On certain arithmetical functions
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1. Let o4(n) denote the sum of the sth powers of the divisors of n (including 1 and n), and
let

Js(o) = %C(_8)7
where ((s) is the Riemann Zeta-function. Further let
Z(n) = 0,(0)os(n) + o,.(1)os(n — 1) + -+ + o,.(n)os(0). (1)

In this paper I prove that

_ T+ )I(s + 1) {(r + 1¢(s + 1)
;(n) T TTrrs+2) (rrsvy el
—I—C(l —r)+((1— S)nar—i—S—l(n) + O{ng(r+s+1)}7 @

r—+s

whenever r and s are positive odd integers. I also prove that there is no error term on the
right-hand side of (2) in the following nine cases: r = 1,s = 1;r = 1,5 = 3;r = 1,5 =
S5r=1s="7r=1s=11,r=3,s =3;r=3,s =5;r=3,,s = 9;r =5,s = 7. That
is to say >, ((n) has a finite expression in terms of o,45+1(n) and o,45-1(n) in these nine
cases; but for other values of r and s it involves other arithmetical functions as well.

It appears probable, from the empirical results I obtain in §§ 18-23, that the error term on
the right-hand side of (2) is of the form

O{n%(r—l—s—l—l-l-E)}’ (3)
where € is any positive number, and not of the form
O{n%(r-i-s-i-l)}' (4)
But all T can prove rigorously is (i) that the error is of the form
O{ng(r+s+1)}
in all cases, (ii) that it is of the form
Ofn3+s+i) (5)
if 7 + s is of the form 6m, (iii) that it is of the form

O{Tl%(r+s+%)} (6)
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if r 4+ s is of the form 6m + 4, and (iv) that it is not of the form
o{n%(ﬂ's)}. (7)

It follows from (2) that, if » and s are positive odd integers, then

Z(”) N Pr+Dl(s+1){(r+1)¢((s+1)

Lir+s+2)  ((r+s+2) Ortst1(n). (8)

r,s

It seems very likely that (8) is true for all positive values of r and s, but this I am at present
unable to prove.

2. 1t >, ((n)/or4+s11(n) tends to a limit, then the limit must be

Lir+1D)0(s+1){(r+1)((s+1)
M'r+s+2) Cr+s+2)

For then

D () BN SANCIE SNCIRIRE D )

n—00 Oy y541(n) n—=00 Oy s11(1) + Orpst1(2) + - + orpsta(n)
. ZT’,S(O) + Zr,s(l):p + Zr,s(2)x2 T+
= lim 3
21074 511(0) + 0y st1(1)2 + 0y s11(2)2 + - -
. SpSs
= lim ,
=1 Sp1s11

where

Now it is known that, if » > 0, then

L(r+1)C¢(r+1)
(1 _ x)r—i—l ?

as x — 1 *. Hence we obtain the result stated.

3. It is easy to see that

or(1) +0,.(2) +0,(3)+ -+ 0.(n)
=up +uUg +uz+ug+ -+ Uy,

*Knopp, Dissertation (Berlin, 1907), p.34.
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where
nir
u=1"4+2"+3"+ - + [?] :
From this it is easy to deduce that
r+1
or(1)+0,.(2)+ -+ 0p(n) ~ 74+1§(7‘—|—1) * (11)

and

T(r+1I(s+1)
I'(r+s+2)

or(1)(n = 1) +0,.(2)(n —2)° + -+ op(n —1)1% ~ Clr + D)nr+stL,

provided r > 0,s > 0. Now

os(n) >n’,

and
os(n) <n®(17°4+27°+37°+---) =n°C(s).

From these inequalities and (1) it follows that

n
h_mZT,s( ) > P(T + 1)F(S + 1)
nrtstl L(r+s+2)

C(r+1), (12)

if r >0 and s > 0; and

> rs(n) - D(r+1I(s+1)

=
T = L(r+s+2)

C(r+1)¢(s), (13)

if r>0and s > 1. Thus n=""57! Zn s(n) oscillates between limits included in the interval

T(r+1)I(s+1)
I'(r+s+2)

T(r+ 1)I(s +1)
I(r+s+2)

¢(r+1), C(r+1)¢(s).

On the other hand n~" %15, ¢, 1(n) oscillates between 1 and ((r + s+ 1), assuming values
as near as we please to either of these limits. The formula (8) shews that the actual limits
of indetermination of n="=5~! > ps(n) are

Lir+D0(s+1){(r+1){(s+1)

I(r+s+2) C(r+s+2) ’

Fr+1)T(s+ 1) C(r+1)¢{(s+1)¢(r+s+1)
I'(r+s+2) C(r+s+2)

. (14)

Naturally

Cr+1C(s+1) Cr+1){(s+1){(r+s+1)

Cr+1) < (r+s+2) C(r+s+2)

<C(r+1)¢(s) T

*(10) follows from this as an immediate corollary.
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What is remarkable about the formula (8) is that it shews the asymptotic equality of two

functions neither of which itself increases in a regular manner.
4. It is easy to see that, if n is a positive integer, then
cot 20sinnd =1+ 2cos 6 +2cos20 + - - - + 2 cos(n — 1) + cosnf.

Suppose now that

1—z 1— 22 1— a3

= (%cot%9)2+Co+ClcOSH+Cgcos29+Cgcos36+"',

1 1 rsinf  x%sin20 23 sin 36 2
Zcot§9+ 4.

where C), is independent of . Then we have

3
T T
C, = 1
0 2(1 1—9c2+1—g;3Jr )
- - o 2+ o 2+
1-— 1 — 22 1—23
= 3 A
-2 1 —z)?2  (1—-22)2 (1—a3)2
o T n 33 n
21— 1—3;2 1— a3 '
Again
) " xn—i—l $n+2 $n+3
Cn = 21 _gn 1—3:"+1+1—:E"+2+1—3:"+3+
T xn—l—l 332 xn+2 333 xn+3
+ l—a:'l—a:"+1+1—a:2'1—x"+2+1—x3'1—w"+3+
i T wn—l N 1'2 wn—2 N N wn—l T
2ll—2 1—2an ! 1—22 1—gn2 1—an1 1 -z
Hence
C T :L,n-i-l 332 $n+2
—(1—-2") = 3+ - - )+ 5 — 5 )+
" 1—-2z 1—znt 1—=z 1 —gnt

S P L
2 l—2z 1—gn! 1—22 1—an2

TFor example when r = 1 and s = 9 this inequality becomes 1.64493 ... < 1.64616... < 1.64697 ...

