10)xν . (50)

Differentiating this again with respect to x and using arguments similar to those used above,
we deduce

R(Q3 −R2) =
∑

O(ν12)xν . (51)

Suppose now that m and n are any two positive integers including zero, and that m+ n is
not zero. Then

QmRn(Q3 −R2) = Q(Q3 −R2)Qm−1Rn

=
∑

O(ν10)xν{
∑

O(ν3)xν}m−1{
∑

O(ν5)xν}n

=
∑

O(ν10)xν
∑

O(ν4m−5)xν
∑

O(ν6n−1)xν

=
∑

O(ν4m+6n+6)xν ,

If m is not zero, Similarly we can shew that

QmRn(Q3 −R2) = R(Q3 −R2)QmRn−1

=
∑

O(ν4m+6n+6)xν ,

if n is not zero. Therefore in any case

(Q3 −R2)QmRn =
∑

O(ν4m+6n+6)xν . (52)

11. Now let r and s be any two positive odd integers including zero. Then, when r + s is
equal to 2,4,6,8 or 12, there are no values of m and n satisfying the relation

4m+ 6n = r + s− 10

in (41); consequently in these cases

Fr,s(x) = 0. (53)
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When r+ s = 10,m and n must both be zero, and this result does not apply; but it follows
from (41) and (48) that

Fr,s(x) =
∑

O(ν7)xν . (54)

And when r + s ≥ 14 it follows from (52) that

Fr,s(x) =
∑

O(νr+s−4)xν . (55)

Equating the coefficients of xν in both sides in (53), (54) and (55) we obtain

∑

r,s

(n) =
Γ(r + 1)Γ(s+ 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s+ 1)

ζ(r + s+ 2)
σr+s+1(n)

+
ζ(1− r) + ζ(1− s)

r + s
nσr+s−1(n) + Er,s(n), (56)

where

Er,s(n) = 0, r + s = 2, 4, 6, 8, 12;

Er,s(n) = O(n7), r + s = 10;

Er,s(n) = O(nr+s−4), r + s ≥ 14.

Since σr+s+1(n) is of order n
r+s+1, it follows that in all cases

∑

r,s

(n) ∼ Γ(r + 1)Γ(s + 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s+ 1)

ζ(r + s+ 2)
σr+s+1(n). (57)

The following table gives the values of
∑

r,s(n) when r + s = 2, 4, 6, 8, 12.

TABLE IV

1.
∑

1,1(n) =
5σ3(n)−6nσ1(n)

12 .

2.
∑

1,3(n) =
7σ5(n)−10nσ3(n)

80 .
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3.
∑

3,3(n) =
σ7(n)
120 .

4.
∑

1,5(n) =
10σ7(n)−21nσ5(n)

252 .

5.
∑

3,5(n) =
11σ9(n)
5040 .

6.
∑

1,7(n) =
11σ9(n)−30nσ7(n)

480 .

7.
∑

5,7(n) =
σ13(n)
10080 .

8.
∑

3,9(n) =
σ13(n)
2640 .

9.
∑

1,11(n) =
691σ13(n)−2730nσ11(n)

65520 .

12. In this connection it may be interesting to note that

σ1(1)σ3(n) + σ1(3)σ3(n− 1) + σ1(5)σ3(n− 2) + · · ·
+σ1(2n + 1)σ3(0) =

1
240σ5(2n + 1). (58)

This formula may be deduced from the identity

15x

1− x
+

35x2

1− x3
+

55x3

1− x5
+ · · ·

= Q

(

x

1− x
+

3x2

1− x3
+

5x3

1− x5
+ · · ·

)

, (59)

which can be proved by means of the theory of elliptic functions or by elementary methods.

13. More precise results concerning the order of Er,s(n) can be deduced from the theory
of elliptic functions. Let

x = q2.

Then we have

Q = φ8(q){1 − (kk′)2}
R = φ12(q)(k′2 − k2){1 + 1

2 (kk
′)2}

= φ12(q){1 + 1
2(kk

′)2}
√

{1− (2kk′)2}















, (60)

where φ(q) = 1 + 2q + 2q4 + 2q9 + · · ·
But, if

f(q) = q
1

24 (1− q)(1− q2)(1− q3) · · · ,
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then we know that

2
1

6 f(q) = k
1

12 k′
1

3φ(q)

2
1

6 f(−q) = (kk′)
1

12φ(q)

2
1

3 f(q2) = (kk′)
1

6φ(q)

2
2

3 f(q4) = k
1

3 k′
1

12φ(q)































(61)

It follows from (41), (60) and (61) that, if r + s is of the form 4m + 2, but not equal to 2
or to 6, then

Fr,s(q
2) =

f4(r+s−4)(−q)

f2(r+s−10)(q2)

1

4
(r+s−6)
∑

1

Kn
f24n(q2)

f24n(−q)
, (62)

and if r + s is of the form 4m, but not equal to 4, 8 or 12, then

Fr,s(q
2) =

f4(r+s−6)(−q)

f2(r+s−10)(q2)
{f8(q)− 16f8(q4)}

1

4
(r+s−8)
∑

1

Kn
f24n(q2)

f24n(−q)
, (63)

when Kn depends on r and s only. Hence it is easy to see that in all cases Fr,s(q
2) can be

expressed as

∑

Ka,b,c,d,e,h,k{f3(−q)}a
{

f5(−q)

f2(q2)

