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Abstract: 13 

 14 

Animals transmit not only DNA but also a diversity of other molecules, such as 15 

RNA, proteins and metabolites, to their progeny via gametes.  To what extent 16 

do these molecules convey information between generations and does this 17 

information change according to their physiological state and environment? 18 

Here we review recent work on the molecular mechanisms by which ‘epigenetic’ 19 

information is transmitted between generations over different timescales and 20 

the importance of this information for development and physiology. 21 

  22 
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Main text: 23 

Introduction 24 

 25 

DNA is a reliable information transfer system because of the accuracy of 26 

DNA replication. Humans, for example, copy 6 billion bits of information to their 27 

offspring with an error rate of approximately 2 bits per 100 million1. However, 28 

eggs and sperm contain more than DNA, and it has become increasingly 29 

apparent in recent years that other molecules beyond the genome sequence 30 

transfer information between generations. Moreover, there are mounting 31 

examples in which this information is altered depending upon the physiological 32 

and environmental conditions of previous generations. Multiple mechanisms 33 

have been proposed to underlie non-DNA sequence-based inheritance and 34 

these can be either genome-associated (e.g. covalent modifications of DNA and 35 

histones or transfer of small RNAs complementary to genomic sequences) or 36 

genome-independent (e.g. microbiome transfer). They also vary in their 37 

generational duration, with inheritance spanning one generation to a seemingly 38 

indefinite number.  39 

The terms ‘intergenerational’ and ‘transgenerational’ are often used to 40 

describe such effects and require clarification. Transgenerational effects refer 41 

exclusively to phenomena that could not be ascribed to direct effects of a 42 

particular trigger on the affected organism. For instance, an environmental 43 

stimulus can directly affect a gestating embryo (and the already-formed oocytes 44 

within a female embryo in mammals2, 3). As such, only altered phenotypes 45 

occurring in the second or third generation after a trigger can truly be described 46 

as transgenerational for male and female transmission, respectively. Effects 47 

spanning shorter timescales are described as parental or intergenerational. 48 

Nonetheless, many described intergenerational effects share established 49 

mechanisms with transgenerational ones. Another term that warrants 50 

discussion is epigenetic, whose once broader meanings4 have narrowed in 51 

recent years, not without objections5, to most commonly refer only to genome-52 

associated mechanisms of non-DNA sequence-based inheritance - chiefly DNA 53 

methylation, histone modifications and inherited RNAs6. These specific 54 

‘epigenetic mechanisms’ underlie some, but not all, characterised examples of 55 
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intergenerational and transgenerational inheritance. 56 

A key difference between DNA sequence-based and other mechanisms 57 

of inheritance is the fidelity of information transfer. Whilst DNA-based 58 

information transfer is extremely high-fidelity, other mechanisms are normally 59 

far less robust. Consequently, the timescales of reliable information transfer by 60 

DNA sequence-based and other mechanisms are usually very different7. One 61 

point of confusion concerns two separate distinctions that are often conflated: 62 

firstly, genetic (i.e. DNA-based) vs epigenetic mechanisms of inheritance, and 63 

secondly, environmentally-responsive vs unresponsive phenomena. Inheritance 64 

of environmentally-acquired traits can also be mediated through genetic 65 

inheritance, as occurs in the CRISPR innate immunity system of prokaryotes8. 66 

Conversely, stable long-term transcriptional repression is often achieved by an 67 

inherited epigenetic memory, but one that is largely unresponsive to 68 

environment and physiology. It is the question of whether epigenetic 69 

mechanisms can provide a heritable (and potentially adaptive) memory of 70 

ancestral environmental exposure that has proven most controversial3. 71 

Numerous examples of intergenerational and transgenerational effects in 72 

animals have now been described. Model organisms such as Caenorhabditis 73 

elegans have emerged as powerful systems in which to study these 74 

phenomena, owing to their short generation times and the ease with which 75 

genomic variation can be controlled. However, before the spectre of Lamarck 76 

rises anew, we would contest that few well-established transgenerational effects 77 

are adaptive, in the sense of preparing future generations for enduring altered 78 

environmental conditions. Indeed, such adaptive changes, conceivable for 79 

rapidly reproducing species such as C. elegans with lifecycles that may be short 80 