1.64823 .. ..

(15)
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That is to say

Cp= . (16)

It follows that

1 1 rsin®  x?sin260 23 sin 36 2
7 cot 56 + 5 -
1—2z 1—=x 1—=x
= (L cot ;9)2+ x cos 6 N 22 cos 20 N 3 cos 30
=\ 2 (1_33)2 (1_332)2 (1—%3)2
212 33
+%{%(1—0089)+1_—3;3;2(1—(30829)4-1_—3;3:3(1—(30839)4-...}. (17)

Similarly, using the equation

cot? $0(1 — cosnb) =
(2n—1)4+4(n—1)cos@ +4(n —2)cos20 + - -+ 4cos(n — 1)0 4 cosnb,

we can shew that

Leot? 104 L 4 —% (1 cosd) + —25(1 - cos260)+
SCO 2 15 1—= COS 1—:1;‘2 COS

33:.3 2 )
7 _x3(1—cos39)+---} = (%co‘c2 %9—1—%)
13z 93 1.2 33,3
+5 {1_3:(5—1—0059)4- 1_$2(5+C0829)—|— m(5+00539)+...}‘ (18)

For example, putting 6§ = %71 and 0 = %71 in (17), we obtain

l+a:_x2+a:4_x5+2
61—z 1—22 1—2% 1—2a°

2 4 5
1 1 T 2x 4x 5%4
-1 41 19
36+3<1—x+1—x2+1—w4+1—x5+ )’ (19)
where 1,2,4,5, ... are the natural numbers without the multiples of 3; and

l+a:_x3+a:5_x7+2
41—z 1—23 1—25 1—2af
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2 3 5

1,1 x 2x 3x 5%4

_16+2(1—x+1—x2+1—x3+1—x5+ )’ (20)
where 1,2,3,5,... are the natural numbers without the multiples of 4.
5. It follows from (18) that

162, 6', 6 ?
Gﬁ+§%‘z%+a&‘”>
1 1 L [ 0? 64 6%

where S, is the same as in (9). Equating the coefficients of ™ in both sides in (21), we
obtain

1;7(1n_+2)1()7;n++5)2) Sts = <Z> e <Z> S5En-st

n n
<6> S7Sp_5+ -+ <n B 2) Sn—-153, (22)

()=

if n is an even integer greater than 2.
Let us now suppose that

where

m=0o0 N=00

D, (x) = Z Z m'nzx™", (23)

m=1 n=1

so that
q)r,s($) (I)s,r($)7
and
1% 25 12 3523 1
Po.5(z) e g R g S M (24)
By 4(z) 1%z n 2512 3523 n
T =
b (1—2)2 " (1-22)2 " (1-a8)
Further let
T 212 33
P = —-245,=1—-24 cee ) ¥
51 (1—l’+1—$2+1—l’3+ > ’
13 23 2 33 3
Q = 24083=1+240( —— + =~ T4, (25)
1l—2 1—22 1—23

15z 20 1.2 3023
R = —54055_1—504<1_x+1_x2+1_x3+...>
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The putting n = 4,6,8, ... in (22) we obtain the results contained in the following table.

TABLE 1

1-— 24@0’1(JE

1+ 2409 3(x)

1-— 504(1)075(:@ =
()

=P

1-— 264(1)079 (:E) =
691 + 655209 11 (7) = 441Q% + 250R2.
1-— 24{)0’13(3;‘) = Q2R
3617 + 1632090 15(z) = 1617Q* + 2000Q R?.
9. 43867 — 28728® 17(x) = 38367Q> R + 5500R>.
10. 174611 + 1320090 19 () = 53361Q° + 121250Q% R?.
11. 77683 — 552 21 (z) = 57183Q* R + 20500Q k3.
12. 236364091 + 1310409 23 () = 49679091Q° + 176400000Q3 R?
+10285000R*.
13. 657931 — 249 o5(x) = 392931Q° R + 265000Q% R3.
14. 3392780147 + 6960P0 o7 () = 489693897Q" + 2507636250Q" R?
+395450000Q R*.
15. 1723168255201 — 171864 29 () = 815806500201Q° R
+881340705000Q3 R? + 26021050000R° .
16. 7709321041217 + 32640®¢ 31 (z) = 764412173217Q)8
+5323905468000Q° R? + 1621003400000Q2 R*.
In general

X NSO W

1(=s) + ®os(2) = > KmnQMR",

(26)

where K, ,, is a constant and m and n are positive integers (including zero) satisfying the

equation
4m +6n=s+ 1.

This is easily proved by induction, using (22).

“If & = ¢2, then in the notation of elliptic functions

12nw 2K\’ (3E
= = (=) (= +k2-2
roo () (Reey)
4 4
Q = 2v :<%> (1— K+ kY,
™ s

76 2

6 6
R — 2Ogw :<%> (14 k) (1 — 2K2)(1 — 142).
Vs
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6. Again from (17) we have

1 6 g 5 2
<29+ —S1 — !53—1—555—"')

1 e o4 0
= —+5 - 5(131,2(96) + —(131,4(95) — —(1)176(33) +

462
62 04 66
< S3 — 55 + = 57 — >

Equating the coefficients of " in both sides in (27) we obtain

72(71 ) Sn+1 — (I)l,n(x) = <1>515n_1 + <3>S3Sn—3+

<Z> SSSn—5 +---+ <’I’L,’z 1> Sn—lsla

if n is a positive even integer. From this we deduce the results contained in Table II.

TABLE 11

Q — P2,
Q- R.

1

2 720(1)174(1%)
3. 1008® ¢(z) = Q? — PR.

4. 7209, 5(z) = Q(PQ — R).

5. 1584®1 19(7) = 3Q> + 2R? — 5PQR.
6. 6552091 12(z) = P(441Q° + 250R?) — 691Q*R
7. 1449, 14( ) =Q(3Q3 + 4R? — TPQR).
n

In general

q>ls ZKlmnPlQmRn

where | < 2 and 2] + 4m + 6n = s+ 2. This is easily proved by induction, using (28).