}b {
f5(q2)

f2(−q)

}c{
f5(q)

f2(q2)
f3(q)

}d

×
{

f5(q4)

f2(q2)
f3(q4)

}e

fh(−q)fk(q2), (64)

where a, b, c, d, e, h, k are zero or positive integers such that

a+ b+ c+ 2(d+ e) = [23 (r + s+ 2)],

h+ k = 2(r + s+ 2)− 3[23 (r + s+ 2)],

and [x] denotes as usual the greatest integer in x. But

f(q) = q
1
2

24 − q
5
2

24 − q
7
2

24 + q
11

2

24 + · · ·

f3(q) = q
1
2

8 − 3q
3
2

8 + 5q
5
2

8 − 7q
7
2

8 + · · ·
f5(q)
f2(q2) = q

1
2

24 − 5q
5
2

24 + 7q
7
2

24 − 11q
11

2

24 + · · ·

f5(q2)
f2(−q) = q

1
2

3 − 2q
2
2

3 + 4q
4
2

3 − 5q
5
2

3 + · · ·







































, (65)
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where 1, 2, 4, 5, · · · are the natural numbers without the multiples of 3, and 1, 5, 7, 11, · · ·
are the natural odd numbers without the multiples of 3.

Hence it is easy to see that

n− 1

2
(a+b+c)−d−eEr,s(n)

is not of higher order than the coefficient of q2n in

φa(q
1

8 )φb(q
1

24 )φc(q
1

3 ){φ(q 1

24 )φ(q
1

8 )}d{φ(q 2

3 )φ(q
1

2 )}eφh(q
1

24 )φk(q
1

12 ),

or the coefficient of q48n in

φa+d(q3)φb+d+h(q)φc(q8)φe(q16)φe(q12)φk(q2).

But the coefficient of qν in φ2(q2) cannot exceed that of qν in φ2(q), since

φ2(q) + φ2(−q) = 2φ2(q2); (66)

and it is evident that the coefficient of qν in φ(q4λ) cannot exceed that of qν in φ(qλ). Hence
it follows that

n− 1

2
[ 2
3
(r+s+2)]Er,s(n)

is not of higher order than the coefficient of q48n in

φA(q)φB(q3)φC(q2),

where A,B,C are zero or positive integers such that

A+B + C = 2(r + s+ 2)− 2[23 (r + s+ 2)],

and C is 0 or 1.

Now, if r + s ≥ 14, we have

A+B + C ≥ 12,

and so

A+B ≥ 11.

Therefore one at least of A and B is greater than 5. But

φ6(q) =

∞
∑

0

O(ν2)qν .∗ (67)

Hence it is easily deduced that

φA(q)φB(q3)φC(q2) =
∑

O{ν 1

2
(A+B+C)−1}qν . (68)

∗See §§24–25.
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It follows that

Er,s(n) = O{nr+s− 1

2
[ 2
3
(r+s−1)]}, (69)

If r + s ≥ 14. We have already shewn in § 11 that, if r + s = 10, then

Er,s(n) = O(n7). (70)

This agrees with (69). Thus we see that in all cases

Er,s(n) = O{n 2

3
(r+s+1)}; (71)

and that, if r + s is of the form 6m, then

Er,s(n) = O{n 2

3
(r+s+ 3

4
)}, (72)

and if of the form 6m+ 4, then

Er,s(n) = O{n 2

3
(r+s+ 1

2
)}. (73)

14. I shall now prove that the order of Er,s(n) is not less than that of n
1

2
(r+s). In order to

prove this result I shall follow the method used by Messrs Hardy and Littlewood in their
paper “Some problems of Diophantine approximation” (II) ∗.

Let

q = eπiτ , q′ = eπiT ,

where

T =
c+ dτ

a+ bτ
,

and

ad− bc = 1.

Also let

V =
v

a+ bτ
.

Then we have

ω
√
veπibvV ϑ1(v, τ) =

√
V ϑ1(V, T ), (74)

where ω is an eighth root of unity and

ϑ1(v, τ) = 2 sinπv · q 1

4Π∞
1 (1− q2n)(1− 2q2n cos 2πv + q4n). (75)

∗
Acta Mathematica, Vol. XXXVII, pp. 193 – 238.
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From (75) we have

log ϑ1(v, τ) = log(2, sin πv) + 1
4 log q −

∞
∑

1

q2n(1 + 2 cos 2nπv)

n(1− q2n)
. (76)

It follows from (74) and (76) that

log sinπv + 1
2 log v +

1
4 log q + logω −

∞
∑

1

q2n(1 + 2 cos 2nπv)

n(1− q2n)

= log sinπV + 1
2 log V + 1

4 log q
′ − πibvV −

∞
∑

1

q
′2n(1 + 2 cos 2nπV )

n(1− q′2n)
. (77)