with respect to environmental fluctuations, would be unlikely for long-lived 81 

animals such as humans. Our aim here will be to give examples of non-DNA 82 

sequence-based inheritance in animals and an overview of how ancestral state 83 

can affect future generations, by which mechanisms this can occur, both 84 

genome-associated and genome-independent, and how the mechanisms 85 

involved change as we look to increasing timescales. Our focus is on 86 

inheritance of acquired information. However, we also discuss some examples 87 

of non-environmentally responsive epigenetic inheritance because they are 88 

often better characterised and, arguably, more important for animal physiology. 89 
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 90 

Parental effects 91 

 92 

Examples of parental genotype or environment affecting progeny 93 

phenotype independent of inherited DNA (‘parental effects’) are numerous. 94 

However, with direct contact between the individuals exposed to a trigger and 95 

their immediate progeny (or their mate), many potential mechanisms can be 96 

involved. To confidently implicate specific mechanisms of inheritance, careful 97 

experimental design and interpretation are required3. Particular research effort 98 

has been directed at paternal effects6, with the expectation that limiting a male´s 99 

interactions with partner and progeny to the act of mating alone will narrow 100 

potential mechanisms down to those transmitted via gametes. Even so, 101 

genome-independent mechanisms may still affect progeny phenotypes (Figure 102 

1). For example, microbiome transfer from father to mother can rescue the 103 

intergenerational effects of maternal antibiotic use in Drosophila melanogaster9, 104 

and apparent paternal effects may in fact be cryptic maternal effects, when 105 

paternal condition, such as depression-like states in mice10, influences maternal 106 

investment or care.  107 

The parental effects of diet and obesity is a well-studied paradigm 108 

(reviewed in 11), with obvious potential relevance to health given the rise in 109 

obesity rates in Western countries in the past few decades12. Intergenerational 110 

effects of parental nutrition have been suggested in humans13, 14 and 111 

demonstrated in rodents15-22, D. melanogaster23 and C. elegans24, 25. In 112 

mammals, for example, under- or over-nutrition in either parent commonly 113 

impacts offspring glucose metabolism11. Counterintuitively, the effects of 114 

maternal and paternal diet are often qualitatively and quantitatively similar21, 22, 115 
26, 27}. However, such effects are often non-monotonic23, 24 and can be 116 

dependent on the developmental context of parental or grandparental 117 

exposure13, 15 and on progeny sex13-15, 17 and diet23. For instance, both low- and 118 

high-sugar paternal diets increased offspring adiposity in D. melanogaster, but 119 

only when offspring were themselves challenged with a high-sugar diet23. 120 

 121 

Maternal provisioning and metabolism 122 

 123 
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Maternal provisioning to offspring may mediate effects of maternal diet28, 124 
29 or other physiological factors. For example, we recently found that increased 125 

provisioning of a lipoprotein yolk complex to offspring with advancing maternal 126 

age has a major impact on progeny growth rates and starvation resistance in C. 127 

elegans30. Offspring phenotypes may also be affected by provisioning of 128 

specific regulatory products such as mRNAs31, 32 or essential micronutrients 129 

such as zinc33. Physiological alterations in maternally supplied organelles, 130 

particularly mitochondria, could also underlie parental effects of diet, as a 131 

maternal high-fat diet impairs fetal mitochondrial function in mice21. Perturbation 132 

of maternal metabolism genetically34 or by dietary intake of specific metabolites 133 

can influence epigenomic regulation in progeny and even further generations 134 

(reviewed in 35). For instance, progeny DNA methylation can be influenced by 135 

maternal dietary intake of methyl donors in mice36 with striking heritable effects 136 

on coat colour. Similar effects have also been suggested in humans, where 137 

seasonal changes in dietary intake of methyl donors around conception in rural 138 

mothers correlate with alterations in DNA methylation in children37. 139 

 140 

Microbiome transfer 141 

 142 

Non-DNA-based inheritance may also act via transfer of an altered 143 

parental microbiome9. Bacterial strains can be inherited maternally in humans38, 144 

although the mechanisms- whether by breast milk, birth canal or even placental 145 