7. We have
x% = — 24 (z) = P21; @
Cfg = 240Py4(x) = PQ; 4
x% =— 504P;4(x) = PR%_@

Suppose now that r < s and that r + s is even. Then

D, (x) = (:c%y Do,s—r(z),

(28)

(29)

(30)

(31)
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and ®g s, (z) is a polynomial in @ and R. Also
dP dQ dR

Y Cde U

are polynomials in P, and R. Hence ®, s(x) is a polynomial in P, and R. Thus we
deduce the results contained in Table III.

TABLE III
1. 1728®y3(z) = PQ — 2R — P3.
2. 1728®y5(x) = —2PR+ Q2.
3. 172897 (x) = 2PQ2 P?R - QR.
4. 8640®y9(x) = 9IP2Q? — 18PQR + 5Q3 + 4R2.
5. 1728®9;(z) = 6PQ3 — 5P2QR + 4PR2 — 5Q*R.
6. 691293 4(z) = 6P?Q — 8PR + 3Q* —
7. 3456®36(z) = P3Q — 3P2R + 3PQ? — QR.
8.  5184d34(x) = 6P2Q? — 2P3R — 6PQR + Q> + R2.
9.

20736, 5(7) = 15PQ? — 20P?R + 10P3Q — 4QR — P°.
10. 4147284 7(x) = T(P4Q — 4P3R + 6 P2Q* — 4PQR) + 3Q3 + 4R
In general

) =) KimaP'Q"R", (32)
where [ — 1 does not exceed the smaller of » and s and
20+4m +6n=7r+s+ 1.

The results contained in these three tables are of course really results in the theory of
elliptic functions. For example Q and R are substantially the invariants g and g3, and the
formulee of Table I are equivalent to the formulse which express the coefficients in the series
1 gu® | gau'  g3u®  3gagsu®

220 T T1200 660

in terms of go and g3. The elementary proof of these formulae given in the preceding sections
seems to be of some interest in itself.

p(u) =

8. In what follows we shall require to know the form of ®; ¢(x) more precisely than is
shewn by the formula (29).
We have

1(=8) + ®os(2) = > KmnQ™R", (33)
where s is an odd integer greater than 1 and 4m + 6n = s+ 1. Also

x%(QmRn) = (5 +3) PQ R — (FQ" R+ 2Q R (34)
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Differentiating (33) and using (34) we obtain

P 41(2) = 5(s + 1) P{3¢(—5) + P s(2)} + Z K nQMR",

(35)

where s is an odd integer greater than 1 and 4m + 6n = s + 3. But when s = 1 we have

Q- P?
®12(7) = —5eg—

9. Suppose now that

Fns(x) = {%C(_T) + CI)om(x)}{%C(—s) + (I)O,S(x)}
A =r)+¢1 - S)(p () — Fr+1)IT(s+1)¢(r+1){(s+1)
Lrts L(r+s+2) C(r+s+2)

r+s
x{%{(—r —S—= 1) + q>0,r+s+1(x)}'

Then it follows from (33), (35) and (36) that, if 7 and s are positive odd integers,

Fr,s(x) = Z Km,anRna

where
dm+6n=r+s+ 2.

But it is easy to see, from the functional equation satisfied by ((s), viz.
(2m)°T(s)¢(s) cos 3ms = 3((1 — s),
that
F, s(0) = 0.
Hence Q3 — R? is a factor of the right-hand side in (38), that is to say
Frs(@) = (@ = R*)Y_ KmnQ™R",

where
dm +6n =1r+ s — 10.

10. It is easy to deduce from (30) that

d
—log(Q* — R?) = P.
:de 0g(Q” — R?)

But it is obvious that

P= % log[z{(1 — 2)(1 —2?)(1 —a®) - - }*;

(36)

(39)

(40)

(41)

(42)

(43)
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Q® — R* = 1728z{(1 — x)(1 — ?)(1 — %) - -}, (44)
But it is known that
{1-2)(1 —2?)(1 - 2®) (1 —a?) -}
=1-3z+52% — 725 + 9210 — ... (45)
Hence
Q% — R? =1728x(1 — 3z 4 52 — 728 + .. )8, (46)
The coefficient of ¥~ in 1—3z+523 —- - - is numerically less than /(8v), and the coefficient
of z¥ in Q3 — R? is therefore numerically less than that of z¥ in
17282{/(8v)(1 + = + 2® + 2% + .- )},
But
p(l4a+a®+at+4.)8= 11_3‘12 + 122?4 + 13i$j6 TR (47)
and the coefficient of z¥ in the right-hand side is positive and less than
3 (1 1 1
v (ﬁ*ﬁ*?s*”‘)‘
Hence the coefficient of 2V in Q> — R? is of the form
o) = o)
That is to say
Q*—R*=> 0. (48)
Differentiating (48) and using (42) we obtain
P(Q*—R*) => 0. (49)

Differentiating this again with respect to z we have
A(P? = Q)(Q° = B*) + BQ(Q* — R?) = Y _O()z",

where A and B are constants. But

1%z 222
P2 Q= —288p =2
Q 88P o(x) 88{(1—%)2 + 1—22)7 + },
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and the coefficient of 2 in the right-hand side is a constant multiple of voy(v). Hence
(PP-Q)Q°-R*) = Y Ovoy(v)a” ) O(v
= SO o (1) + o1(2) +--
tor ()} =) O(W')z
and so

~R%) =) 0" (50)

Differentiating this again with respect to  and using arguments similar to those used above,

=> o). (51)

Suppose now that m and n are any two positive integers including zero, and that m + n is
not zero. Then

QURMNQ - R = Q- RHQ"'R"
= Y00 Y 0wy Y 06F)a
_ Z O(Vlo)xu Z O(l/4m_5)l‘u Z O(l/ﬁn_l)l‘

_ Z O(I/4m+6n+6)l’

we deduce

If m is not zero, Similarly we can shew that

QmRn(QB o R2) — R(Q3 o RZ)QmRn—l

_ Z O(V4m+6n+6)1"/

if n is not zero. Therefore in any case

(Q3 o R2)QmRn _ Z O(V4m+6n+6)xu‘ (52)
11. Now let  and s be any two positive odd integers including zero. Then, when r + s is
equal to 2,4,6,8 or 12, there are no values of m and n satisfying the relation

dm +6n =r+s—10

n (41); consequently in these cases

F, s(x) = 0. (53)

)
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When r + s = 10, m and n must both be zero, and this result does not apply; but it follows
from (41) and (48) that

Fro(z) =) 0@ )a". (54)
And when r + s > 14 it follows from (52) that
Fro(z) =) 0@+ Ha”. (55)
Equating the coefficients of z¥ in both sides in (53), (54) and (55) we obtain
Z(n) _ Fir+1)I(s+1)¢(r+1){(s+1)

M'r+s+2) C(r+s+2)

LS-m -9
r+s

Orgst1(n)

s

noyys—1(n) + B s(n), (56)

where

E, s(n) =0, r+s=24,6,812;
E.s(n)=0®"), r+s=10;
E,s(n) =0Mn™ 4, r+4s>14.