Equating the coefficients of v8+1 on the two sides of (77), we obtain

(a+ bτ)s+1

{

1
2ζ(−s) +

1sq2

1− q2
+

2sq4

1− q4
+

3sq6

1− q6
+ · · ·

}

= 1
2ζ(−s) +

1sq′2

1− q′2
+

2sq′4

1− q′4
+

3sq′6

1− q′6
+ · · · , (78)

provided that s is an odd integer greater than 1. If, in particular,we put s = 3 and s = 5
in (78) we obtain

(a+ bτ)4
{

1 + 240

(

13q2

1− q2
+

23q4

1− q4
+

33q6

1− q6
+ · · ·

)}

=

{

1 + 240

(

13q′2

1− q′2
+

23q′4

1− q′4
+

33q′6

1− q′6
+ · · ·

)}

, (79)

and

(a+ bτ)6
{

1− 504

(

15q2

1− q2
+

25q4

1− q4
+

35q6

1− q6
+ · · ·

)}

=

{

1− 504

(

15q′2

1− q′2
+

25q′4

1− q′4
+

35q′6

1− q′6
+ · · ·

)}

. (80)

It follows from (38), (79) and (80) that

(a+ bτ)r+s+2Fr,s(q
2) = Fr,s(q

′2). (81)

It can easily be seen from (56) and (37) that

Fr,s(x) =

∞
∑

1

Er,s(n)x
n. (82)
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Hence

(a+ bτ)r+s+2
∞
∑

1

Er,s(n)q
2n =

∞
∑

1

Er,s(n)q
′2n. (83)

It is important to observe that

Er,s(1) =
ζ(−r) + ζ(−s)

2
− ζ(1− r) + ζ(1− s)

r + s

−Γ(r + 1)Γ(s + 1)

Γ(r + s+ 2)

ζ(r + 1)ζ(s+ 1)

ζ(r + s+ 2)
6= 0, (84)

if r+ s is not equal to 2,4,6,8 or 12. This is easily proved by the help of the equation (39).

15. Now let
τ = u+ iy, t = e−πy(u > 0, y > 0, 0 < t < 1),

so that
q = eπiu−πy = teπiu;

and let us suppose that pn/qn is a convergent to

u =
1

a1 +

1

a2 +

1

a3 + · · · ,

so that
ηn = pn−1qn − pnqn−1 = ±1.

Further, let us suppose that
a = pn, b = −qn,

c = ηnpn−1, d = −ηnqn−1,

so that
ad− bc = η2n = 1.

Furthermore, let
y = 1/(qnq

′
n+1),

where
q′n+1 = a′n+1qn + qn−1,

and a′n+1 is the complete quotient corresponding to an+1.
Then we have

|a+ bτ | = |pn − qnu− iqny| =
| ± 1− i|
q′n+1

=

√
2

q′n+1

, (85)

and
|q′| = e−πλ,
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where

λ = I(T ) = I

(

c+ dτ

a+ bτ

)

+ I

{

d

b
− 1

b(a+ bτ)

}

=
y

(1/q′n+1)
2 + qn2y2

=
q′n+1

2qn
, (86)

and I(T ) is the imaginary part of T . It follows from (83), (85) and (86) that

|
∞
∑

1

Er,s(n)q
2n| =

(

q′n+1√
2

)r+s+2

|
∞
∑

1

Er,s(n)q
′2n|

≥
(

q′n+1√
2

)r+s+2

{|Er,s(1)|e−2πλ − |Er,s(2)e
−4πλ − |Er,s(3)|e−6πλ − · · ·}. (87)

We can choose a number λ0, depending only on r and s, such that

|Er,s(1)|e−2πλ > 2{|Er,s(2)|e−4πλ + |Er,s(3)|e−6πλ + · · ·}

for λ ≥ λ0. Let us suppose λ0 > 10. Let us also suppose that the continued fraction for u
satisfies the condition

4λ0qn > q′n+1 > 2λ0qn (88)

for an infinity of values of n. Then

∣

∣

∣

∣

∣

∞
∑

1

Er,s(n)q
2n

∣

∣

∣

∣

∣

≥ 1
2 |Er,s(1)|

(

q′n+1√
2

)r+s+2

e−4πλ0 > K(q′n+1)
r+s+2, (89)

where K depends on r and s only. Also

qnq
′
n+1 = 1/y,

q′n+1 >
1√
y
=

√

{

π

log(1/t)

}

>
K

√

(1− t)
.

It follows that, if u is an irrational number such that the condition (88) is satisfied for an
infinity of values of n, then

∣

∣

∣

∣

∣

∞
∑

1

Er,s(n)q
2n

∣

∣

∣

∣

∣

> K(1− t)−
1

2
(r+s+2) (90)

for an infinity of values of t tending to unity. But if we had

Er,s(n) = o{n 1

2
(r+s)}
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then we should have

|
∞
∑

1

Er,s(n)q
2n| = o{(1 − t)−

1

2
(r+s+2)},

which contradicts (90). It follows that the error term in
∑

r,s(n) is not of the form

o{n 1

2
(r+s)}. (91)

The arithmetical function τ(n).