transfer - remain unclear39. In mice, diet-induced microbiome changes, 146 

specifically a progressive loss of taxonomic diversity due to a Western-style 147 

low-fibre diet, are cumulative over generations and eventually irreversible via 148 

extinction of specific microbiotic subpopulations40. This suggests that 149 

multigenerational environmental exposure could cause a stable 150 

transgenerational alteration of progeny physiology via the microbiome. 151 

 152 

DNA methylation in sperm 153 

 154 

Methylation of DNA at cytosine residues has been suggested as 155 

mediating parental dietary effects in mammals. Genomic imprinting – the 156 

phenomenon whereby a gene´s expression depends upon whether it is 157 
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inherited from the male or female germline – is associated with differences in 158 

DNA methylation and demonstrates that DNA methylation states can be 159 

transmitted between generations in mammals41. The sperm methylome is 160 

reportedly altered by various severe interventions which produce 161 

intergenerational or transgenerational effects, such as in utero malnutrition42, 43, 162 

early-life overnutrition44 and diabetes45 in mice and by obesity in humans46. 163 

However, the mechanisms by which sperm methylation could be modified at 164 

specific sites are unclear. Moreover, methylation is largely erased upon 165 

fertilisation47 and it is not obvious how alterations could affect gene expression 166 

in progeny with high penetrance11. It was also reported that sperm methylation 167 

was unaffected by several diets that induce phenotypic effects in progeny48.  168 

Although cytosine methylation is virtually absent from many organisms 169 

such as D. melanogaster49 and C. elegans50, it is now apparent that DNA 170 

methylation can also occur at adenosine residues, although the functional 171 

significance of this mark, and whether it carries information across 172 

generations51, is unclear52. 173 

 174 

Small noncoding RNAs in sperm 175 

 176 

Small noncoding RNAs (sncRNAs), particularly tRNA-derived small 177 

RNAs (tsRNAs) and microRNAs (miRNAs), are emerging as possible mediators 178 

of environmental information transmission through sperm in mammals 179 

(reviewed by 53). Derived from precursor or mature tRNAs, tsRNAs are of 180 

diverse size and biogenesis54 and have in the last decade been implicated in a 181 

range of cellular processes, including repression of transposable elements54-56. 182 

Like miRNAs57, tsRNAs can interact with small RNA-binding proteins of the 183 

Argonaute family to induce post-transcriptional gene silencing54, 58 via sequence 184 

complementarity to the 3’UTRs of target mRNAs58, 59.  185 

tsRNAs comprise most of the sncRNA pool in mature mammalian sperm 186 
60, with miRNAs a distant second55, 61. Sperm tsRNAs are reportedly altered by 187 

diet61 or exposure to an endocrine disruptor62 in rodents and by obesity in 188 

humans46, while sperm miRNAs are altered by psychological stress in mice63, 64 189 

and men65, and by parental genotype66, diet67-69 and environmental 190 

deprivation70 in mice, all conditions associated with paternally-acquired 191 
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disorders. Crucially, in several cases zygotic injection of total sperm RNA64, 66, 192 
69, 70, sncRNA fractions61, 69 or specific sncRNAs55, 66, 68, 71 could partially or fully 193 

recapitulate these paternally acquired phenotypes11. In mice, inheritance of 194 

sncRNA-mediated phenotypes has been reported to rely on the activity of the 195 

RNA methyltransferase Dnmt269, 72, indicating that RNA modifications may 196 

constitute an additional layer of regulation important for transmission of 197 

acquired phenotypes through sperm61. In keeping with a role in repressing 198 

transposons, which often use conserved tRNAs as primers for replication56, a 199 

specific sperm-borne tsRNA influenced by paternal diet was found to 200 

specifically regulate genes governed by the pluripotency-promoting endogenous 201 

retroviral element MERVL in the mouse zygote55. Remarkably, it was shown 202 

that sperm tsRNAs do not originate from sperm tRNAs but rather are acquired 203 

via transfer of extracellular vesicles from the epididymis55, offering a tantalising 204 

hint of soma-to-germline transmission of information. Recent results indicate 205 

that sperm miRNAs similarly acquired during epididymal transit could be 206 

essential for embryonic development73.  207 

 208 

Histone modifications 209 

 210 

There is some21, 23, 25, but little, evidence for covalent modifications of histones 211 

mediating parental effects. However, histone modifications are certainly 212 

transmitted between generations at some loci in mammals74, fish75 and worms76 213 

and they have been implicated in longer-lasting transgenerational phenomena. 214 

It is plausible, therefore, that they could also underlie some parental effects. In 215 