Since 0,4 s41(n) is of order n" 51 it follows that in all cases

UT+5+1(n)' (57)

Fir+1)I(s+1)¢(r+1)¢(s+1)
2 m)~ T(r+s+2) C(r+s+2)

r,s

The following table gives the values of Zr’s(n) when r +s =2,4,6,8,12.

TABLE IV
L5 - o)

2 Fyg(n) = T,
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3. 23,3(”) = 01758)'

4. 21’5 (n) _ 1007(n)2—5221ncr5 (n) .

llog(n
5. 23,5(”): 50%1(0)'

6. 21’7(71) _ 1109(n)4;3?607w7(n)‘

7. 25,7(") = %?6(8%)'

8. 23,9(”) = 02%518)'

_ 691013(n)—2730n011(n)
9. Y= 65520 :

12. In this connection it may be interesting to note that

0'1(1)0'3(71) + 0'1(3)0'3(77, — 1) + 0'1(5)0'3(77, — 2) + -
+01(2n +1)03(0) = F505(2n + 1). (58)

This formula may be deduced from the identity

15z N 3% N 503
l—z 1—23 1—2°

x 32 53
_ 59
Q<1—:1:+1—:173+1—x5+ >’ (59)

which can be proved by means of the theory of elliptic functions or by elementary methods.

13. More precise results concerning the order of E, ¢(n) can be deduced from the theory
of elliptic functions. Let
x=q".

Then we have
o (@){1 — (kK')?}
9" (q) (K" — E*){1 + §(kK)?} ; (60)

= ¢(@{1+ 5(kK)? /AL — (2kK)%}

where ¢(q) = 1+ 2q + 2¢* +2¢° + - --
But, if

S O
o

L

fl)=q(1—q)(1=¢*)(1—¢°)---,
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then we know that
2if(q) = k1K3e(q)
§f(—q) = (kK12
21]( q) ( )1 #(q) (61)
25 f(¢*) = (kk)so(q)
25f(q") = ksk'12¢(q)

It follows from (41), (60) and (61) that, if r + s is of the form 4m + 2, but not equal to 2
or to 6, then

I L(r45—6)

4(r+s—4) 24n
oy _ S (—q) ()
Frs(q7) = W E Ky " R )7 (62)
and if r 4+ s is of the form 4m, but not equal to 4, 8 or 12, then
L(r45—-8)
4(r+s—6)(_ 4 24n 2
o _ (=), s _ 8 Z [ (q )
F’r‘,S(q ) - f2(r+s_10) (q2) {f (q) 16f } K f24n q) (63)

when K,, depends on 7 and s only. Hence it is easy to see that in all cases Fr,s(qQ) can be
expressed as

> Kapeaens{ (-0} {?52((;3; }b { ]{25@) } { J{25((<1q2)) / 3<q>}d

3<q4>} ) ), (64)

where a, b, c,d, e, h, k are zero or positive integers such that

a+b+c+2(d+e)=[2(r+s+2),
h+k=2(r+s+2)—3[2(r+s+2)],

and [z] denotes as usual the greatest integer in z. But

2 52 2 2
f(q) = qéﬁ —q24 —q24 —|-q1214 + -
2 52

fg(q) = ql? — 3q3? +5qs — 7q% + ..

2@ gk 5e% 4 7gh —11g% 4 [ .
7y — 4 q q q

5/ 2 2 2 2 52
:%% = ¢ —25 +4¢5 —5gT +---
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where 1,2,4,5,--- are the natural numbers without the multiples of 3, and 1,5,7,11,---
are the natural odd numbers without the multiples of 3.
Hence it is easy to see that

n—%(a+b+c)—d—eEr7s(n)

is not of higher order than the coefficient of ¢*" in

1 1

6°(a%)8"(@7) 0% (a5 ) {d(a71)d(a%) ) {b (a5 )b(a?) } " (21" (77,

or the coefficient of ¢**" in
¢t (g*) " (9)0% (69 (¢'0) 0" (a) 0" (47)-
But the coefficient of ¢” in ¢?(¢?) cannot exceed that of ¢” in ¢?(gq), since
¢*(q) + ¢°(—q) = 26°(¢°); (66)

and it is evident that the coefficient of ¢” in ¢(¢*") cannot exceed that of ¢” in ¢(¢*). Hence
it follows that
n—% [%(T+8+2)]ET S(n)

is not of higher order than the coefficient of ¢**" in

¢ (9)0" (¢*)6° (¢%),
where A, B, C' are zero or positive integers such that
A+B+C=2(r+s5+2)—2[Z(r+s+2)],

and C'is 0 or 1.
Now, if r + s > 14, we have
A+B+C>12,

and so
A+B>11.

Therefore one at least of A and B is greater than 5. But
¢°(a) =) O (67)
0

Hence it is easily deduced that

M@)0" ()6 (%) = Y O{uzATBTO-1y g, (68)

*See §§24-25.
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It follows that
Eys(n) = O{n™ 35040l (69)
If r + s > 14. We have already shewn in § 11 that, if » + s = 10, then
Bro(n) = O(n"). (70)
This agrees with (69). Thus we see that in all cases
Ey4(n) = Ofns 051}, (71)
and that, if r + s is of the form 6m, then
Eys(n) = O{n30rts+ily, (72)
and if of the form 6m + 4, then
Eps(n) = O{n3(+s72)}, (73)

14. I shall now prove that the order of E, s(n) is not less than that of nz () In order to
prove this result I shall follow the method used by Messrs Hardy and Littlewood in their
paper “Some problems of Diophantine approximation” (II) *.

