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Abstract 
 
This paper proposes a particle swarm optimization (PSO) 

approach to support electricity producers for multiperiod optimal 
contract allocation. The producer risk preference is stated by a utility 
function (U) expressing the tradeoff between the ex- pectation and 
variance of the return. Variance estimation and ex- pected return are 
based on a forecasted scenario interval deter- mined by a price 
range forecasting model developed by the au- thors. A certain 
confidence level is associated to each forecasted scenario interval. 
The proposed model makes use of contracts with physical (spot and 
forward) and financial (options) settlement. PSO performance was 
evaluated by comparing it with a genetic algo- rithm-based approach. 
This model can be used by producers in deregulated electricity 
markets but can easily be adapted to load serving entities and 
retailers. Moreover, it can easily be adapted to the use of other type of 
contracts. 

Index Terms:Contracts, electricity markets, genetic algo- rithms, 
hedging, particle swarm optimization, risk management. 

 

 
I. INTRODUCTION 

 

 

 

RADITIONALLY, electricity market models were based 

on monolithic regulated public utilities, where the prices were 

stable and predictable over a relatively long-term horizon, and 

therefore, the risk involved on the energy business was low. 

Similarly to other sectors, electricity markets have undergone 

a re-regulation and liberalization process, attempting to create 

more desirable markets. However, electricity market is a special 

case of a commodity market, due to the difficulty on storing 

electric energy and to the necessity of maintaining the system 

constantly in balance. 

All over the world, the electric sector liberalization and 

restructuration process has as core a spot market managed  by 

a market operator (MO), where the generators and the load 

serving entities sell or buy, respectively, the energy on an hour 

or half-hour basis. 

 

 
 

 

The electric energy non-storability causes very wide fluctua- 

tions on spot prices that, when associated to heat or cold waves, 

can lead the spot price to climb up to 1000% for short periods 

of time [1]. This is unusually high even when compared with 

other commodities markets. Another implication of the elec- 

tricity non-storability is the impossibility of transferring a cer- 

tain amount of energy from one part of the world to another or 

even from a neighboring region without considering the electric 

transmission constraints. 

Moreover, charge characteristics (like seasonality, mean-re- 

version, and stochastic growth) and producers characteristics 

(generation technology, generators availability, fuel prices [2] 

and technical restrictions) introduce big challenges but also high 

risks, such as high price volatility. 

The liberalization of the electric sector leads to fierce compe- 

tition on several activity sectors and, in particular, on the pro- 

duction sector [3], [4]. Power producers have to change the way 

they do business, evolving from monopolist market to unbun- 

dled companies in direct competition. They also have to adapt 

themselves to a new reality, which may require reducing the 

overcapacity by closing power plants, abandoning plans for con- 

structing new ones, and considering plant efficiency as an in- 

creasingly important factor. This requires to rethink the entire 

productive process and to study the possibility of constructing 

new lower capacity power plants using new technologies. 

Before the restructuration and liberalization process, prices 

were stable and predictable over a relatively long-term horizon, 

and therefore, the risk involved on the energy business was low. 

Electricity market participants, namely, producers, now more 

than ever need tools that allow them to practice the hedge against 

the volatility of the spot price. 

Responding to that need, derivatives markets allow negoti- 

ating contracts with underlying asset the electric energy. These 

markets have an important role on practicing the hedge against 

the volatility of the spot market price and simultaneously to 

eliminate the risk of credit and to turn the market more liquid. 

Derivatives markets negotiate forward, futures, and options con- 

tracts. Forward and futures contracts are similar, having as the 

main difference the fact that futures contracts are exclusively 

of financial type while forward contracts comprise the phys- 

ical delivery of the energy. Note that, for instance, in Nord 

Pool, forward and futures contracts are exclusively of finan- 

cial type, having as the main difference the duration. Futures 

are short-term contracts and forward are long-term contracts. 

