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Abstract

We present several new variations on the theme of nonnegative matrix factorization (NMF). Con-

sidering factorizations of the form X = FGT , we focus on algorithms in which G is restricted to

contain nonnegative entries, but allow the data matrix X to have mixed signs, thus extending the

applicable range of NMF methods. We also consider algorithms in which the basis vectors of F

are constrained to be convex combinations of the data points. This is used for a kernel extension

of NMF. We provide algorithms for computing these new factorizations and we provide supporting

theoretical analysis. We also analyze the relationships between our algorithms and clustering algorithms,

and consider the implications for sparseness of solutions. Finally, we present experimental results that

explore the properties of these new methods.

Index Terms

Nonnegative Matrix Factorization, Singular Value Decomposition, Clustering

I. INTRODUCTION

Matrix factorization is a unifying theme in numerical linear algebra. A wide variety of matrix

factorization algorithms have been developed over many decades, providing a numerical platform

for matrix operations such as solving linear systems, spectral decomposition, and subspace

identification. Some of these algorithms have also proven useful in statistical data analysis, most

notably the singular value decomposition (SVD), which underlies principal component analysis

(PCA).

Recent work in machine learning has focused on matrix factorizations that directly target some

of the special features of statistical data analysis. In particular, nonnegative matrix factorization

(NMF) (1; 2) focuses on the analysis of data matrices whose elements are nonnegative, a common

occurrence in data sets derived from text and images. Moreover, NMF yields nonnegative factors,

which can be advantageous from the point of view of interpretability.

The scope of research on NMF has grown rapidly in recent years. NMF has been shown

to be useful in a variety of applied settings, including environmetrics (3), chemometrics (4),

pattern recognition (5), multimedia data analysis (6), text mining (7; 8), DNA gene expression

analysis (9; 10) and protein interaction (11). Algorithmic extensions of NMF have been developed

to accommodate a variety of objective functions (12; 13) and a variety of data analysis problems,
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including classification (14) and collaborative filtering (15). A number of studies have focused on

further developing computational methodologies for NMF (16; 17; 18; 19). Finally, researchers

have begun to explore some of the relationships between matrix factorizations and K-means

clustering (20), making use of the least square objectives of NMF; as we emphasize in the

current paper, this relationship has implications for the interpretability of matrix factors. NMF

with the Kullback-Leibler (KL) divergence objective has been shown (21; 13) to be equivalent

to probabilistic latent semantic analysis (22) which has been further developed into the fully-

probabilistic latent Dirichlet allocation model (23; 24).

Our goal in this paper is to expand the repertoire of nonnegative matrix factorization. Our focus

is on algorithms that constrain the matrix factors; we do not require the data matrix to be similarly

constrained. In particular, we develop NMF-like algorithms that yield nonnegative factors but

do not require the data matrix to be nonnegative. This extends the range of application of NMF

ideas. Moreover, by focusing on constraints on the matrix factors, we are able to strengthen

the connections between NMF and K-means clustering. Note in particular that the result of a

K-means clustering run can be written as a matrix factorization X = FGT , where X is the

data matrix, F contains the cluster centroids, and G contains the cluster membership indicators.

Although F typically has entries with both positive and negative signs, G is nonnegative. This

motivates us to propose general factorizations in which G is restricted to be nonnegative and

F is unconstrained. We also consider algorithms that constrain F ; in particular, restricting the

columns of F to be convex combinations of data points in X we obtain a matrix factorization

that can be interpreted in terms of weighted cluster centroids.

The paper is organized as follows. In Section II we present the new matrix factorizations and

in Section III we present algorithms for computing these factorizations. Section IV provides a

theoretical analysis which provides insights into the sparseness of matrix factors for a convex

variant of NMF. In Section V we consider extensions of Convex-NMF and the relationships

of NMF-like factorizations. In Section V-A we show that a convex variant of NMF has the

advantage that it is readily kernelized. In Section VI we present comparative experiments that

show that constraining the F factors to be convex combinations of input data enhances their

interpretability. We also present experiments that compare the performance of the NMF variants

to K-means clustering, where we assess the extent to which the imposition of constraints that

aim to enhance interpretability leads to poorer clustering performance. Finally, we present our
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conclusions in Section VII.

II. SEMI-NMF AND CONVEX-NMF

Let the input data matrix X = (x1, . . . ,xn) contain a collection of n data vectors as columns.

We consider factorizations of the form:

X ≈ FGT , (1)

where X ∈ � p×n , F ∈ � p×k and G ∈ � n×k . For example, the SVD can be written in this form.

In the case of the SVD, there are no restrictions on the signs of F and G; moreover, the data

matrix X is also unconstrained. NMF can also be written in this form, where the data matrix

X is assumed to be nonnegative, as are the factors F and G. We now consider some additional

examples.

A. Semi-NMF

When the data matrix is unconstrained (i.e., it may have mixed signs), we consider a factor-

ization that we refer to as Semi-NMF, in which we restrict G to be nonnegative while placing

no restriction on the signs of F .

We can motivate Semi-NMF from the perspective of clustering. Suppose we do a K-means

clustering on X and obtain cluster centroids F = (f1, . . . , fk). Let G denote the cluster indicators:

i.e., gik = 1 if xi belongs to cluster ck; gik = 0 otherwise. We can write the K-means clustering

objective function as

JK-means =

n∑

i=1

K∑

k=1

gik||xi − fk||2 = ||X − FGT ||2.