Let
q= 67”7—,q, — 7r7,T7
where
_cHtdr
a4+ br’
and
ad — be = 1.
Also let
W
a+br’
Then we have
wyoe™V Y (v, 7) = VV L (V, T), (74)
where w is an eighth root of unity and
Y1(v,7) = 2sin7v - q%HCfO(l — ¢®™)(1 — 2¢*" cos 27w + ¢*"). (75)

* Acta Mathematica, Vol. XXXVII, pp. 193 — 238.
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From (75) we have

"(1 4+ 2cos 2nmv)
n(l—¢*)

© 9
log 1 (v, 7) = log(2, sin 7v) + ilogq — Z 4
1

It follows from (74) and (76) that

"(1 4+ 2cos 2nmv)

o 2

) q

logs1n7rv+%logv+%IOgQ-Hng—Z n(l —¢2n)
1

o0

"2n
142 ntV
ZIOgSinT{'V—i—%logV_F%logq/_ﬂ.ibvv_2 :q ( + 2 cos 2nm )
1

n(l—q'?")

Equating the coefficients of v8%1 on the two sides of (77), we obtain
1sq2 28(]4 3sq6

18q/2 2sq/4 N 3sq/6

1_q12+1_ql4 1_q/6

(a+ b7')s+1 {%C(—s) +

= 5¢(=9)+

+...7

(77)

(78)

provided that s is an odd integer greater than 1. If, in particular,we put s =3 and s =5

in (78) we obtain

13q2 23q4 33q6
br)* {1 4 240
. T){ i <1—qz+1—q4+1—qGJr

13q/2 23q/4 33q/6
_ {1+240<1_q/2 bt s ) b

and

15q2 25q4 35q6

6

1 —504
(a+b7’){ 50 <1—q2+1—q4+1—q6+

15q12 25ql4 35q16
:{1_504<1_q/2+1_q/4+1_q/6+“' :

It follows from (38), (79) and (80) that

(a+ bT)T+S+2Fr,S(q2) = FT,S(‘]Q)-

It can easily be seen from (56) and (37) that

F,s(z) = Z E, s(n)z".
1
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Hence
(a4 br)r+st2 Z E,s(n)¢*" = Z E,+(n)q*". (83)
1 1
It is important to observe that
B SEN s C1-n -9
’ 2 r+s
P+ DI(s+1)¢(r+1)¢(s+1) 40, (84)

I'(r+s+2) Cr+s+2)

if r + s is not equal to 2,4,6,8 or 12. This is easily proved by the help of the equation (39).

15. Now let
T=u+iy,t=e""Y(u>0,y>00<t<1),
so that
q= ewiu—ﬂy _ tewiu,

and let us suppose that p, /g, is a convergent to

1 1 1

u=— —  — ,
a;+as+ag+---

so that
Nn = Pn—1Gn — Pngn-1 = £1.
Further, let us suppose that
a=pn, b=—qn,
C=Mnpn-1, d=—Tnqn-1,
so that
ad —bc=n? = 1.
Furthermore, let
y = 1/(andp+1),
where
q1/1+1 = a;m+1Qn + Gn—1,

and a, 11 is the complete quotient corresponding to ap1.
Then we have

|£1—4d] V2

/ - ’

la +b7| = |pn — gnu — igny| =

and

’q/’ — e—7r)\’
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where

A=1(T) = I(Ziil) *I{% . Wlbﬂ}

Y _ qéz-i—l
(1/(];14-1)2 + qn2y2 2Gn '

and I(T) is the imaginary part of T'. It follows from (83), (85) and (86) that

o0 q/ r+s+2 o0
> B = ()Y B
1 1

q, 1 et A A A
> "*) 1B (D]e™ — |Bu(@e ™ — [Ba@)e ™ — .. (87)

="

We can choose a number Ay, depending only on r and s, such that

|Er,s(1)|e_27r)\ > 2{|Er’s(2)|e—4ﬂ>\ + |Er,s(3)|€_67r>\ T

for A > Ag. Let us suppose \g > 10. Let us also suppose that the continued fraction for u
satisfies the condition

ANoGn > Qi1 > 2000 (88)

for an infinity of values of n. Then

q r+s+2
el 2 3B () e (g, (59)
where K depends on r and s only. Also
Undni1 = 1/Y,

T
> —
i \f {bg (1/t) } =5

It follows that, if u is an irrational number such that the condition (88) is satisfied for an
infinity of values of n, then

o0
> E(n)g™"
1

for an infinity of values of ¢ tending to unity. But if we had

> K(1— )" 2(rtst2) (90)

E,s(n) = o{n%(”s)}
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then we should have

D Bra(m)g?| = of (1 - )73+++2)),
1
which contradicts (90). It follows that the error term in ), (n) is not of the form

o{n2(r+s)y, (91)

The arithmetical function T(n).

16. We have seen that
E,s(n) =0,

if r 4+ s is equal to 2,4,6,8, or 12. In these cases Zn s(n) has a finite expression in terms of
Orts+1(n) and op45-1(n). In other cases >, (n) involves other arithmetical functions as
well. The simplest of these is the function 7(n) defined by

> rn)a" = 2{(1—2)(1 —a?)(1—2®)-- -} (92)
1

These cases arise when r + s has one of the values 10, 14, 16, 18, 20 or 24.
Suppose that r 4+ s has one of these values. Then

1728 Y1 Ey s(n)z"
(Q° — R?)E, (1)

is, by (41) and (82), equal to the corresponding one of the functions

17 Q? R7 Q27 QR7 Q2R'

In other words

> Eru(n)a" = Ens(1) ) r(n)a”
1 1

2 = r4+s—11 z"

We thus deduce the formulse
ET,S(”) = ET,S(l)T(n)’ (94)

if r+s=10; and

Oris—11 (O)Er,s (n) = ET78(1){UT+S—11 (O)T(n)
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+oris—11(D7(n = 1) + -+ orps—n1(n — D)7(1)}, (95)

if 7+ s is equal to 14, 16, 18, 20 or 24. It follows from (94) and (95) that, if r+s =1+,
then

E, s(n)Ey ¢(1) = E, s(1)E g(n), (96)
and in general
Er,s(m)Er’,s’(n) = Er,s(n)Er’,s’(m)’ (97)

when r + s has one of the values in question. The different cases in which r + s has the
same value are therefore not fundamentally distinct.