The financial settlement for forward contracts involves no daily 

mark-to-market settlement and therefore requires posting cash 

only during the delivery period, starting at the contract’s    due 
 



 

 
 

date. Options contracts main difference from forward and fu- 

tures contracts is the fact that they give to the buyer the exer- 

cising decision right, but to have this right, he has to previously 

pay a certain amount of money designated by premium. 

High price volatility associated to contracts with complex 

characteristics is a hard task and has been a topic of some 

studies reported in the literature. In these studies, some models 

have been proposed; in [5], solutions for electricity producers 

in the field of financial risk management for electric energy 

contract evaluation using efficient frontier as a tool to identify 

the preferred contract portfolio are proposed. A decision sup- 

port system based on stochastic simulation, optimization, and 

multicriteria analysis is applied to the electricity retailer in [6]. 

A statistical study of direct and cross hedging strategies using 

futures contracts in an electricity market is presented in [7] and 

[8]. A framework to obtain the optimal bidding strategy of a 

thermal price-taker producer on a pool-based electric energy 

market is presented in [9]. None of the cited studies make use 

of option pricing analysis or other decision analysis techniques 

used in modern finance to evaluate uncertainties. The use of 

option pricing analysis [10] or other decision analysis tech- 

niques instead of portfolio models is based on the assumption 

that the market is complete. However, uncertainties associated 

to generator availability, fuel prices, technical restrictions, and 

weather conditions  turn  difficult,  if  not  impossible,  to find 

a replicating portfolio that perfectly matches the future spot 

market payoffs. The market power exercised by some agents is 

also a source of uncertainty. In addition, several markets around 

the world are still on their child stage, with a small number of 

financial tools for an efficient risk management. Another issue 

in power markets is that electricity cannot be stored for later 

use. As a consequence, the strategy of buying the asset today to 

offset part of future losses does not apply. The closest strategy 

is to buy forward or futures contracts. On complete market and 

to avoid arbitrage opportunities, the delivery price of forward 

and futures contracts should be equal to the expected spot 

market price for the delivery period, which does not always 

happen. Based on this, we conclude that electricity markets are 

not complete, and so, risk attitudes and mean variance frontiers 

are still relevant. 

In this paper, an approach to find the optimal contracts port- 

folio for electricity producers is proposed. Contrary to most 

techniques found in the literature, the approach presented has 

as an advantage the possibility of being applied to multiperiod 

programming. Due to the complexity of the problem, we make 

use of particle swarm optimization (PSO) [11] to find the op- 

timal solution. The producer risk preference is stated by the 

maximization of a mean variance utility function (U) in terms 

of the tradeoff between the expectation and variance of the re- 

turn. A mean variance formulation was chosen to the value at 

risk (VAR) criterion, because the value at risk formulation gen- 

erally provides a hard constraint to optimization problems [12]. 

However, as demonstrated in [13], the use of a Lagrangean re- 

laxation on the value at risk formulation results in a formulation 

that resembles the mean variance very closely. 

Finding an optimal portfolio based on a predicted single value 

is not a good practice in risk management, unless we are 100% 

certain that the price predicted is correct. Due to the specific na- 

ture of the underlying asset, price forecast on electricity markets 

 

has been a hard task. Factors like charge characteristics (sea- 

sonality, mean-reversion, and stochastic growth) and producer’s 

characteristics (technology, generation availability, fuel prices, 

technical restrictions, and import/export) are at the origin of the 

high price volatility in electricity markets. 

Due to the characteristics of mean variance formulation, we 

developed a method [14], [15] based on historical data that al- 

lows to forecast a maximum and a minimum value for each pe- 

riod of the system marginal price (SMP), with a certain confi- 

dence level , which is useful to calculate the mean and variance 

of the total return. 

PSO and genetic algorithm (GA) performance are evaluated 

to show that PSO is a very successful meta-heuristic technique 

for this particular problem. 

This paper is organized as follows. In Section II, a short 

overview of PSO is made. Section III provides the problem for- 

mulation description. In Section IV, a case study is presented, 

and Section V presents some relevant conclusions. 