In this paper, ||v|| denotes the L2 norm of a vector v and ||A|| denotes the Frobenius norm

of a matrix A. We see that the K-means clustering objective can be alternatively viewed as

an objective function for matrix approximation. Moreover, this approximation will generally be

tighter if we relax the optimization by allowing gij to range over values in (0, 1), or values in

(0,∞). This yields the Semi-NMF matrix factorization.
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B. Convex-NMF

While in NMF and Semi-NMF there are no constraints on the basis vectors F = (f1, · · · , fk),
for reasons of interpretability it may be useful to impose the constraint that the vectors defining

F lie within the column space of X:

f` = w1`x1 + · · ·+ wn`xn = Xw`, or F = XW. (2)

Moreover, again for reasons of interpretability, we may wish to restrict ourselves to convex

combinations of the columns of X . This constraint has the advantage that we could interpret the

columns f` as weighted sums of certain data points; in particular, these columns would capture

a notion of centroids. We refer to this restricted form of the F factor as Convex-NMF. Convex-

NMF applies to both nonnegative and mixed-sign data matrices. As we will see, Convex-NMF

has an interesting property: the factors W and G both tend to be very sparse.

(25) considered a model in which the F factors were restricted to the unit interval; i.e.,

0 ≤ Fik ≤ 1. This so-called convex coding does not require the fk to be nonnegative linear

combinations of input data vectors and thus in general do not capture the notion of cluster

centroid. Indeed, the emphasis in (25) and in (1; 2) is the parts-of-whole encoding provided by

NMF, not the relationship of nonnegative factorizations to vector quantization.

To summarize our development thus far, let us write the different factorizations as follows:

SVD: X± ≈ F±GT
± (3)

NMF: X+ ≈ F+GT
+ (4)

Semi-NMF: X± ≈ F±GT
+ (5)

Convex-NMF: X± ≈ X±W+GT
+, (6)

where the subscripts are intended to suggest the constraints imposed by the different factoriza-

tions.

Before turning to a presentation of algorithms for computing Semi-NMF and Convex-NMF

factorizations and supporting theoretical analysis, we provide an illustrative example.
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C. An Illustration

Consider the following data matrix:

X =




1.3 1.8 4.8 7.1 5.0 5.2 8.0

1.5 6.9 3.9 −5.5 −8.5 −3.9 −5.5

6.5 1.6 8.2 −7.2 −8.7 −7.9 −5.2

3.8 8.3 4.7 6.4 7.5 3.2 7.4

−7.3 −1.8 −2.1 2.7 6.8 4.8 6.2




.

The K-means clustering produces two clusters, where the first cluster includes the first three

columns and the second cluster includes the last four columns.

We show that Semi-NMF and Convex-NMF factorizations gives clustering solutions which

are identical to the K-means clustering results. We run SVD, Semi-NMF and Convex-NMF. The

matrix factor G obtained for the three factorizations are

GT

svd =


0.25 0.05 0.22 −.45 −.44 −.46 −.52

0.50 0.60 0.43 0.30 −0.12 0.01 0.31


 ,

GT

semi =


0.61 0.89 0.54 0.77 0.14 0.36 0.84

0.12 0.53 0.11 1.03 0.60 0.77 1.16


 ,

GTcnvx =


0.31 0.31 0.29 0.02 0 0 0.02

0 0.06 0 0.31 0.27 0.30 0.36


 .

Both the Semi-NMF and Convex-NMF results agree with the K-means clustering: for the first

three columns, the values in the upper rows are larger than the lower rows, indicating they are in

the same cluster, while for the last four columns the upper rows are smaller than the lower rows,

indicating they are in another cluster. Note, however, that Convex-NMF gives sharper indicators

of the clustering.

The computed basis vectors F for the different matrix factorizations are as follows:

Fsvd =




−0.41 0.50

0.35 0.21

0.66 0.32

−0.28 0.72

−0.43 −0.28




, Fsemi =




0.05 0.27

0.40 −0.40

0.70 −0.72

0.30 0.08

−0.51 0.49




, Fcnvx =




0.31 0.53

0.42 −0.30

0.56 −0.57

0.49 0.41

−0.41 0.36




,
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and the cluster centroids obtained from K-means clustering are given by the columns of the

following matrix:

CKmeans =




0.29 0.52

0.45 −0.32

0.59 −0.60

0.46 0.36

−0.41 0.37




.

We have rescaled all column vectors so that their L2-norm is one for purposes of comparison.

One can see that Fcnvx is close to CKmeans: ||Fcnvx − CKmeans|| = 0.08. Fsemi deviates substantially

from CKmeans: ||Fsemi−CKmeans|| = 0.53. Two of the elements in Fsemi are particularly far from those

in CKmeans: (Fsemi)1,1 = 0.05 vs. (CKmeans)1,1 = 0.29 vs. and (Fsemi)4,2 = 0.08 vs. (CKmeans)4,2 = 0.36.

Thus restrictions on F can have large effects on subspace factorization. Convex-NMF gives

F factors that are closer to cluster centroids, validating our expectation that this factorization

produces centroid-like factors. More examples are given in Figure 1.

Finally, computing the residual values, we have ||X − FGT || = 0.27940, 0.27944, 0.30877,

for SVD, Semi-NMF and Convex-NMF, respectively. We see that the enhanced interpretability

provided by Semi-NMF is not accompanied by a degradation in approximation accuracy relative

to the SVD. The more highly constrained Convex-NMF involves a modest degradation in

accuracy.