C. elegans an epigenetic memory of germline transcription, mediated by 216 

deposition of H3K36me3 on active genes77, 78 and H3K27me3 on repressed 217 

genes76, is passed from each generation to the next and is essential for 218 

germline viability77, 78, representing an example of non-environmentally-219 

responsive epigenetic inheritance that is critical for normal development and 220 

physiology. 221 

 222 

Multi-generation epigenetic inheritance 223 

 224 

Documented examples of true transgenerational epigenetic inheritance 225 
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(TEI) induced by parental genotype, physiology or environment are becoming 226 

increasingly numerous in model invertebrates. In most cases, however, the 227 

effects described have a limited duration, for example typically spanning 3-4 228 

generations in C. elegans, before reversion to the baseline phenotype79-82. 229 

Characterised mechanisms commonly involve inheritance via gametes of 230 

genome-associated epigenetic information, such as histone modifications or 231 

small RNAs. The likely reasons for the limited lifetime of many transgenerational 232 

effects can be found in the passive and active mechanisms that underlie 233 

changes in small RNA populations and histone modifications from generation to 234 

generation83. 235 

 236 

Inheritance of RNAi in C. elegans 237 

 238 

 Although occurring in artificial laboratory conditions, the inheritance of 239 

gene silencing induced by ancestral RNAi interference (RNAi) in C. elegans has 240 

provided the most incontrovertible demonstration of TEI and has proven 241 

invaluable in dissecting the mechanisms involved. Worms supplied with 242 

exogenous double-stranded RNA (dsRNA), usually by feeding, employ an 243 

amplification machinery which results in systemic silencing of complementary 244 

genes in almost all tissues, including the germline. dsRNA is processed by 245 

Dicer and accessory proteins to form primary short interfering RNAs (siRNAs). 246 

Primary siRNAs bind to a member of the Argonaute family of small RNA-binding 247 

proteins and guide them to complementary mRNA transcripts. RNA-dependent 248 

RNA polymerases (RdRPs) are then recruited to produce abundant secondary 249 

siRNAs (otherwise known as 22G RNAs for their length and 5’ guanosine bias). 250 

RdRP-associated silencing mechanisms are found in diverse taxa, although not 251 

in vertebrates. In turn, these 22G RNAs engage a variety of Argonautes to 252 

destroy complementary mRNAs, inhibit transcription84 and deposit the 253 

repressive chromatin marks H3K9me3 and H3K27me3 at the target locus84-86. 254 

Gene silencing induced by dsRNA can be inherited87, 88, typically for up 255 

to 3 generations80 but sometimes as long as 80 generations when selecting for 256 

the resulting phenotype88. The nuclear Argonaute hrde-1 (heritable RNAi 257 

defective) is dispensable for gene silencing in exposed worms but is necessary 258 

for its inheritance in subsequent generations89, demonstrating that C. elegans 259 
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possesses cellular machinery dedicated to the information transmission over 260 

generations. The nuclear RNAi pathway, which shuttles 22G RNAs into the 261 

nucleus90, is required for the maintenance of inherited silencing in progeny91. 262 

The limited typical duration of the silencing response may be due to dilution of 263 

siRNAs over generations85. Unlike primary siRNAs, secondary siRNAs rarely 264 

serve as templates for further amplification of the gene silencing response 265 

induced by dsRNA, which is therefore limited92, 93. The repressive H3K9me3 266 

and H3K27me3 footprints triggered by secondary siRNAs also persist in the 267 

absence of the dsRNA trigger for at least 2 generations85, 86, although H3K9me3 268 

deposition is dispensable for heritable silencing at some loci94, 95. Interestingly, 269 

the H3K9 methylase met-2, responsible for H3K9me1/2, conversely limits the 270 

generational duration of some dsRNA-induced silencing by altering siRNA 271 

inheritance96. Application of additional dsRNA triggers unrelated to the original 272 