 
II. PARTICLE SWARM OPTIMIZATION 

PSO [11], [16] is an evolutionary computational algorithm 

inspired by a natural system. On a given iteration, a set of solu- 

tions called “particles” move around the search space from one 

iteration to another according to rules that depend on three fac- 

tors: inertia (the particles tend to move in the direction they have 

previously moved), memory (the particles tend to move in the 

direction of the best solution found so far in their trajectory), 

and cooperation (the particles tend to move in the direction of 

the global best solution). 

The movement rule of each particle can be expressed by 

 
 

                                                    (1) 
 

where 

      new position of the particle  ;   

           current position of the particle  ; 

       new velocity of the particle   and is given by 

 
      

(2) 

where, 

dec(t) inertia weight that decreases with the number 

of iterations; 

                 previous velocity of the particle  ; 

random weights acceleration, from a uniform 

distribution in [0, 1], for each time step; 

weight fixed at the beginning of the process 

designated by cognitive acceleration 

parameter; 

weight fixed at the beginning of the process 

designated by social acceleration parameter; 

particle   best position found so far; 

pbest(gbest) best global position of all particles found so far. 



 

 
 

The inertia term controls the exploration and exploitation of 

the search space. If the velocity is too high, then the particles 

could move beyond a global solution. On the contrary, if ve- 

locity is too low, the particles could be trapped into a local op- 

timum. To achieve faster convergence and avoiding the prob- 

lems described above, we make the inertia term vary with the 

number of iterations and limit the maximum velocity of parti- 

cles to . 

 

III. PROBLEM FORMULATION 

To make a good resource management, producers constantly 

have to make short- and long-term decisions. Finding the op- 

timal portfolio for an electricity producer is a hard task, due to 

high price volatility and to the specific characteristics of the con- 

tracts that he can establish. Some of the contracts have nonlinear 

characteristics, which makes the decision even more difficult. 

Facing this new reality, producers need decision-support sys- 

tems to help them to decide which type of contracts they shall 

establish for the period or periods in question. 

So, a multiperiod decision-support system is proposed, which 

aims to find the “unknown optimal” portfolio that maximizes 

the expected return and, simultaneously, allows the practice of 

the hedge against the SMP volatility. To achieve this, the de- 

cision-support system maximizes a mean variance utility func- 

tion (U) of the total return . Costs of sales (like taxes, market 

commissions, and others) were not considered. 

Contractual diversification is the key issue for an efficient risk 

management. To achieve this, it is assumed that producers can 

make use of contracts with physical settlement (spot and for- 

ward contracts) and contracts with financial settlement (options 

contracts). 
 

A. Spot Contracts 

The spot market becomes the core of the main deregulated 

electricity markets around the world. Producers make extensive 

use of this market to sell their energy on an hour or half-hour 

basis. The revenue from the short position (who sells has a short 

position and who buys has a long position) obtained by the pro- 

ducer is dependent of the period  and scenario and is given by 

 
 

                                                  (3) 

where 

          revenue, in Euro, of the short position obtained by 

the producer in the spot market, for period and 

scenario ; 

System Marginal Price, in Euro/MWh, for period 

and scenario ; 

           energy amount, in MWh, that the producer decides 

to sell in the spot market for period  . 

 
B. Forward Contracts 

One of the most common methods used to hedge against spot 

price volatility is to establish forward contracts. Forward con- 

tracts are bilateral agreements in which two parts agree mu- 

tually on the characteristics (quantity, price, point of  delivery, 

 

and date/time). The payment is made only on a future date, 

eliminating the risk associated to price variation. Most forward 

contracts are traded in organized and over-the-counter (OTC) 

markets. 

As stated previously, producers can make use of forward con- 

tracts to sell energy. So, the revenue from short forward posi- 

tions obtained by the producer is given by (4). In our method, 

the delivery period in forward contracts is the same of all period 

in analysis 

 

                                     (4) 

 

where 
 

      revenue, in Euro, of the short position obtained by the 

producer in forward contracts; 

     delivery price, in Euro/MWh, of the forward contract; 

      energy amount, in MWh, that the producer decides to 

sell in forward contracts. 