We now turn to a presentation of algorithms for computing the two new factorizations, together

with theoretical results establishing convergence of these algorithms.

III. ALGORITHMS AND ANALYSIS

In this section we provide algorithms and accompanying analysis for the NMF factorizations

that we presented in the previous section.

A. Algorithm for Semi-NMF

We compute the Semi-NMF factorization via an iterative updating algorithm that alternatively

updates F and G:

(S0) Initialize G. Do a K-means clustering. This gives cluster indicators G: Gik = 1 if xi belongs

to cluster k. Otherwise, Gik = 0. Add a small constant (we use the value 0.2 in practice) to all
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elements of G. See Section IIV.C for more discussion on initialization.

(S1) Update F (while fixing G) using the rule

F = XG(GT G)−1. (10)

Note GT G is a k × k positive semidefinite matrix. The inversion of this small matrix is trivial.

In most cases, GT G is nonsingular. When GT G is singular, we take the pseudo inverse.

(S2) Update G (while fixing F ) using

Gik ← Gik

√
(XTF )+

ik + [G(F T F )−]ik
(XTF )−ik + [G(F T F )+]ik

, (11)

where we separate the positive and negative parts of a matrix A as

A+
ik = (|Aik|+ Aik)/2, A−

ik = (|Aik| − Aik)/2. (12)

The computational complexity for Semi-NMF is of order m(pnk+nk2) for Step (S1) and of order

m(npk + kp2 + n2k) for Eq. (11), where m ∼ 100 is the number of iterations to convergence.

Theorem 1: (A) Fixing F , the residual ||X−FGT ||2 decreases monotonically (i.e., it is non-

increasing) under the update rule for G. (B) Fixing G, the update rule for F gives the optimal

solution to minF ||X − FG||2.

Proof. We first prove part (B). The objective function that we minimize is the following sum of

squared residuals:

J = ||X − FGT ||2 = Tr (XT X − 2XT FGT + GF T FGT ). (13)

Fixing G, the solution for F is obtained by computing dJ/dF = −2XG + 2FGTG = 0. This

gives the solution F = XG(GTG)−1.

To prove part (A), we now fix F and solve for G while imposing the restriction G ≥ 0. This is

a constrained optimization problem. We present two results: (1) We show that at convergence, the

limiting solution of the update rule of Eq. (11) satisfies the KKT condition. This is established

in Proposition 2 below. This proves the correctness of the limiting solution. (2) We show that

the iteration of the update rule of Eq. (11) converges. This is established in Proposition 3 below.

u–
Proposition 2: The limiting solution of the update rule in Eq. (11) satisfies the KKT condition.
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Proof. We introduce the Lagrangian function

L(G) = Tr (−2XT FGT + GF T FGT − βGT ), (14)

where the Lagrangian multipliers βij enforce nonnegative constraints, Gij ≥ 0. The zero gradient

condition gives ∂L
∂G

= −2XT F +2GF T F−β = 0. From the complementary slackness condition,

we obtain

(−2XT F + 2GF T F )ikGik = βikGik = 0. (15)

This is a fixed point equation that the solution must satisfy at convergence.

It is easy to see that the limiting solution of the update rule of Eq. (11) satisfies the fixed

point equation. At convergence, G(∞) = G(t+1) = G(t) = G; i.e.,

Gik = Gik

√
(XT F )+

ik + [G(F T F )−]ik
(XT F )−ik + [G(F TF )+]ik

. (16)

Note F TF = (F T F )+ − (F T F )−; F TX = (F T X)+ − (F T X)−. Thus Eq. (16) reduces to
(
−2XT F + 2GF T F

)
ik

G2
ik = 0. (17)

Eq. (17) is identical to Eq. (15). Both equations require that at least one of the two factors is

equal to zero. The first factor in both equations are identical. For the second factor Gik or G2
ik,

if Gik = 0 then G2
ik = 0, and vice versa. Thus if Eq. (15) holds, Eq. (17) also holds and vice

versa. u–
Next we prove the convergence of the iterative update algorithm. We need to state two

propositions that are used in the proof of convergence.

Proposition 3: The residual of Eq. (13) is monotonically decreasing (non-increasing) under

the update given in Eq. (11) for fixed F .

Proof. We write J(H) as

J(H) = Tr(−2HT B+ + 2HT B− + HA+HT −HA−HT ) (18)

where A = F TF , B = XT F , and H = G.

We use the auxiliary function approach (2). A function Z(H, H̃) is called an auxiliary function

of J(H) if it satisfies

Z(H, H̃) ≥ J(H), Z(H, H) = J(H), (19)
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for any H, H̃ . Define

H(t+1) = arg min
H

Z(H, H (t)), (20)

where we note that we require the global minimum. By construction, we have J(H (t)) =

Z(H (t), H(t)) ≥ Z(H (t+1), H(t)) ≥ J(H (t+1)). Thus J(H (t)) is monotone decreasing (non-

increasing). The key is to find (1) appropriate Z(H, H̃) and (2) its global minimum. According

to Proposition 4 (see below), Z(H, H ′) defined in Eq. (21) is an auxiliary function of J and its

minimum is given by Eq. (22). According to Eq. (20), H (t+1) ← H and H (t) ← H ′; substituting