17. The values of 7(n) may be calculated as follows: differentiating (92) logarithmically
with respect to z, we obtain

Z nt(n)z" = P Z T(n)z". (98)
1 1
Equating the coefficients of 2™ in both sides in (98),we have
24
T(n) = T n{al(l)T(n —D4+0@2)r(n—2)+--+o1(n—1)7(1)}. (99)

If, instead of starting with (92), we start with
o0
> r(n)a" =21 — 3z + 527 — 7a® )8,
1

we can shew that

(n—1)7(n) —3(n—10)7(n — 1) +5(n —28)7(n —3) — 7

(n —55)7(n —6) + - to [5{1+ /(8n — 7)}] terms =0, (100)
where the rth term of the sequence 0,1,3,6, ... is %r(r — 1), and the rth term of the

sequence 1,10,28,55, ... is 1+ %r(r —1). We thus obtain the values of 7(n) in the following
table.

TABLE V
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n T(n) || n T(n)
1 +1 || 16 +987136
2 —24 || 17 —6905934
3 +252 || 18 +2727432
4 —1472 || 19 | 410661420
5 +4830 || 20 —7109760
6 —6048 || 21 —4219488
7 —16744 || 22 | —12830688
8 +84480 || 23 | 418643272
9 —113643 || 24 | 421288960
10 | —115920 || 25 | —25499225
11 | +534612 || 26 | +13865712
12 | —370944 || 27 | —73279080
13 | —577738 || 28 | 424647168
14 | 4401856 | 29 | 4128406630
15 | +1217160 || 30 | —29211840

18. Let us consider more particularly the case in which r + s = 10. The order of E, 4(n)
is then the same as that of 7(n). The determination of this order is a problem interesting
in itself. We have proved that E,. ¢(n), and therefore 7(n), is of the form O(n") and not of
the form o(n®). There is reason for supposing that 7(n) is of the form O(n1_21+6) and not of
the form 0(n1_21). For it appears that

= 7(n 1
Z it) - H 1—7(p) -2 (101)

—t
N pttp

This assertion is equivalent to the assertion that, if

ai a2,.a3

n = pi'py’ps® Py,

where p1,po, ..., p, are the prime divisors of n, then
’I’L_%T(’I’L) _ sin(1 —|— a1)0p, sin.(l +a2)lp, Sin(1.+ ar)HpT, (102)
sin 0, sin 0, sin 0,
where .
cosf, = ip~27(p).
It would follow that, if n and n’ are prime to each other, we must have
7(nn') = 7(n)r(n'). (103)

Let us suppose that (102) is true, and also that (as appears to be highly probable)

{2r(p)}* <p", (104)
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so that @), is real. Then it follows from (102) that

n"2 () < (1+a)(1+a2) - (1+a,),

that is to say

1

|7(n)] < nzd(n), (105)

=

where d(n) denotes the number of divisors of n.
Now let us suppose that n = p%, so that

n_%T(n) _ sin(1 + a)9p.

sin 0,
Then we can choose a as large as we please and such that
sin(1 + a)0,

> 1.
sin 0, -

Hence

1

[T(n)| > n2 (106)

[

for an infinity of values of n.

19. It should be observed that precisely similar questions arise with regard to the arith-
metical function W(n) defined by

Do) = fU @) o () f (), (107)
0
where )
fl@)=z2(l—2)(1—a?)(1—-2%)-,
the a’s and ¢’s are integers, the latter being positive,
2—14(alcl —agcy + -+ arcy)

is equal to 0 or 1, and
a a a
l<_1_|__2_|_..._|__r>’
C1 Co Cp

where [ is the least common multiple of ¢, co, ..., ¢, is equal to 0 or to a divisor of 24.
The arithmetical functions x(n), P(n), x4(n),(n) and O(n), studied by Dr. Glaisher in
the Quarterly Journal, Vols. XXXVI-XXXVIII, are of this type. Thus

S xm)a" = O,
1
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ij}mnw = PR,

S e = PR,
Q" = P2,

O = @),

20. The results (101) and (104) may be written as

Z Er,s(n) _ Er,s(l) H 1 (108)

- nt . 1— QCpp_t +pr+s+1—2t’

where
2 r+s+1
<P )

and
2CpEr,s(1) = E?“,S(p)'

It seems probable that the result (108) is true not only for » + s = 10 but also when r + s
is equal to 14, 16, 18, 20 or 24, and that

E, s(n) 1
7,8 < (T+S+1) 109
2| <t 1o
for all values of n, and
E, s(n) 1
S > (r+s+1) 110
)= o

for an infinity of values of n. If this be so, then
Er,s(n) _ O{n%(r+8+l+5)},Eﬁs(n) + O{H%(H_‘H_l)}. (111)

And it seems very likely that these equations hold generally, whenever r and s are positive
odd integers.

21. It is of some interest to see what confirmation of these conjectures can be found from
a study of the coefficients in the expansion of

:E{(l o x24/a)(1 o $48/a)(1 o $72/a) . .}a _ i \I’a(n):nn,
1
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where « is a divisor of 24. When a = 1 and o = 3 we know the actual value of ¥,(n). For
we have

2

[ee]
Z\Ill(n)x” = 2P T g 1T (112)
1
where 1, 5, 7, 11, ... the natural odd numbers without the multiples of 3; and
> 2 2 2 2
Z Us(n)z™ = 2! —32% + 525 — 72" ... (113)
1

The corresponding Dirichlet’s series are

— Ui(n) 1
21: ne (L4521 + 7)1 - 1-2)(1 — 13-2) - (114)

where 5, 7, 11, 13, ...are the primes greater than 3, those of the form 12n 4+ 5 having the
plus sign and those of the form 12n + 1 the minus sign; and

o

W3(n) 1
Zl: ZS - (1 _|_31—2s)(1 _ 51—23)(1 + 71—25)(1 + 111—25) .. (115)

where 3, 5, 7, 11, ... are the odd primes, those of the form 4n — 1 having the plus sign and
those of the form 4n 4 1 the minus sign.
It is easy to see that

Wi(n)] <1, [¥3(n)] < Vn (116)
for all values of n, and
Wi(n)] =1, [¥3(n)|=vn (117)

for an infinity of values of n.
The next simplest case is that in which v = 2. In this case it appears that

> \Pi(sn) = 1, (118)
1

where
1

(14+5725)(1 =7-25)(1 = 11=25)(1 4 17725) ../
5,7, 11, ... being the primes of the forms 12n — 1 and 12n 4+ 5, those of the form 12n + 5
having the plus sign and the rest the minus sign; and
1
(14 1375)2(1 — 37-°)2(1 — 61—)2(1 + 73—°)2- -’

I, =

I, =

199
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13, 37, 61, ... being the primes of the form 12n + 1, those of the form m? + (6n — 3)?
having the plus sign and those of the form m? + (6n)? the minus sign.
This is equivalent to the assertion that if
n = (5% . 797 . 11911 . 1797 .. )2]3W3 . 37987 . G161 . 73973 ...
where a,, is zero or a positive integer, then
Wy(n) = (—1)mtrastarrantan® 4 q13)(1 + az7)(1 + ag1) - - -, (119)
where 5, 13, 17, 29, ... are the primes of the form 4n + 1, excluding those of the form
m? + (6n)?; and that otherwise
Us(n) = 0. (120)
It follows that
[Wa(n)| < d(n) (121)
for all values of n, and
[Wa(n)| > 1 (122)

for an infinity of values of n. These results are easily proved to be actually true.