Because on forward contracts the delivery price is fixed, its 

revenue is only dependent on the delivery price and quantity 

established in the contract. 

In this study, producers are not allowed to take any advan- 

tage of arbitrage opportunities, so not to obtain long forward 

positions. 

 

C. Options Contracts 

Traditionally, options in electricity markets are of financial 

type. There are four positions types on options contracts, and 

they are: short call, long call, short put, and long put. How- 

ever, in the decision-support system, it is assumed that producers 

could only establish short call and long put positions. These po- 

sitions are similar to the positions that the producer can establish 

to sell the produced energy with physical settlement. If the pro- 

ducer is allowed to establish the four positions types, the quan- 

tities to practice the hedge would be almost infinite if a financial 

limit is not established. In some electricity markets, options are 

on futures with daily settlement. The settlement price could be 

equal to the simple average of all 24 h for base load futures con- 

tracts or equal to the simple average of the prices for the hours 

between 8:00 A.M.and 20:00 P.M. for peak load futures contracts. 

It is also assumed that they are European-style options. (Euro- 

pean-style options can only be exercised at the beginning of the 

delivery date, while American-style options can be exercised at 

any time until the delivery date.) 

The characteristics of electricity prices, such as mean rever- 

sion, high degree of skewness, and non-constant volatility, ex- 

clude its modeling using commodity cost-of-carry models; thus, 

Black & Sholes formula is not applicable to electricity option 

pricing. A procedure to evaluate the price of options in elec- 

tricity markets, known as risk-neutral valuation, is presented in 

[17]. Binomial model could also be applied to evaluate elec- 

tricity options price, but it requires some adjustments. 

For the short call position, the buyer only exercises the option 

if the SMP is greater than the exercise price. In our method, 

the delivery period in call options is the same as all periods in 

analysis. 



 

 
 

The payoff for the short call position is given by 
 

 

 
(5) 

 

The optimization problem aims to maximize a mean variance 

utility function of the producer total return for the period in 

question. The mathematical formulation is given by 

 

where  

 

payoff, in Euro, of the short call position, for the 

period    and scenario ; 

premium, in Euro/MWh, of the call option; 

delivery price, in Euro/MWh, of the call option; 

System Marginal Price, in Euro/MWh, for the 

period    and scenario ; 

energy, in MWh, associated to the short call 

position obtained by the producer. 

Maximize  

subject to: 

 

 

 
where 

 

(7) 

 

(8) 

(9) 

 

 

 
(10) 

Because the call option exercise is dependent on the system 

marginal price scenario, the short call position payoff is depen- 

dent on the scenario considered for each period  . 

For the long put position, the option buyer (producer) will 

exercise it if the SMP is lower than the exercise price. 

The payoff for the long put position is given by 

 
 

 
 

 
 

with 

 

(11) 

 

 

 

 
(12) 

 
 

where 

  
 

 
  

 

 

 
payoff, in Euro, of the long put position, for 

period    and scenario ; 

premium, in Euro/MWh, of the put option; 

delivery price, in Euro/MWh, of the put option; 

(6)  

 
 

  
 

 

 

The variables meaning from (7) to (13) is as follows: 

 

                       producer total return in Euro; 

expected value of the return for the 

 

(13) 

System Marginal Price, in Euro/MWh, for period 

and scenario ; 

           energy, in MWh, associated to the long  put 

position obtained by the producer. 

Similarly to call options, the put option exercise is dependent 

on the SMP scenario; being so, the payoff is dependent on the 

considered scenario for the period  . It is assumed that the de- 

livery period on put options contracts is the same for all periods 

in analysis. 

 
 

D. Optimization Problem 
 

Several techniques have been developed for price forecast, 

using, for example, time series models [18] or artificial neural 

networks [19]. However, most of them try to forecast a single 

price for the period in question. Making decisions based only 

on a single forecasted value is risky. This is due to the fact that 

the values obtained by these techniques have always an error 

margin that depends on several factors such as: number and type 

of variables used in price forecast and of random factors that 

could influence the SMP. 