target in subsequent generations can extend the duration of inherited silencing, 273 

suggesting that negative feedback by downregulation of the RNAi machinery 274 

may act to limit the duration of a heritable response97. 275 

Why did C. elegans evolve the ability to respond to dsRNA with potent 276 

and systemic targeted silencing? The RNAi machinery is required for some 277 

antiviral responses in C. elegans98-100, and it has been suggested that 278 

inheritance of parental antiviral small RNAs acts to block the transmission of 279 

virus infection between generations81, 101. However, a heritable response was 280 

not observed for the only known natural virus of C. elegans102. 281 

 282 

Small RNAs and histone modifications in TEI 283 

 284 

The importance of small RNAs for the inheritance of RNAi-triggered 285 

repression in C. elegans underscores mobile RNAs as an attractive candidate 286 

for mediating transgenerational inheritance in multiple species (reviewed in 103). 287 

dsRNA produced in somatic tissues, including neurons, can be inherited in C. 288 

elegans104 and reports indicate transfer of somatic RNAs to gametes in mice55, 289 
73, 105. The RNAi pathway in C. elegans was found to also target endogenous 290 

genes, utilising a similar amplification mechanism as exogenous RNAi106, 107. 291 

Indeed, endogenous RNAi is necessary for transgenerationally-inherited gene 292 

regulatory and physiological changes in response to ancestral starvation108 and 293 
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heat stress82. 294 

Histone modifications are important in the inheritance of RNAi in C. 295 

elegans, and a variety of histone modifications have been implicated in other 296 

cases of transgenerational inheritance, including methylation of H3K4 in mice109 297 

and C. elegans51, 79, 110, 111, H3K9 in C. elegans51, 112-115 and H3K27 in C. 298 

elegans and D. melanogaster114, 116, 117. Stress-induced perturbations to histone 299 

modifications may revert slowly over generations115, leaving a gradually fading 300 

transgenerational memory. In some cases global levels of histone modifications 301 

remain modified in later generations115, 116 although in others global levels are 302 

unchanged25, 79, implying differential regulation of specific loci118. In C. elegans, 303 

transgenerational expression of longevity phenotypes caused by ancestral 304 

mutations in the conserved COMPASS H3K4 methylases is dependent on the 305 

corresponding demethylase79, demonstrating that alterations in the antagonistic 306 

activity of chromatin-modifying enzymes over generations can induce 307 

transgenerational phenotypes51. 308 

 309 

TEI to pre-adapt progeny to environmental conditions 310 

 311 

Despite the increasing popularity of research into TEI, the evidence for 312 

adaptive, environmentally-responsive transgenerational inheritance, whereby 313 

ancestral experience equips progeny to better withstand environmental 314 

challenges, remains scant. At the time of writing most documented cases of 315 

inheritance of environmental experience occur in artificial contexts110, 115, even 316 

when those experiments attempt to mimic naturally occurring challenges81, and 317 

the relationship of ancestral environment to alterations in progeny gene 318 

regulation or physiology in terms of fitness is often far from clear81, 82, 108, 116. 319 

Nonetheless, a few reports suggest the possibility of adaptive TEI. A recent 320 

study reports that exposure of C. elegans to a heavy metals leads to increased 321 

resistance to the same stresses in future generations, what the authors call 322 

transgenerational hormesis111. Likewise, ancestral starvation in C. elegans 323 

induces transgenerational resistance to starvation, by unknown mechanisms119, 324 
120. Despite most described TEI effects occurring in C. elegans, the most 325 

striking case of potentially adaptive TEI involving soma-to-germline 326 

communication is found in mice, where a conditioned fear response to a specific 327 
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odour in male mice can be inherited for two generations121. In this case, the 328 

effect was associated with enlargement of neuroanatomical structures in 329 

progeny, and with differential methylation of the locus encoding the 330 

corresponding odour receptor in the sperm of exposed males (though not their 331 

sons). Still, at present it seems that adaptive, environmentally-responsive TEI, if 332 

it exists, is the exception rather than the rule. Nonetheless, it is clear that 333 

epigenetic mechanisms can transfer information about ancestral state between 334 

generations, and although the extent of this transfer is typically limited to a few 335 

generations, some specific cases – arising from a loss of gene repression – can 336 

lead to longer-lasting memories. 337 

 338 

Long-lasting TEI 339 

 340 

Despite the meagre evidence for adaptive memory of environmental 341 

conditions, there undoubtedly exists an adaptive transgenerational memory that 342 

serves to distinguish ‘self’ genetic elements from that of potentially harmful, 343 