22. I have investigated also the cases in which « has one of the values 4, 6, 8 or 12. Thus
for example, when o« = 6, I find

U
> ;in) = L1y, ™ (123)
1

where
1

(1 _ 32—23)(1 _ 72—25)(1 _ 112—23) .
3,7, 11, ... being the primes of the form 4n — 1; and

I =

1
(1—2¢5 55+ 5225)(1 — 2¢13 - 13—5 4 132-25) ...

I, =

5, 13,17, ... being the primes of the form 4n+1, and ¢, = u? — (2v)?, where u and v are the
unique pair of positive integers for which p = u? + (2v)2. This is equivalent to the assertion
that if

n = (3a3 7T L1911 )2 . 535 . 13013 . 17017 .. .

*Wg(n) is Dr. Glaisher’s A(n).
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then
\Ifﬁ(n) Sin(l + a5)95 Sin(l + a13)913 sin(l + a17)917
= - : - : - e (124)
n sin 05 sin 613 sin 617
where u
1
tan 50, = % (0< 6, <m),
and that otherwise Wg(n) = 0. From these results it would follow that
Ws(n)] < nd(n) (125)
for all values of n, and
|Wg(n)| >n (126)

for an infinity of values of n. What can actually be proved to be true is that
|We(n) < 2nd(n)

for all values of n, and
[W(n)| = n

for an infinity of values of n.
23. In the case in which a = 4 I find that, if
n = (5(15 . 11(111 . 17(117 .. )2 3 7(17 . 13(113 . 19[119 e

where 5, 11, 17, ... are the primes of the form 6m — 1 and 7, 13, 19, ... are those of the
form 6m + 1, then

Wy(n) _ (_1)a5+a11+t117+“'8in(1 +ar)fq . sin(l + a13)013 .. (127)
NG sin 07 sin 613 ’
where /3
3
tan 6, = —1ui 30 (0<0,<m),

and u and v are the unique pair of positive integers for which p = 3u? + (14 3v)?; and that
Uy (n) = 0 for other values.
In the case in which o = 8 I find that, if

n = (292 .5% . 1191 )2 L7 13M3 L 1M L

where 2, 5, 11, ...are the primes of the form 3m — 1 and 7, 13, 19, ... are those of the
form 6m + 1, then
\Ilg(n) _i_.,,Sin 3(1+ay)br ‘ sin 3(1 + a13)013 .

— (_1)a2+a5+a11

.. 128
sin 307 sin 3013 ’ (128)

ny/n
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where 6, is the same as in (127); and that Wg(n) = 0 for other values.

The case in which o = 12 will be considered in § 28.

In short, such evidence as I have been able to find, while not conclusive, points to the truth
of the results conjectured in § 18.

24. Analysis similar to that of the preceding sections may be applied to some interesting
arithmetical functions of a different kind. Let

¢*(q) =142 rin)q", (129)
1

where
o(q) =1+2¢+2¢" +2¢° +---,

so that r4(n) is the number of representations of n as the sum of s squares. Further let
o 3 5
q q q
5 no_ 9 - — ...
21:2(n)q (1—q g "1 )

2 3
= 2( 9 4 4 4 4 +--->; (130)

1+¢2 1+4¢* 1+¢°

(o]
1s—lq 2s—lq2 3s—lq3 >
2° - 1)B 025(n)q" = s 4+ 131
@ =18 (o+ =5+ 58 (131)
when s is a multiple of 4;
(o]
18—1q 25—1q2 38—1q3
2° —1)B ) "= 132
( ) 821: 25(n)q s(l—q 174 1—q3+ ), (132)

when s + 2 is a multiple of 4;

o
1s—lq 2s—lq2 3s—lq3
.Y ous(m)g" =2 <1+q2 BT R +>
1

15—1q 35—1q3 58—1q5
2 — 133
i (1—q1—q3+1—q5 > (13)

when s — 1 is a multiple of 4;

o0
1s—lq 2s—lq2 3s—lq3
Eszézs(n)q"=2s< Sttt
- l+g¢ 1+g¢q l1+q

1s—lq 3s—lq3 5s—lq5
—2 - — 134
<1—q =g T1-g ) (134)
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when s + 1 is a multiple of 4. In these formulae
By =2,By=35,Bs = 45,Bs = 55, Bio = &, . ..
are Bernoulli’s numbers, and

Ey=1,E3=1,FE5 =5,E7 =61, k9 = 1385, ...

are Euler’s numbers. Then d95(n) is in all cases an arithmetical function depending on the
real divisors of n; thus, for example, when s + 2 is a multiple of 4, we have

(2° — 1)Bybas(n) = s{os_1(n) — 2°c,_1(in)}, (135)

where o4(x) should be considered as equal to zero if  is not an integer.
Now let

r2s(n) = 025(n) + eas(n). (136)
Then I can prove (see § 26) that
eas(n) =0 (137)
if s =1,2,3,4 and that
e25(n) = O(n* 1315+ (138)
for all positive integral values of s. But it is easy to see that, if s > 3, then
Hn*™! < §og(n) < Kn®1, (139)
where H and K are positive constants. It follows that
ros(n) ~ d25(n) (140)

for all positive integral values of s.
It appears probable, from the empirical results I obtain at the end of this paper, that

eas(n) = Of{nz(s=Dte} (141)
for all positive integral values of s; and that
e2s(n) # ofn 27} (142)
if s > 5. But all that I can actually prove is that

e25(n) = O(n*~1315%)) (143)
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if s > 9 and that
eas(n) # o(n*71) (144)
if s > 5.