A = F T F , B = F T X , and H = G, we recover Eq. (11). u–
Proposition 4: Given the objective function J defined as in Eq. (18), where all matrices are

nonnegative, the following function

Z(H, H ′) = −
∑

ik

2B+
ikH

′
ik(1 + log

Hik

H ′
ik

) +
∑

ik

B−
ik

H2
ik + H ′2

ik

H ′
ik

+
∑

ik

(H ′A+)ikH
2
ik

H ′
ik

−
∑

ik`

A−
k`H

′
ikH

′
i`(1 + log

HikHi`

H ′
ikH

′
i`

) (21)

is an auxiliary function for J(H); i.e., it satisfies the requirements J(H) ≤ Z(H, H ′) and

J(H) = Z(H, H). Furthermore, it is a convex function in H and its global minimum is

Hik = arg min
H

Z(H, H ′) = H ′
ik

√
B+

ik + (H ′A−)ik

B−
ik + (H ′A+)ik

. (22)

Proof. The function J(H) is

J(H) = Tr(−2HTB+ + 2HTB− + HA+HT −HA−HT ). (23)

We find upper bounds for each of the two positive terms, and lower bounds for each of the

two negative terms. For the third term in J(H), using Proposition 5 (see below) and setting

A← I, B ← A+, we obtain an upper bound

Tr(HA+HT ) ≤
∑

ik

(H ′A+)ikH
2
ik

H ′
ik

.

The second term of J(H) is bounded by

Tr(HTB−) =
∑

ik

HikB
−
ik ≤

∑

ik

B−
ik

H2
ik + H ′2

ik

2H ′
ik

,
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using the inequality a ≤ (a2 + b2)/2b, which holds for any a, b > 0.

To obtain lower bounds for the two remaining terms, we use the inequality z ≥ 1 + logz,

which holds for any z > 0, and obtain

Hik

H ′
ik

≥ 1 + log
Hik

H ′
ik

, (24)

and
HikHi`

H ′
ikH

′
i`

≥ 1 + log
HikHi`

H ′
ikH

′
i`

. (25)

From Eq. (24), the first term in J(H) is bounded by

Tr(HTB+) =
∑

ik

B+
ikHik ≥

∑

ik

B+
ikH

′
ik(1 + log

Hik

H ′
ik

).

From Eq. (25), the last term in J(H) is bounded by

Tr(HA−HT ) ≥
∑

ik`

A−
k`H

′
ikH

′
i`(1 + log

HikHi`

H ′
ikH

′
i`

).

Collecting all bounds, we obtain Z(H, H ′) as in Eq. (21). Obviously, J(H) ≤ Z(H, H ′) and

J(H) = Z(H, H).

To find the minimum of Z(H, H ′), we take

∂Z(H, H ′)

∂Hik
= −2B+

ik

H ′
ik

Hik
+ 2B−

ik

Hik

H ′
ik

+
2(H ′A

+

)ikHik

H ′
ik

− 2
(H ′A

−

)ikH
′
ik

Hik
. (26)

The Hessian matrix containing the second derivatives

∂2Z(H, H ′)

∂Hik∂Hj`
= δijδk`Yik

is a diagonal matrix with positive entries

Yik =
4[(B+)ik + (H ′A−)ik]H

′
ik

H2
ik

+ 2
B−

ik + (H ′A+)ik

H ′
ik

Thus Z(H, H ′) is a convex function of H . Therefore, we obtain the global minimum by setting

∂Z(H, H ′)/∂Hik = 0 in Eq. (26) and solving for H . Rearranging, we obtain Eq. (22). u–
Proposition 5: For any matrices A ∈ � n×n

+ , B ∈ � k×k
+ , S ∈ � n×k

+ , S ′ ∈ � n×k
+ , with A and B

symmetric, the following inequality holds:
n∑

i=1

k∑

p=1

(AS ′B)ipS
2
ip

S ′
ip

≥ Tr(STASB). (27)
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Proof. Let Sip = S ′
ipuip. Using an explicit index, the difference ∆ between the left-hand side

and the right-hand side can be written as

∆ =
n∑

i,j=1

k∑

p,q=1

AijS
′
jqBqpS

′
ip(u

2
ip − uipujq).

Because A and B are symmetric, this is equal to

∆ =
n∑

i,j=1

k∑

p,q=1

AijS
′
jqBqpS

′
ip(

u2
ip + u2

jq

2
− uipujq) =

1

2

n∑

i,j=1

k∑

p,q=1

AijS
′
jqBqpS

′
ip(u

2
ip − u2

jq)
2 ≥ 0.

u–
In the special case in which B = I and S is a column vector, this result reduces to a result due

to (2).

B. Algorithm for Convex-NMF

We describe the algorithm for computing the Convex-NMF factorization when X has mixed

sign (denoted as X±). When X is nonnegative, the algorithm is simplified in a natural way.

(C0) Initialize W and G. There are two methods. (A) Fresh start. Do a K-means clustering. Let

the obtained cluster indicators be H = (h1, · · · ,hk), Hik = {0, 1}. Then set G(0) = H + 0.2E,

where E is a matrix of all 1’s. The cluster centroids can be computed as fk = Xhk/nk, or

F = XHD−1
n , where Dn = diag(n1, · · · , nk). Thus W = HD−1

n . We smooth W and set

W (0) = (H + 0.2E)D−1
n . (B) Suppose we already have an NMF or Semi-NMF solution. In this

case G is known and we set G(0) = G + 0.2E. We solve X = XWGT for W . This leads

to W = G(GT G)−1. Since W must be nonnegative, we set W (0) = W+ + 0.2E〈W +〉, where

〈A〉 =
∑

ij |Aij|/||A||0 and where ||A||0 is the number of nonzero elements in A.