Trying to overcome this problem, a method was developed 

[14], [15] based on historical data that allows finding a max- 

imum and a minimum value for the SMP for the period in ques- 

tion. A certain confidence level is associated to the forecasted 

interval. 

maximum and minimum price range 

forecast for all periods , in Euro; 

              variance of the return for the maximum 

and minimum price forecast for all 
periods  , in Euro; 

  covariance matrix element of the 

returns for the maximum and minimum 

price range forecast, in Euro; 

                        return for the period    based on the 

maximum price forecast for that period, 

in Euro; 

                        return for the period    based on the 

minimum price forecast for that period, 

in Euro; 

T number of the considered periods; 

                              producer risk aversion factor; 

minimum energy, in MWh, that the 

producer can produce; 

maximum energy, in MWh, that the 

producer can produce; 

                            energy amount, in MWh, that  the 

producer decides to sell on the spot 

market for period  ; 

                            energy amount, in MWh, that  the 

producer decides to sell in forward 

contracts; 



 

 
 

energy, in MWh, associated to the short 

call position obtained by the producer; 

                            energy, in MWh, associated to the long 

put position obtained by the producer. 

The mean variance formulation is comparable to the VAR 

formulation due to factor [13]. However, the mean  variance 

formulation was used instead of a value at risk because it is com- 

putationally more efficient for a given and simultaneously al- 

lows practicing the hedge against the SMP volatility while the 

expected return is increased. The risk aversion factor was as- 

sumed to be equal for all periods. The value at risk formulation 

generally provides a hard constraint to optimization problems. 

Higher order information about the joint probability distribution 

of the payoff is necessary. In addition, the value at risk formu- 

lation is highly sensitive to the high impact of low probability 

events, which create “fat tails” in the distribution of payoffs. 

The authors’ previous work [14], [15], an interval for the SMP 

is determined with a certain confidence level , revealed to be 

useful for the mean variance formulation because it requires not 

only the expected value of the total return but also its variance. 

In the optimization formulation, the constraint (8) represents 

the operation limits. Constraint (9) guarantees that all   energy 

quantities are positive or equal to zero. 

 

 

 
Fig. 1. Real price and price range forecast, with confidence level \)\ = = a2%, 
for August 18–24, 2003. 

 
 
 

To satisfy constraint (9), a penalty function given by (19) and 

(20) is used as follows: 

The return for each period , expressed in Euro, is a function 

of the considered maximum or minimum price forecast scenario 

for that period and is equal to the sum of all revenues and op- 

tions payoffs minus the costs of production. The mathematical 

formulation of the return is given by 

 

 

 

where 

if  

   otherwise 
(19) 

 

 

 
 

 

where 

 
(14) 

 

(20) 

 

 
                                                  (15) 

 

Because the authors consider that options are exclusively of 

financial type, that is, their settlement is financial, the costs of 

production are only a function of the energy that the producer 

foresees to sell in the spot market and the energy established on 

forward contracts. The costs of production for each period and 

scenario  is given by (15). 

 

E. Penalty Functions 

To satisfy constraints (8) and (9) for each period, we use 

penalty functions that are added to (7). The penalty function 

used to satisfy (8) is given by 
 

if             and  

   otherwise 

(16) 

 

where 

 

(17) 

and 

(18) 



 

IV. CASE STUDY 

 

This section presents an example of a producer that wants 

(in July 2003) to find the optimal contracts portfolio for the 

months of August to December of the same year. 

Developed through the short-term method presented in 

[14] to increase the accuracy, the method presented in [15] is 

used in this example to forecast the price range between that 

period (August to December). Real load and price data from 

mainland Spanish market were used as historical data. Due to 

the impossi- bility to get temperature data to forecast the load 

for that period, real load data were used. However, in reality, 

the method pre- sented in [15] does not use the real load 

data but a “fictitious” maximum and minimum load for that 

period. We get “fictitious” maximum and minimum load 

applying scale factors that we get from the used historical 

data to train the neural networks. Thus, real load data from 

the previous year could also be used with good results. The 

forecasted method developed by the authors, and presented 

in [15], makes use of artificial neural networks and 

clustering techniques. 