25. Let
f2s 2625 q —Z{T2s 525 )} " (145)

Then it can be shewn by the theory of elliptic functions that

fos(@) = 0™ (@) > Kn(kk)™, (146)

1
1<n<z(s—1)

that is to say that

~ [¥(=q) S (q?)
Fs(@) = sy Z Ko aini—gy (147)

1<n<3 (s 1)

where ¢(q) and f(g) are the same as in § 13. We thus obtain the results contained in the
following table.

TABLE VI

L falg) =0, falg) =0, fe(q) =0, [fs(q)=

2. 5fio(g) =16 1((qq)) fi2(q) = 8f12(¢?).

3. 61f1a(q) = 728 (—=a)f(¢*), 17fi6(q) = 256/ (—q) f*(¢?).
4. 1385 f15(q) = 24416 '2(—q) fO(q?) — 256 Je L.

5. 3lfa(q) = 616f'%(—q) f*(¢*) — 128f2((q))

6. 50521 fa2(q) = 11032722 (—q) f(¢?) — 8218884 L)

7. 691fau(q) = 16576f24( q) — 32768f24( )
It follows from the last formula of Table VI that

89Lless(n) = (—1)"712597(n) — 5127(3n), (148)

where 7(n) is the same as in § 16, and 7(x) should be considered as equal to zero if z is
not an integer.
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Results equivalent to 1,2,3,4 of Table VI were given by Dr. Glaisher in the Quarterly
Journal, Vol. XXXVIII. The arithmetical functions called by him

X4(n)7 Q(”)? W(”)? G(n)7 U(n)

are the coefficients of ¢"™ in
e
fA(=q)

He gave reduction formulee for these functions and observed how the functions which I call
e10(n),e12(n) and ejg(n) can be defined by means of the complex divisors of n. It is very
likely that 7(n) is also capable of such a definition.

), =0 ), @ (@), FR(=a) £ (d).

26. Now let us consider the order of egs(n). It is easy to see from (147) that fas(¢q) can be
expressed in the form

3(_.\a f°(=q) ’ KSR hye_ gk 2
S Kanensl Pl { VIO g i) (149)

where a, b, ¢, h, k are zero or positive integers, such that

a+b+c=[3s], h+k=2s—3[2s].

Proceeding as in § 13 we can easily shew that

(2]

(NI

€9g (’I’L)

cannot be of higher order than the coefficient of ¢?*" in

o9)0" (6*)8% (4%, (150)

where C' is 0 or 1 and
A+ B+C =2s—2[3s].

Now, if s > 5, A+ B+ C > 4; and so A+ B > 3. Hence one at least of A and B is greater
than 1. But we know that

¢*(q) =) _ 0@ )q".
It follows that the coefficient of ¢?*" in (150) is of order not exceeding
n%(A+B+C)—1+e‘

Thus

eg5(n) = O(n*~ 13135+ (151)
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for all positive integral values of s.

27. When s > 9 we can obtain a slightly more precise result.
If s > 16 we have A+ B+ C > 12; and so A + B > 11. Hence one at least of A and B is
greater than 5. But

¢°(q) =D 0(*)g".

It follows that the coefficient of ¢?4" in (150) is of order not exceeding

or that
eas(n) = O(n*~173159), (152)

if s > 16. We can easily shew that (152) is true when 9 < s < 16 considering all the cases
separately, using the identities.

P05 = {0y AL @)Y,
(¢?) { (e }6
2(=q) fA(=9))

5( 4 2\ 2
f16(_q)f4(q2) _ {f ( Q)} {fs(q )} fz(qz),

f2(a) fA(=q)
28 (.2 5/ .2 4
P (SO ...

and proceeding as in the previous two sections.
The argument of §§ 14-15 may also be applied to the function egs(n). We find that

e2s(n) # o(nz°™1). (153)
I leave the proof to the reader.

28. There is reason to suppose that

e9s(n) = O{n%(S_HE)}

. , (154)
eas(n) # o{ni(s_l)}
if s > 5. I find, for example, that
= e10(n) e1o(1)
= 1111 1
Z s 1 T 22—8 1112, ( 55)

1
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where
1

(1 _ 34—25)(1 _ 74—25)(1 _ 114—25) L)
3,7, 11, ...being the primes of the form 4n — 1, and

I =

1
(1—2¢5 - 55+ 5025)(1 — 2¢13 - 13—5 4 131-25) ...

I, =

5, 13, 17, ... being the primes of the form 4n + 1, and
Cp = u? — (4v)?,
where u and v are the unique pair of positive integers satisfying the equation
u? + (4v)? = p*
The equation (155) is equivalent to the assertion that, if
n = (3% .797 . 1191 )2 292 . 595 . 13013 ..

where a,, is zero or a positive integer, then

elo(n) (L )a28h14(1'+'a5)95. SH14(1 +»a13)013.

S0\ . 1
n2eip(1) sin 465 sin 463 ’ (156)

where v
tan, = " (0 <6, < im),

u and v being integers satisfying the equation u? + v? = p; and ejg(n) = 0 otherwise. If
this is true then we should have

e1o(n) 2
< nd(n 157
| < ntam) (157)
for all values of n, and
e1o(n) 2
— | >n 158
ew(1)] (158)

for an infinity of values of n. In this case we can prove that, if n is the square of a prime
of the form 4m — 1, then

e1p(n)
610(1)

= 712.

Similarly I find that

> elg(n) 1 >
= 1 , 159
21: = = e )1;[ <1+2cp_p_5+p5_25 (159)
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p being an odd prime and 0123 < p°. From this it would follow that
2| 30 (160)
612(1)
for all values of n, and
e12(n) 5
— 2| >n2 161
for an infinity of values of n.
Finally I find that
> 616(77,) 616(1) 1
_ 162
21: ns 1—#23_51;I 1+2c, -p54p—2)’ (162)
p being an odd prime and 012) < p”. From this it would follow that
w6l | -2 am) (163)
e16(1)
for all values of n, and
e16(n) z
— 2| >n3 164
es(1) | (164)

for an infinity of values of n.
In the case in which 2s = 24 we have

8lesu(n) = (—1)""12597(n) — 5127(3n).

I have already stated the reasons for supposing that

[m(n)] < n% d(n)

for all values of n, and
1
[T(n)| > n=

-

for an infinity of values of n.