Then update G+ and W+ alternatively until convergence as follows:

(C1) Update G+ using

Gik ← Gik

√
[(XT X)+W ]ik + [GW T (XTX)−W ]ik
[(XT X)−W ]ik + [GW T (XT X)+W ]ik

. (28)

This can be derived in a manner similar to Eq. (11), replacing F by XW ;

(C2) Update W+ using

Wik ←Wik

√
[(XT X)+G]ik + [(XT X)−WGT G]ik
[(XT X)−G]ik + [(XT X)+WGT G]ik

. (29)
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The computational complexity for convex-NMF is of order n2p+m(2n2k +nk2) for Eq. (28)

and is of order m(2n2k + 2nk2) for Eq. (29), where m ∼ 100 is the number of iterations

to convergence. These are matrix multiplications and can be computed efficiently on most

computers.

The correctness and convergence of the algorithm are addressed in the following:

Theorem 6: Fixing G, under the update rule for W of Eq. (29), (A) the residual ||X −
XWGT ||2 decreases monotonically (non-increasing), and (B) the solution converges to a KKT

fixed point.

The proof of part (B) is given by Proposition 7, which ensures the correctness of the solution.

The proof of part (A) is given by Proposition 8, which ensures the convergence of the algorithm.

Proposition 7: The limiting solution of update rule of Eq. (29) satisfies the KKT condition.

Proof. We minimize

J2 = ||X −XWGT ||2 = Tr (XT X − 2GT XT XW + W T XT XWGTG),

where X ∈ � p×n , W ∈ � n×k
+ , G ∈ � k×n

+ . The minimization with respect to G is the same as

in Semi-NMF. We focus on the minimization with respect to W ; that is, we minimize

J(W ) = Tr (−2GT XT XW + W T XT XWGTG). (30)

We can easily obtain the KKT complementarity condition

(−XT XG + XT XWGTG)ikWik = 0. (31)

Next we can show that the limiting solution of the update rule of Eq. (29) satisfies

(−XT XG + XT XWGTG)ikW
2
ik = 0. (32)

These two equations are identical for the same reasons that Eq. (17) is identical to Eq. (15).

Thus the limiting solution of the update rule satisfies the KKT fixed point condition. u–
Proposition 8: The residual, Eq. (30), decreases monotonically (it is non-increasing). Thus

the algorithm converges.

Proof. We write J(W ) as

J(H) = Tr (−2HT B+ + 2HT B− + HTA+HC −HTA−HC), (33)
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where B = XT XG, A = XT X , C = GT G, H = W . J(H) differs from J(H) of Eq. (23) in that

the last two terms has four matrix factors instead of three. Following the proof of Proposition 4,

with the aid of Proposition 5, we can prove that the following function

Z(H, H ′) = −
∑

ik

2B+
ikH

′
ik(1 + log

Hik

H ′
ik

) +
∑

ik

B−
ik

H2
ik + H ′2

ik

H ′
ik

+
∑

ik

(A
+

H ′C)ikH
2
ik

H ′
ik

−
∑

ijk`

A−
ijH

′
jkCk`H

′
i`(1 + log

HjkHi`

H ′
jkH

′
i`

) (34)

is an auxiliary function of J(H), and furthermore, Z(H, H ′) is a convex function of H and its

global minimum is

Hik = arg min
H

= H ′
ik

√
B+

ik + (A−H ′C)ik

B−
ik + (A+H ′C)ik

. (35)

From its minima and setting H (t+1) ← H and H (t) ← H ′, we recover Eq. (29), letting B+ =

(XT X)
+

G, B− = (XT X)
−

G, A = XT X , C = GT G and H = W . u–

C. Some generic properties of NMF algorithms

First, we note all these multiplicative updating algorithms are guaranteed to converge to a local

minimum, but not necessarily to a global minimum. This is also true for many other algorithms

that have a clustering flavor, including K-means, EM for mixture models, and spectral clustering.

Practical experience suggests that K-means clustering tends to converge to a local minimum that

is close to the initial guess, whereas NMF and EM tend to explore a larger range of values.

Second, we note that NMF updating rules are invariant with respect to rescaling of NMF. By

rescaling, we mean FGT = (FD−1)(GDT )T = F̃ G̃T , where D is a k-by-k positive diagonal

matrix. Under this rescaling, Eq. (11) becomes

G̃ik ← G̃ik

√
(XT F̃ )+

ik + [G̃(F̃ T F̃ )−]ik

(XT F̃ )−ik + [G̃(F̃ T F̃ )+]ik
, (36)

Since (XT F̃ )ik = (XT F )ikD
−1
kk , (G̃F̃ T F̃ )ik = (G̃F̃ T F )ikD

−1
kk and (G̃)ik = (G)ikDkk , Eq. (36)

is identical to Eq. (11).

Third, we note that the convergence rate of the NMF multiplicative updating algorithm is

generally of first order. To see this, we set Θ =



F

G



 and view the updating algorithms as a

mapping Θ(t+1) = M(Θ(t)). At convergence, Θ∗ = M(Θ∗). The objective functions have been
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proved to be non-increasing, J(Θ(t+1)) ≤ J(Θ(t)). Following Xu & Jordan (26), we expand1

Θ 'M(Θ∗) + (∂M/∂Θ)(Θ− Θ∗). Therefore,

‖Θ(t+1) − Θ∗‖ ≤ ‖∂M

∂Θ
‖ · ‖Θ(t) − Θ∗‖

under an appropriate matrix norm. In general, ∂M/∂Θ 6= 0. Thus these updating algorithms

have a first-order convergence rate, which is the same as the EM algorithm (26).