16. We have seen that
Er,s(n) = 0,

if r + s is equal to 2,4,6,8, or 12. In these cases
∑

r,s(n) has a finite expression in terms of
σr+s+1(n) and σr+s−1(n). In other cases

∑

r,s(n) involves other arithmetical functions as
well. The simplest of these is the function τ(n) defined by

∞
∑

1

τ(n)xn = x{(1− x)(1 − x2)(1− x3) · · ·}24. (92)

These cases arise when r + s has one of the values 10, 14, 16, 18, 20 or 24.
Suppose that r + s has one of these values. Then

1728
∑∞

1 Er,s(n)x
n

(Q3 −R2)Er,s(1)

is, by (41) and (82), equal to the corresponding one of the functions

1, Q,R,Q2, QR,Q2R.

In other words

∞
∑

1

Er,s(n)x
n = Er,s(1)

∞
∑

1

τ(n)xn

{

1 +
2

ζ(11− r − s)

∞
∑

1

nr+s−11 xn

1− xn

}

. (93)

We thus deduce the formulæ

Er,s(n) = Er,s(1)τ(n), (94)

if r + s = 10; and

σr+s−11(0)Er,s(n) = Er,s(1){σr+s−11(0)τ(n)
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+σr+s−11(1)τ(n − 1) + · · ·+ σr+s−11(n− 1)τ(1)}, (95)

if r+ s is equal to 14, 16, 18, 20 or 24. It follows from (94) and (95) that, if r+ s = r′ + s′,
then

Er,s(n)Er′,s′(1) = Er,s(1)Er′,s′(n), (96)

and in general

Er,s(m)Er′,s′(n) = Er,s(n)Er′,s′(m), (97)

when r + s has one of the values in question. The different cases in which r + s has the
same value are therefore not fundamentally distinct.

17. The values of τ(n) may be calculated as follows: differentiating (92) logarithmically
with respect to x, we obtain

∞
∑

1

nτ(n)xn = P

∞
∑

1

τ(n)xn. (98)

Equating the coefficients of xn in both sides in (98),we have

τ(n) =
24

1− n
{σ1(1)τ(n − 1) + σ1(2)τ(n − 2) + · · ·+ σ1(n− 1)τ(1)}. (99)

If, instead of starting with (92), we start with

∞
∑

1

τ(n)xn = x(1− 3x+ 5x3 − 7x6 + · · ·)8,

we can shew that

(n− 1)τ(n)− 3(n − 10)τ(n − 1) + 5(n− 28)τ(n − 3)− 7

(n − 55)τ(n − 6) + · · · to [12{1 +
√

(8n− 7)}] terms = 0, (100)

where the rth term of the sequence 0,1,3,6, . . . is 1
2r(r − 1), and the rth term of the

sequence 1,10,28,55, . . . is 1+ 9
2r(r−1). We thus obtain the values of τ(n) in the following

table.

TABLE V
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n τ(n) n τ(n)

1 +1 16 +987136
2 −24 17 −6905934
3 +252 18 +2727432
4 −1472 19 +10661420
5 +4830 20 −7109760
6 −6048 21 −4219488
7 −16744 22 −12830688
8 +84480 23 +18643272
9 −113643 24 +21288960
10 −115920 25 −25499225
11 +534612 26 +13865712
12 −370944 27 −73279080
13 −577738 28 +24647168
14 +401856 29 +128406630
15 +1217160 30 −29211840

18. Let us consider more particularly the case in which r + s = 10. The order of Er,s(n)
is then the same as that of τ(n). The determination of this order is a problem interesting
in itself. We have proved that Er,s(n), and therefore τ(n), is of the form O(n7) and not of

the form o(n5). There is reason for supposing that τ(n) is of the form O(n
11

2
+ǫ) and not of

the form o(n
11

2 ). For it appears that

∞
∑

1

τ(n)

nt
=

∏

p

1

1− τ(p)p−t + p11−2t
. (101)

This assertion is equivalent to the assertion that, if

n = pa11 pa22 pa33 · · · parr ,

where p1, p2, . . . , pr are the prime divisors of n, then

n− 11

2 τ(n) =
sin(1 + a1)θp1 sin(1 + a2)θp2

sin θp1 sin θp2
· · · sin(1 + ar)θpr

sin θpr
, (102)

where
cos θp =

1
2p

− 11

2 τ(p).

It would follow that, if n and n′ are prime to each other, we must have

τ(nn′) = τ(n)τ(n′). (103)

Let us suppose that (102) is true, and also that (as appears to be highly probable)

{2τ(p)}2 ≤ p11, (104)
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so that θp is real. Then it follows from (102) that

n− 11

2 |τ(n)| ≤ (1 + a1)(1 + a2) · · · (1 + ar),

that is to say

|τ(n)| ≤ n
11

2 d(n), (105)

where d(n) denotes the number of divisors of n.
Now let us suppose that n = pa, so that

n− 11

2 τ(n) =
sin(1 + a)θp

sin θp
.