For example, the price range forecast and the real price 

for August 18–24, 2003 is presented in Fig. 1. The real load 

for the same week is presented in Fig. 2. 

PSO was used to find the best solution. A comparison 

be- tween the PSO and GA algorithm is provided. 



 

 

 

 

 

Fig. 2.   Real load for August 18–24, 2003. 

 

 
TABLE I 

OPTIONS CONTRACTS CHARACTERISTICS 

 

 

 
 

A. Contracts Characteristics 

Options contracts characteristics with delivery period from 

August to December are presented in Table I. 

For the forward contracts with delivery period from August 

to December, a price was assumed to be equal to 25 Euro/MWh. 

The production cost function considered is represented by 

 

 

(21) 
 

with  in MW, C in Euro/h,              MW, and  

 MW. 

The producer’s cost function is considered the same for the 

entire period in analysis (five months). 

The main issue in mean variance formulation is the right 

choice of the producer risk aversion factor because the results 

are directly dependent of that factor. So, in this particular study 

case, we use a risk aversion factor equal to 1. Normally   the 

risk aversion factor varies between zero and three. We admit 

a risk aversion factor constant for the entire period; however, 

due to the dependence of the results with the risk aversion factor 

, a study of that relationship will also be made. 
 

B. PSO Parameters 

The PSO parameters used to find the best solution are pre- 

sented in Table II. 
 

C. GA Parameters 

The GA parameters used to find the best solution are pre- 

sented in Table III. 

 
 

TABLE II 
PSO  PARAMETERS 

 

 

 

TABLE III 
GA  PARAMETERS 

 

 

 

 

 

Fig. 3.   Monthly average of the SMP range forecast. 

 

 
 

D. Results 

In this section, results are presented, and an evaluation of 

PSO performance is made and compared with a GA. The stop- 

ping criterion was the maximum number of evaluations (fixed in 

400 000 evaluations). With 20 particles in the PSO and a popu- 

lation size of 50 for the GA, 20 000 iterations for PSO and 8000 

generations for GA were performed. Due to random initializa- 

tion, the trajectory for each run is different; so, we used ten runs 

to calculate the average and the standard deviation of the results. 

To find the optimal energy quantities to establish in forward 

and options contracts, the hedging period is divided in sub- 

periods with duration of one month. This allows reducing the 

number of variables and consequently turns the    optimization 

problem lighter. 

The graphical representation of the monthly average of the 

SMP range forecast is presented in Fig. 3. 



 

 

 
TABLE IV 

PSO RESULTS FOR THE NEXT FIVE MONTHS 

 

 

 

TABLE V 
GA RESULTS FOR THE NEXT FIVE  MONTHS 

 

 

 
 

 

 

Fig. 4.   PSO and GA fitness function evolution. 

 
 
 

Based on this information, we find the energy that the pro- 

ducer should sell in spot, forward, and options contracts for the 

next five months. 

The results for the considered case study using PSO are pre- 

sented in Table IV. 

Results for the case study using a GA are  presented in 

Table V. 

Comparing the standard deviation for each solution (see 

Tables IV and V), we conclude that PSO is more robust than 

the GA. 

The fitness function evolution for PSO and GA are presented 

in Fig. 4. From Fig. 4, we conclude that PSO, when compared 

with GA, finds a better solution using a smaller number of 

iterations. 

The mean and the standard deviation of the fitness functions 

for the ten runs are presented in Table VI. Table VI also includes 

 
TABLE VI 

PSO AND GA FITNESS FUNCTION COMPARISON 

 

 

 

 

 

Fig. 5.   Producer expected return in function of risk aversion factor y. 

 
 
 

the mean time necessary to reach the optimal solution for PSO 

and GA. 

It can be verified from Table VI that, for this particular 

problem, PSO is faster than GA (mean time), finds better 

solutions (mean fitness value), and is more robust (standard 

deviation). These simulations were made on an ASUS L5GX 

laptop, with a P4 3.2-GHz processor and 1 GB of memory. 