Fourth, we note that there are many ways to initialize NMF. In our paper, we use the

equivalence between NMF and relaxed K-means clustering to initialize F and G to the K-means

clustering solution. Lee and Seung (2) suggest random initialization. An SVD-based initialization

has recently been proposed by Boutsidis and Gallopoulos (27). See more initialization references

in (27; 17).

IV. SPARSITY OF CONVEX-NMF

In the original presentation of NMF, (1) emphasized the desideratum of sparsity. For example,

in the case of image data, it was hoped that NMF factors would correspond to a coherent part of

the original image, for example a nose or an eye; these would be sparse factors in which most of

the components would be zero. Further experiments have shown, however, that NMF factors are

not necessarily sparse, and sparsification schemes have been developed on top of NMF (16; 5).

Parts-of-whole representations are not necessarily recovered by NMF, but conditions for obtaining

parts-of-whole representations have been discussed (28). See also (29) (30), and (31) for related

literatures on sparse factorizations in the context of PCA.

Interestingly, the Convex-NMF factors W and G are naturally sparse. We provide theoret-

ical support for this assertion in this section, and provide additional experimental support in

Section VI. (Sparseness can also be seen in the illustrative example presented in Section II-C).

We first note that Convex-NMF can be reformulated as

min
W,G≥0

∑

k

σ2
k||vT

k (I −WGT )||2, s.t. W ∈ Rn×k
+ , G ∈ Rk×n

+ , (37)

where we use the SVD of X = UΣV T and thus have XTX =
∑

k σ2
kvkv

T
k . Therefore ||X −

XWGT ||2 = Tr (I − GW T )XT X(I −WGT ) =
∑

k σ2
k||vT

k (I −WGT )||2. We now claim that

1Note that a nonnegativity constraint needs to be enforced.
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(a) this optimization will produce a sparse solution for W and G, and (b) the more slowly σk

decreases, the sparser the solution.

This second part of our argument is captured in a Lemma:

Lemma 9: The solution of the following optimization problem

min
W,G≥0

||I −WGT ||2, s.t. W, G ∈ Rn×K
+ ,

is given by W = G = any K columns of (e1 · · ·eK), where ek is a basis vector: (ek)i6=k =

0, (ek)i=k = 1.

Proof. We first prove the result for a slightly more general case. Let D = diag(d1, · · · , dn) be

a diagonal matrix and let d1 > d2 > · · · > dn > 0. The Lemma holds if we replace I by D and

W = G = (
√

d1e1 · · ·
√

d1eK).2 The proof follows from the fact that we have a unique spectral

expansion Dek = dkek and D =
∑n

k=1 dkeke
T
k . Now we take the limit: d1 = · · · = dn = 1. The

spectral expansion is not unique: I =
∑n

k=1 uku
T
k for any orthogonal basis (u1, · · · ,un) = U .

However, due the nonnegativity constraint, (e1 · · ·en) is the only viable basis. Thus W = G =

for any K columns of (e1 · · ·en). u–
The main point of Lemma 9 is that the solutions to minW,G ||I −WGT ||2 are the sparsest

possible rank-K matrices W, G. Now returning to our characterization of Convex-NMF in

Eq. (37), we can write

||I −WGT ||2 =
∑

k

||eT
k (I −WGT )||2.

Comparing to the Convex-NMF case, we see that the projection of (I − WGT ) onto the

principal components has more weight while the projection of (I−WGT ) onto the non-principal

components has less weight. Thus we conclude that sparsity is enforced strongly in the principal

component subspace and weakly in the non-principal component subspace. Overall, Lemma 9

provides a basis for concluding that Convex-NMF tends to yield sparse solutions.

A more intuitive understanding of the source of the sparsity can be obtained by counting

parameters. Note in particular that Semi-NMF is based on Nparam = kp+kn parameters whereas

Convex-NMF is based on Nparam = 2kn parameters. Considering the usual case n > p (i.e., the

number of data points is more than the data dimension), Convex-NMF has more parameters than

2In NMF, the degree of freedom of diagonal rescaling is always present. Indeed, let E = (e1 · · · eK). Our choice of W =

G = E
√

D can be written in different ways WGT = (E
√

D)(E
√

D)T = (EDα)(ET D1−α)T , where −∞ < α < ∞.
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Semi-NMF. But we know that Convex-NMF is a special case of Semi-NMF. The resolution of

these two contradicting facts is that some of the parameters in Convex-NMF must be zero.

V. ADDITIONAL REMARKS

Convex-NMF stands out for its interpretability and its sparsity properties. In this section we

consider two additional interesting aspects of Convex-NMF and we also consider the relationship

of all of the NMF-like factorizations that we have developed to K-means clustering.

A. Kernel-NMF

Consider a mapping xi → φ(xi), or X → φ(X) = (φ(x1), · · · , φ(xn)). A standard NMF or

Semi-NMF factorization φ(X) ≈ FGT would be difficult to compute since F and G depend

explicitly on the mapping function φ(·). However, Convex-NMF provides an appealing solution

of this problem:

φ(X) ≈ φ(X)WGT .