Then we can choose a as large as we please and such that
∣

∣

∣

∣

sin(1 + a)θp
sin θp

∣

∣

∣

∣

≥ 1.

Hence

|τ(n)| ≥ n
11

2 (106)

for an infinity of values of n.

19. It should be observed that precisely similar questions arise with regard to the arith-
metical function Ψ(n) defined by

∞
∑

0

Ψ(n)xn = fa1(xc1)fa2(xc2) · · · far(xcr), (107)

where
f(x) = x

1

24 (1− x)(1− x2)(1 − x3) · · · ,
the a’s and c’s are integers, the latter being positive,

1
24 (a1c1 − a2c2 + · · ·+ arcr)

is equal to 0 or 1, and

l

(

a1
c1

+
a2
c2

+ · · ·+ ar
cr

)

,

where l is the least common multiple of c1, c2, . . . , cr, is equal to 0 or to a divisor of 24.
The arithmetical functions χ(n), P (n), χ4(n),Ω(n) and Θ(n), studied by Dr. Glaisher in
the Quarterly Journal, Vols. XXXVI-XXXVIII, are of this type. Thus

∞
∑

1

χ(n)xn = f6(x4),



198 Paper 18

∞
∑

1

P (n)xn = f4(x2)f4(x4),

∞
∑

1

χ4(n)x
n = f4(x)f2(x2)f4(x4),

∞
∑

1

Ω(n)xn = f12(x2),

∞
∑

1

Θ(n)xn = f8(x)f8(x2).

20. The results (101) and (104) may be written as

∞
∑

1

Er,s(n)

nt
= Er,s(1)

∏

p

1

1− 2cpp−t + pr+s+1−2t
, (108)

where
c2p ≤ pr+s+1,

and
2cpEr,s(1) = Er,s(p).

It seems probable that the result (108) is true not only for r + s = 10 but also when r + s
is equal to 14, 16, 18, 20 or 24, and that

∣

∣

∣

∣

Er,s(n)

Er,s(1)

∣

∣

∣

∣

≤ n
1

2
(r+s+1)d(n) (109)

for all values of n, and
∣

∣

∣

∣

Er,s(n)

Er,s(1)

∣

∣

∣

∣

≥ n
1

2
(r+s+1) (110)

for an infinity of values of n. If this be so, then

Er,s(n) = O{n 1

2
(r+s+1+ǫ)}, Er,s(n) 6= o{n 1

2
(r+s+1)}. (111)

And it seems very likely that these equations hold generally, whenever r and s are positive
odd integers.

21. It is of some interest to see what confirmation of these conjectures can be found from
a study of the coefficients in the expansion of

x{(1− x24/α)(1− x48/α)(1− x72/α) · · ·}a =

∞
∑

1

Ψα(n)x
n,
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where α is a divisor of 24. When α = 1 and α = 3 we know the actual value of Ψα(n). For
we have

∞
∑

1

Ψ1(n)x
n = x1

2 − x5
2 − x7

2

+ x11
2

+ x13
2 − x17

2 − · · · , (112)

where 1, 5, 7, 11, . . . the natural odd numbers without the multiples of 3; and

∞
∑

1

Ψ3(n)x
n = x1

2 − 3x3
2

+ 5x5
2 − 7x7

2

+ · · · (113)

The corresponding Dirichlet’s series are

∞
∑

1

Ψ1(n)

ns
=

1

(1 + 5−2s)(1 + 7−2s)(1− 11−2s)(1− 13−2s) · · · , (114)

where 5, 7, 11, 13, . . . are the primes greater than 3, those of the form 12n ± 5 having the
plus sign and those of the form 12n ± 1 the minus sign; and

∞
∑

1

Ψ3(n)

ns
=

1

(1 + 31−2s)(1− 51−2s)(1 + 71−2s)(1 + 111−2s) · · · (115)

where 3, 5, 7, 11, . . . are the odd primes, those of the form 4n− 1 having the plus sign and
those of the form 4n+ 1 the minus sign.
It is easy to see that

|Ψ1(n)| ≤ 1, |Ψ3(n)| ≤
√
n (116)

for all values of n, and

|Ψ1(n)| = 1, |Ψ3(n)| =
√
n (117)

for an infinity of values of n.
The next simplest case is that in which α = 2. In this case it appears that

∞
∑

1

Ψ2(n)

ns
= Π1Π2, (118)

where

Π1 =
1

(1 + 5−2s)(1− 7−2s)(1− 11−2s)(1 + 17−2s) · · · ,

5, 7, 11, . . . being the primes of the forms 12n− 1 and 12n± 5, those of the form 12n+ 5
having the plus sign and the rest the minus sign; and

Π2 =
1

(1 + 13−s)2(1− 37−s)2(1− 61−s)2(1 + 73−s)2 · · · ,
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13, 37, 61, . . . being the primes of the form 12n + 1, those of the form m2 + (6n − 3)2

having the plus sign and those of the form m2 + (6n)2 the minus sign.