 

E. Expected Return and Associated Risk 

The mean variance formulation allows maximizing the 

expected return while limiting the risk. However, the optimal 

quantities that the producer shall sell for each period are di- 

rectly  dependent of the risk  aversion factor  .  In  Fig.  5, the 

expected return for each month as function of the risk aversion 

factor   is presented. These values were obtained using     the 

PSO meta-heuristic and the parameter values shown in Table II. 

Besides the optimum PSO parameters being also dependent on 

the fitness function, experimentations show that the number of 

evaluations used does not compromise the results and allows 

achieving the optimal solution. 

The risk as a function of factor risk aversion factor is pre- 

sented in Fig. 6. 

The spot energy quantities the producer shall sell on the spot 

market for each period as a function of risk aversion factor are 

presented in Fig. 7. 

Analyzing Figs. 5 and 6, we conclude that for the same risk 

aversion factor , the bigger the expected return, the bigger the 

risk (standard deviation of the return) to which the producer is 

exposed. Also from the same figures, the maximum expected 

return as well as the maximum risk (standard deviation of   the 



 

 
 

 

 

Fig. 6.   Risk in function of risk aversion factor  y. 

 

 

 

Fig. 7. Optimal energy quantities that producer should sell in spot market in 
function of risk aversion factor  y. 

 

 
return) are reached with a risk aversion factor equal to  zero. 

The reason for this is that when risk aversion factor is zero, the 

producer is indifferent to risk, and therefore, he will sell more 

energy on the spot market, as it can be seen in Fig. 7. In fact, as 

expected, the risk (standard deviation of the return) is inversely 

proportional to the risk aversion factor , and so is the  energy 

that the producer will sell in the spot market. 

F. Energy to Sell on Spot Market 

After defining the optimal quantities to establish in forward 

and options contracts, the producer has to decide every day the 

amount of energy that he shall sell in the spot market for the 

next day. 

In this system, it is assumed that the energy established in 

forward contracts is delivered on equal quantities on each hour 

during the entire five months. This is equal to the total energy 

divided by the number of hours of the five months. It was also 

assumed that options contracts have hourly settlement. 

So, the quantity of energy that the producer has to delivery, 

due to forward contract, for each hour and            and   using 

the PSO results, is given  by 

MWh.  The   hourly  settlement   energy  for  call   and 

 
 

TABLE VII 
OPTIMAL QUANTITIES TO SELL IN THE SPOT MARKET FOR AUGUST 18, 2003 

 

 

 

put options contracts, also using PSO results, are, respec- 

tively, MWh and 

MWh. 

Using the same methodology used earlier to get the optimum 

quantities to establish in forward and options contracts, the op- 

timal quantities to sell in the spot market for each hour are 

obtained. 

The optimal quantities that the producer should sell in the 

spot market for August 18, 2003, using PSO meta-heuristic, are 

presented in Table VII. 

The PSO settings are: 400 000 evaluations as stopping cri- 

teria, 20 particles, and 20 000 iterations. Due to random initial- 

ization, the trajectory for each run is different; so, ten runs were 

performed to calculate the average and the standard deviation of 

the results. 

V. CONCLUSION 

With the liberalization and restructuration of the electricity 

markets, producers are more exposed to price uncertainty, 

making the management of their resources more difficult. 

Besides the uncertainty associated to the SMP, the electricity 

markets agents, and producers in particular, have now con- 

tractual forms that existed only on traditional commodities 

markets. Decision-support systems that support electricity 

markets agents and producers in particular reveal to be of high 

importance and actuality. 

In this paper, a new decision-support system was proposed 

that allows producers to maximize their expected return while 

practicing the hedge against spot price uncertainty. This de- 

cision-support system has as main advantage its adaptability. 

Namely, it can be easily adapted to other electricity market 

agents, like, for example, load serving entities and brokers, and 



 

 
 

to other periods being only necessary to have the price forecast 

for that period. 

The PSO algorithm has been used to optimize producers’ re- 

turn and has proven to have significant advantages in terms of 

robustness and computation time, when compared with a GA. 
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