Indeed, it is easy to see that the minimization objective

||φ(X)− φ(X)WGT ||2 = Tr[φ(X)T φ(X)− 2GT φT (X)φ(X)W + W T φT (X)φ(X)WGTG]

depends only on the kernel K = φT (X)φ(X). In fact, the update rules for Convex-NMF

presented in Eqs.(29) and (28) depend on XT X only. Thus it is possible to “kernelize” Convex-

NMF in a manner analogous to the kernelization of PCA and K-means.

B. Cluster-NMF

In Convex-NMF, we require the columns of F to be convex combinations of input data.

Suppose now that we interpret the entries of G as posterior cluster probabilities. In this case

the cluster centroids can be computed as fk = Xgk/nk, or F = XGD−1
n , where Dn =

diag(n1, · · · , nk). The extra degree of freedom for F is not necessary. Therefore, the pair

of desiderata: (1) F encodes centroids, and (2) G encodes posterior probabilities motivates

a factorization X ≈ XGD−1
n GT . We can absorb D

− 1

2
n into G and solve for

Cluster-NMF : X ≈ XG+GT
+. (38)

We call this factorization Cluster-NMF because the degree of freedom in this factorization is

the cluster indicator G, as in a standard clustering problem. The objective function is J =

‖X −XGGT‖2.
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C. Relation to relaxed K-means clustering

NMF, Semi-NMF, Convex-NMF, Cluster-NMF and Kernel-NMF all have K-means clustering

interpretations when the factor G is orthogonal (GT G = I). Orthogonality and nonnegativity

together imply that each row of G has only one nonnegative element; i.e., G is a bona fide

cluster indicator. This relationship to clustering is made more precise in the following theorem.

Theorem 10: G-orthogonal NMF, Semi-NMF, Convex-NMF, Cluster-NMF and Kernel-NMF

are all relaxations of K-means clustering.

Proof. For NMF, Semi-NMF and Convex-NMF, we first eliminate F . The objective is J =

‖X − FGT‖2 = Tr(XT X − 2XT FGT + FF T ). Setting ∂J/∂F = 0, we obtain F = XG. Thus

we obtain J = Tr(XT X − GT XTXG). For Cluster-NMF, we obtain the same result directly:

J = ‖X − XGGT‖2 = Tr(XT X − GT XT XG). For Kernel-NMF, we have J = ‖φ(X) −
φ(X)WGT‖2 = Tr(K − GT KW + W T KW ), where K is the kernel. Setting ∂J/∂W = 0,

we have KG = KW . Thus J = Tr(XT X − GT KG). In all five of these cases, the first

terms are constant and do not affect the minimization. The minimization problem thus becomes

maxGT G=I Tr(GT KG), where K is either a linear kernel XT X or 〈φ(X), φ(X)〉. It is known

that this is identical to (kernel-) K-means clustering (32; 33). u–
In the definitions of NMF, Semi-NMF, Convex-NMF, Cluster-NMF and Kernel-NMF, G is

not restricted to be orthogonal; these NMF variants are soft versions of K-means clustering.

VI. EXPERIMENTS

We first present the results of an experiment on synthetic data which aims to verify that

Convex-NMF can yield factorizations that are close to cluster centroids. We then present exper-

imental results for real data comparing K-means clustering and the various factorizations.

A. Synthetic dataset

One main theme of our work is that the Convex-NMF variants may provide subspace fac-

torizations that have more interpretable factors than those obtained by other NMF variants (or

PCA). In particular, we expect that in some cases the factor F will be interpretable as containing

cluster representatives (centroids) and G will be interpretable as encoding cluster indicators. We

begin with a simple investigation of this hypothesis. In Figure 1, we randomly generate four
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two-dimensional datasets with three clusters each. Computing both the Semi-NMF and Convex-

NMF factorizations, we display the resulting F factors. We see that the Semi-NMF factors

(denoted Fsemi in the figure) tend to lie distant from the cluster centroids. On the other hand, the

Convex-NMF factors (denoted Fcnvx) almost always lie within the clusters.
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Fig. 1. Four random datasets, each with 3 clusters. “ � ” are Fsemi factors and “ � ” are Fcnvx factors.

B. Real life datasets

We conducted experiments on the following datasets: Ionosphere and Wave from the UCI

repository, the document datasets URCS, WebkB4, Reuters (using a subset of the data collection

which includes the 10 most frequent categories), WebAce and a dataset which contains 1367

log messages collected from several different machines with different operating systems at the
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School of Computer Science at Florida International University. The log messages are grouped

into 9 categories: configuration, connection, create, dependency, other, report, request, start, and

stop. Stop words were removed using a standard stop list. The top 1000 words were selected

based on frequencies.

Table I summarizes the datasets and presents our experimental results. These results are

averages over 10 runs for each dataset and algorithm.

We compute clustering accuracy using the known class labels. This is done as follows: The

confusion matrix is first computed. The columns and rows are then reordered so as to maximize

the sum of the diagonal. We take this sum as a measure of the accuracy: it represents the

percentage of data points correctly clustered under the optimized permutation.

To measure the sparsity of G in the experiments, we compute the average of each column

of G and set all elements below 0.001 times the average to zero. We report the number of the

remaining nonzero elements as a percentage of the total number of elements. (Thus small values

of this measure correspond to large sparsity).

A consequence of the sparsity of G is that the rows of G tend to become close to orthog-

onal. This indicates a hard clustering (if we view G as encoding posterior probabilities for

clustering). We compute the normalized orthogonality, (GT G)nm = D−1/2(GT G)D−1/2, where

D = diag(GT G). Thus diag[(GT G)nm] = I . We report the average of the off-diagonal elements

in (GT G)nm as the quantity “Deviation from Orthogonality” in the table.