This is equivalent to the assertion that if

n = (5a5 · 7a7 · 11a11 · 17a17 · · ·)213a13 · 37a37 · 61a61 · 73a73 · · · ,

where ap is zero or a positive integer, then

Ψ2(n) = (−1)a5+a13+a17+a29+a41+···(1 + a13)(1 + a37)(1 + a61) · · · , (119)

where 5, 13, 17, 29, . . . are the primes of the form 4n + 1, excluding those of the form
m2 + (6n)2; and that otherwise

Ψ2(n) = 0. (120)

It follows that

|Ψ2(n)| ≤ d(n) (121)

for all values of n, and

|Ψ2(n)| ≥ 1 (122)

for an infinity of values of n. These results are easily proved to be actually true.

22. I have investigated also the cases in which α has one of the values 4, 6, 8 or 12. Thus
for example, when α = 6, I find

∞
∑

1

Ψ6(n)

ns
= Π1Π2,

∗ (123)

where

Π1 =
1

(1− 32−2s)(1− 72−2s)(1− 112−2s) · · · ,

3, 7, 11, . . . being the primes of the form 4n− 1; and

Π2 =
1

(1− 2c5 · 5−s + 52−2s)(1− 2c13 · 13−s + 132−2s) · · · ,

5, 13, 17, . . . being the primes of the form 4n+1, and cp = u2−(2v)2, where u and v are the
unique pair of positive integers for which p = u2+(2v)2. This is equivalent to the assertion
that if

n = (3a3 · 7a7 · 11a11 · · ·)2 · 5a5 · 13a13 · 17a17 · · · ,
∗Ψ6(n) is Dr. Glaisher’s λ(n).
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then

Ψ6(n)

n
=

sin(1 + a5)θ5
sin θ5

· sin(1 + a13)θ13
sin θ13

· sin(1 + a17)θ17
sin θ17

· · · , (124)

where
tan 1

2θp =
u

2v
(0 < θp < π),

and that otherwise Ψ6(n) = 0. From these results it would follow that

|Ψ6(n)| ≤ nd(n) (125)

for all values of n, and

|Ψ6(n)| ≥ n (126)

for an infinity of values of n. What can actually be proved to be true is that

|Ψ6(n) < 2nd(n)

for all values of n, and
|Ψ6(n)| ≥ n

for an infinity of values of n.

23. In the case in which α = 4 I find that, if

n = (5a5 · 11a11 · 17a17 · · ·)2 · 7a7 · 13a13 · 19a19 · · · ,

where 5, 11, 17, . . . are the primes of the form 6m − 1 and 7, 13, 19, . . . are those of the
form 6m+ 1, then

Ψ4(n)√
n

= (−1)a5+a11+a17+··· sin(1 + a7)θ7
sin θ7

· sin(1 + a13)θ13
sin θ13

· · · , (127)

where

tan θp =
u
√
3

1± 3v
(0 < θp < π),

and u and v are the unique pair of positive integers for which p = 3u2+(1± 3v)2; and that
Ψ4(n) = 0 for other values.
In the case in which α = 8 I find that, if

n = (2a2 · 5a5 · 11a11 · · ·)2 · 7a7 · 13a13 · 19a19 · · · ,

where 2, 5, 11, . . . are the primes of the form 3m − 1 and 7, 13, 19, . . . are those of the
form 6m+ 1, then

Ψ8(n)

n
√
n

= (−1)a2+a5+a11+··· sin 3(1 + a7)θ7
sin 3θ7

· sin 3(1 + a13)θ13
sin 3θ13

· · · , (128)
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where θp is the same as in (127); and that Ψ8(n) = 0 for other values.
The case in which α = 12 will be considered in § 28.
In short, such evidence as I have been able to find, while not conclusive, points to the truth
of the results conjectured in § 18.

24. Analysis similar to that of the preceding sections may be applied to some interesting
arithmetical functions of a different kind. Let

φs(q) = 1 + 2

∞
∑

1

rs(n)q
n, (129)

where
φ(q) = 1 + 2q + 2q4 + 2q9 + · · · ,

so that rs(n) is the number of representations of n as the sum of s squares. Further let

∞
∑

1

δ2(n)q
n = 2

(

q

1− q
− q3

1− q3
+

q5

1− q5
− · · ·

)

= 2

(

q

1 + q2
+

q2

1 + q4
+

q3

1 + q6
+ · · ·

)

; (130)

(2s − 1)Bs

∞
∑

1

δ2s(n)q
n = s

(

1s−1q

1 + q
+

2s−1q2

1− q2
+

3s−1q3

1 + q3
+ · · ·

)

, (131)

when s is a multiple of 4;

(2s − 1)Bs

∞
∑

1

δ2s(n)q
n = s

(

1s−1q

1− q
+

2s−1q2

1 + q2
+

3s−1q3

1− q3
+ · · ·

)

, (132)

when s+ 2 is a multiple of 4;

Es

∞
∑

1

δ2s(n)q
n = 2s

(

1s−1q

1 + q2
+

2s−1q2

1 + q4
+

3s−1q3

1 + q6
+ · · ·

)