From the experimental results, we observe the following: (1) All of the matrix factorization

models are better than K-means on all of the datasets. This is our principal empirical result. It

indicates that the NMF family is competitive with K-means for the purposes of clustering. (2)

On most of the nonnegative datasets, NMF gives somewhat better accuracy than Semi-NMF and

Convex-NMF (with WebKb4 the exception). The differences are modest, however, suggesting

that the more highly-constrained Semi-NMF and Convex-NMF may be worthwhile options if

interpretability is viewed as a goal of a data analysis. (3) On the datasets containing both positive

and negative values (where NMF is not applicable) the Semi-NMF results are better in terms

of accuracy than the Convex-NMF results. (3) In general, Convex-NMF solutions are sparse,

while Semi-NMF solutions are not. (4) Convex-NMF solutions are generally significantly more

orthogonal than Semi-NMF solutions.
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TABLE I

DATASET DESCRIPTIONS AND RESULTS.

Reuters URCS WebKB4 Log WebAce Ionosphere Wave

data sign + + + + + ± ±
# instance 2900 476 4199 1367 2340 351 5000

# class 10 4 4 9 20 2 2

Clustering Accuracy

K-means 0.4448 0.4250 0.3888 0.6876 0.4001 0.4217 0.5018

NMF 0.4947 0.5713 0.4218 0.7805 0.4761 - -

Semi-NMF 0.4867 0.5628 0.4378 0.7385 0.4162 0.5947 0.5896

Convex-NMF 0.4789 0.5340 0.4358 0.7257 0.4086 0.5470 0.5738

Sparsity (percentage of non-zeros in matrix G)

Semi-NMF 0.9720 0.9688 0.9993 0.9104 0.9543 0.8177 0.9747

Convex-NMF 0.6152 0.6448 0.5976 0.5070 0.6427 0.4986 0.4861

Deviation from Orthogonality

Semi-NMF 0.6578 0.5527 0.7785 0.5924 0.7253 0.9069 0.5461

Convex-NMF 0.1979 0.1948 0.1146 0.4815 0.5072 0.1604 0.2793

C. Shifting mixed-sign data to nonnegative

While our algorithms apply directly to mixed-sign data, it is also possible to consider shifting

mixed-sign data to be nonnegative by adding the smallest constant so all entries are nonnegative.

We performed experiments on data shifted in this way for the Wave and Ionosphere data. For

Wave, the accuracy decreases to 0.503 from 0.590 for Semi-NMF and decreases to 0.5297 from

0.5738 for Convex-NMF. The sparsity increases to 0.586 from 0.498 for Convex-NMF. For

Ionosphere, the accuracy decreases to 0.647 from 0.729 for Semi-NMF and decreases to 0.618

from 0.6877 for Convex-NMF. The sparsity increases to 0.829 from 0.498 for Convex-NMF. In

short, the shifting approach does not appear to provide a satisfactory alternative.
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Fig. 2. A dataset with 2 clusters in 3D. Top Left: clusters obtained using K-means, as indicated by either “∇” or “ � ”. Top

Right: clusters obtained using NMF. Bottom: The difference g2(i)−g1(i), i = 1, · · · , 200, “∇” for those mis-clustered points,

and “ � ” for correctly-clustered points.

D. Flexibility of NMF

A general conclusion is that NMF almost always performs better than K-means in terms

of clustering accuracy while providing a matrix approximation. We believe this is due to the

flexibility of matrix factorization as compared to the rigid spherical clusters that the K-means

clustering objective function attempts to capture. When the data distribution is far from a spherical

clustering, NMF may have advantages. Figure 2 gives an example. The dataset consists of two

parallel rods in 3D space containing 200 data points. The two central axes of the rods are

0.3 apart and they have diameter 0.1 and length 1. As seen in the figure, K-means gives a

poor clustering, while NMF yields a good clustering. The bottom panel of Figure 2 shows the

differences in the columns of G (each column is normalized to
∑

i gk(i) = 1). The mis-clustered

points have small differences.
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Finally, note that NMF is initialized randomly for the different runs. We investigated the

stability of the solution over multiple runs and found that NMF converges to solutions F and

G that are very similar across runs; moreover, the resulting discretized cluster indicators were

identical.

VII. CONCLUSIONS

We have presented a number of new nonnegative matrix factorizations. We have provided

algorithms for these factorizations and theoretical analysis of the convergence of these algorithms.

The ability of these algorithms to deal with mixed-sign data makes them useful for many

applications, particularly given that covariance matrices are often centered.

Semi-NMF offers a low-dimensional representation of data points which lends itself to a

convenient clustering interpretation. Convex-NMF further restricts the basis vectors to be convex

combinations of data points, providing a notion of cluster centroids for the basis. We also

briefly discussed additional NMF algorithms—Kernel-NMF and Cluster-NMF—that are further

specializations of Convex-NMF.

We also showed that the NMF variants can be viewed as relaxations of K-means clustering,

thus providing a closer tie between NMF and clustering than has been present in the literature

to date. Moreover, our empirical results showed that the NMF algorithms all outperform K-

means clustering on all of the datasets that we investigated in terms of clustering accuracy. We

view these results as indicating that the NMF family is worthy of further investigation. We view

Semi-NMF and Convex-NMF as particularly worthy of further investigation, given their native

capability for handling mixed-sign data and their particularly direct connections to clustering.
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