+2

(

1s−1q

1− q

3s−1q3

1− q3
+

5s−1q5

1− q5
− · · ·

)

, (133)

when s− 1 is a multiple of 4;

Es

∞
∑

1

δ2s(n)q
n = 2s

(

1s−1q

1 + q2
+

2s−1q2

1 + q4
+

3s−1q3

1 + q6
+ · · ·

)

−2

(

1s−1q

1− q
− 3s−1q3

1− q3
+

5s−1q5

1− q5
− · · ·

)

, (134)
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when s+ 1 is a multiple of 4. In these formulæ

B2 =
1
6 , B4 =

1
30 , B6 =

1
42 , B8 =

1
30 , B10 = 5

66 , . . .

are Bernoulli’s numbers, and

E1 = 1, E3 = 1, E5 = 5, E7 = 61, E9 = 1385, . . .

are Euler’s numbers. Then δ2s(n) is in all cases an arithmetical function depending on the
real divisors of n; thus, for example, when s+ 2 is a multiple of 4, we have

(2s − 1)Bsδ2s(n) = s{σs−1(n)− 2sσs−1(
1
4n)}, (135)

where σs(x) should be considered as equal to zero if x is not an integer.

Now let

r2s(n) = δ2s(n) + e2s(n). (136)

Then I can prove (see § 26) that

e2s(n) = 0 (137)

if s = 1, 2, 3, 4 and that

e2s(n) = O(ns−1− 1

2
[ 2
3
s]+ǫ) (138)

for all positive integral values of s. But it is easy to see that, if s ≥ 3, then

Hns−1 < δ2s(n) < Kns−1, (139)

where H and K are positive constants. It follows that

r2s(n) ∼ δ2s(n) (140)

for all positive integral values of s.
It appears probable, from the empirical results I obtain at the end of this paper, that

e2s(n) = O{n 1

2
(s−1)+ǫ} (141)

for all positive integral values of s; and that

e2s(n) 6= o{n 1

2
(s−1)} (142)

if s ≥ 5. But all that I can actually prove is that

e2s(n) = O(ns−1− 1

2
[ 2
3
s]) (143)
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if s ≥ 9 and that

e2s(n) 6= o(n
1

2
s−1) (144)

if s ≥ 5.

25. Let

f2s(q) =
∞
∑

1

e2s(n)q
n =

∞
∑

1

{r2s(n)− δ2s(n)}qn. (145)

Then it can be shewn by the theory of elliptic functions that

f2s(q) = φ2s(q)
∑

1≤n≤
1
4 (s−1)

Kn(kk
′)2n, (146)

that is to say that

f2s(q) =
f4s(−q)

f2s(q2)

∑

1≤n≤
1
4 (s−1)

Kn
f24n(q2)

f24n(−q)
, (147)

where φ(q) and f(q) are the same as in § 13. We thus obtain the results contained in the
following table.

TABLE VI

1. f2(q) = 0, f4(q) = 0, f6(q) = 0, f8(q) = 0.

2. 5f10(q) = 16f14(q2)
f4(−q)

, f12(q) = 8f12(q2).

3. 61f14(q) = 728f4(−q)f10(q2), 17f16(q) = 256f8(−q)f8(q2).

4. 1385f18(q) = 24416f12(−q)f6(q2)− 256 f30(q2)
f12(−q) .

5. 31f20(q) = 616f16(−q)f4(q2)− 128f28(q2)
f8(−q)

.

6. 50521f22(q) = 1103272f20(−q)f2(q2)− 821888f26(q2)
f4(−q) .

7. 691f24(q) = 16576f24(−q)− 32768f24(q2).
It follows from the last formula of Table VI that

691
64 e24(n) = (−1)n−1259τ(n) − 512τ(12n), (148)

where τ(n) is the same as in § 16, and τ(x) should be considered as equal to zero if x is
not an integer.
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Results equivalent to 1,2,3,4 of Table VI were given by Dr. Glaisher in the Quarterly

Journal, Vol. XXXVIII. The arithmetical functions called by him

χ4(n), Ω(n), W (n), Θ(n), U(n)

are the coefficients of qn in

f14(q2)

f4(−q)
, f12(q2), f4(−q)f10(q2), f8(q)f8(q2), f12(−q)f6(q2).

He gave reduction formulæ for these functions and observed how the functions which I call
e10(n), e12(n) and e16(n) can be defined by means of the complex divisors of n. It is very
likely that τ(n) is also capable of such a definition.

26. Now let us consider the order of e2s(n). It is easy to see from (147) that f2s(q) can be
expressed in the form

∑

Ka,b,c,h,k{f3(−q)}a
{

f5(−q)

f2(q2)

}b {
f5(q2)

f2(−q)

}c

fh(−q)fk(q2), (149)

where a, b, c, h, k are zero or positive integers, such that

a+ b+ c = [23s], h+ k = 2s− 3[23s].

Proceeding as in § 13 we can easily shew that

n− 1

2
[ 2
3
s]e2s(n)

cannot be of higher order than the coefficient of q24n in

φA(q)φB(q3)φC(q2), (150)

where C is 0 or 1 and

A+B + C = 2s − 2[23s].

Now, if s ≥ 5, A+B +C ≥ 4; and so A+B ≥ 3. Hence one at least of A and B is greater
than 1. But we know that

φ2(q) =
∑

O(νǫ)qν .

It follows that the coefficient of q24n in (150) is of order not exceeding

n
1

2
(A+B+C)−1+ǫ.

Thus

e2s(n) = O(ns−1− 1

2
[ 2
3
s]+ǫ) (151)
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for all positive integral values of s.

27. When s ≥ 9 we can obtain a slightly more precise result.
If s ≥ 16 we have A+ B + C ≥ 12; and so A+ B ≥ 11. Hence one at least of A and B is
greater than 5. But

φ6(q) =
∑

O(ν2)qν .

It follows that the coefficient of q24n in (150) is of order not exceeding

n
1

2
(A+B+C)−1,

or that

e2s(n) = O(ns−1− 1

2
[ 2
3
s]), (152)

if s ≥ 16. We can easily shew that (152) is true when 9 ≤ s ≤ 16 considering all the cases
separately, using the identities.

f12(−q)f6(q2) = {f3(−q)}4, {f3(q2)}2,

f30(q2)

f12(−q)
=

{

f5(q2)

f2(−q)

}6

,

f16(−q)f4(q2) =

{

f5(−q)

f2(q2)

}4{
f5(q2)

f2(−q)

}2

f2(q2),

f28(q2)

f8(−q)
=

{

f5(q2)

f2(−q)

}4

{f3(q2)}2f2(q2), · · · ,

and proceeding as in the previous two sections.
The argument of §§ 14-15 may also be applied to the function e2s(n). We find that

e2s(n) 6= o(n
1

2
s−1). (153)

I leave the proof to the reader.

28. There is reason to suppose that

e2s(n) = O{n 1

2
(s−1+ǫ)}

e2s(n) 6= o{n 1

2
(s−1)}







, (154)

if s ≥ 5. I find, for example, that

∞
∑

1

e10(n)

ns
=

e10(1)

1 + 22−s
Π1Π2, (155)
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where

Π1 =
1

(1− 34−2s)(1− 74−2s)(1− 114−2s) · · · ,

3, 7, 11, . . . being the primes of the form 4n− 1, and

Π2 =
1

(1− 2c5 · 5−s + 54−2s)(1− 2c13 · 13−s + 134−2s) · · · ,

5, 13, 17, . . . being the primes of the form 4n + 1, and

cp = u2 − (4v)2,

where u and v are the unique pair of positive integers satisfying the equation

u2 + (4v)2 = p2.

The equation (155) is equivalent to the assertion that, if

n = (3a3 · 7a7 · 11a11 · · ·)2 · 2a2 · 5a5 · 13a13 · · · ,

where ap is zero or a positive integer, then

e10(n)

n2e10(1)
= (−1)a2

sin 4(1 + a5)θ5
sin 4θ5

· sin 4(1 + a13)θ13
sin 4θ13

· · · , (156)

where
tan θp =

u

v
(0 < θp <

1
2π),

u and v being integers satisfying the equation u2 + v2 = p; and e10(n) = 0 otherwise. If
this is true then we should have

∣

∣

∣

∣

e10(n)

e10(1)

∣

∣

∣

∣

≤ n2d(n) (157)

for all values of n, and
∣

∣

∣

∣

e10(n)

e10(1)

∣

∣

∣

∣

≥ n2 (158)

for an infinity of values of n. In this case we can prove that, if n is the square of a prime
of the form 4m− 1, then

∣

∣

∣

∣

e10(n)

e10(1)

∣

∣

∣

∣

= n2.

Similarly I find that

∞
∑

1

e12(n)

ns
= e12(1)

∏

p

(

1

1 + 2cp · p−s + p5−2s

)

, (159)
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p being an odd prime and c2p ≤ p5. From this it would follow that

∣

∣

∣

∣

e12(n)

e12(1)

∣

∣

∣

∣

≤ n
5

2 d(n) (160)

for all values of n, and

∣

∣

∣

∣

e12(n)

e12(1)

∣

∣

∣

∣

≥ n
5

2 (161)

for an infinity of values of n.
Finally I find that

∞
∑

1

e16(n)

ns
=

e16(1)

1 + 23−s

∏

p

(

1

1 + 2cp · p−s + p7−2s

)

, (162)

p being an odd prime and c2p ≤ p7. From this it would follow that

∣

∣

∣

∣

e16(n)

e16(1)

∣

∣

∣

∣

≤ n
7

2 d(n) (163)

for all values of n, and

∣

∣

∣

∣

e16(n)

e16(1)

∣

∣

∣

∣

≥ n
7

2 (164)

for an infinity of values of n.
In the case in which 2s = 24 we have

691
64 e24(n) = (−1)n−1259τ(n) − 512τ(12n).

I have already stated the reasons for supposing that

|τ(n)| ≤ n
11

2 d(n)

for all values of n, and

|τ(n)| ≥ n
11

2

for an infinity of values of n.