‘foreign’ sequences. In many species repetitive genomic regions such as 344 

transposons, are constitutively repressed by heterochromatin. Rather than 345 

becoming re-established de novo each generation, it appears that the 346 

heterochromatic state of repetitive regions is often inherited. Environmental 347 

insults disrupting this repression can lead to a quantitative modulation of 348 

expression from heterochromatic regions that takes many generations to 349 

restore. 350 

For example, growth at elevated temperature115 or impaired DNA 351 

replication during embryogenesis122 can result in a loss of repression of 352 

heterochromatic transgene arrays in C. elegans that can take more than 10 353 

generations to fully re-establish (Figure 1b). Importantly, expression of a subset 354 

of endogenous repetitive elements repressed by H3K9me3 also heritably 355 

increased at elevated temperature, albeit for fewer generations115. Heat can 356 

also derepress pericentromeric heterochromatin in D. melanogaster123, leading 357 

to a long transgenerational epigenetic memory of ancestral environment. In both 358 

C. elegans and D. melanogaster, multiple generations of heat exposure and 359 

consequent de-repression were required to maximise the generational duration 360 

of the resulting memory115, 123. These results are consistent with the gradual 361 
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restoration of heterochromatic regions perturbed by stress, the ‘healing’ of an 362 

‘epigenetic wound’83. This memory may therefore result from a limited capacity 363 

to restore disturbed heterochromatin within a single generation, although it is 364 

unclear why this would be so. It is also not clear whether this potential for long-365 

term memory of environmental information has ever been co-opted for an 366 

adaptive purpose. 367 

 368 

The mortal germline of C. elegans 369 

 370 

A reciprocal phenomenon to this slow recovery following chromatin 371 

perturbation is found in the mortal germline (Mrt) phenotypes of C. elegans 372 

mutants (and some naturally-occurring strains 124), which display a progressive 373 

reduction in fertility, often temperature-sensitive, that accumulates over 374 

generations and ultimately results in sterility (Figure 1c). While Mrt phenotypes 375 

of some mutations result from genetic changes such as telomere loss125, 126, 376 

many genes with a mutant Mrt phenotype are involved in histone 377 

modifications51, 89, 96, 127-130 or small RNA pathways89, 129, 131, 132 and the 378 

phenotype can be rapidly reverted by returning animals to the permissive 379 

temperature118, 124, 129, altering diet133, re-introducing functional gene copies127 380 

or introducing downstream mutations96, demonstrating that these 381 

transgenerational phenotypes are epigenetic in nature. Interestingly, a recent 382 

study found that the Mrt phenotype of C. elegans Piwi mutants results not from 383 

a profound loss of germline totipotency but rather from the aberrant (and 384 

reversible) induction of reproductive quiescence, normally induced under stress, 385 

as a consequence of transcriptional dysregulation in the germline133. If this 386 

finding is generally applicable it suggests why the reversion of accumulated Mrt 387 

phenotypes can be achieved so rapidly. 388 

 389 

Stable TEI: enjoy the silence 390 

 391 

Small-RNA-triggered stable silencing 392 

 393 

The inherited repression of transposons and foreign DNA is essential for 394 

maintaining the fitness of a lineage. How are these elements recognised and 395 
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silenced? Single-copy germline-expressed GFP transgenes in C. elegans, a 396 

clear example of ‘foreign’ DNA, can undergo spontaneous silencing, resulting in 397 

fully penetrant, stably inherited silencing for more than 20 generations with no 398 

evidence of reversion112, 113, 134, 135. This indefinite silencing is triggered by 399 

endogenous small RNAs called piRNAs and so was christened RNAe (RNA-400 

induced epigenetic silencing). piRNAs are sncRNAs expressed from genomic 401 

clusters ranging from tens to thousands of individual piRNA sequences136. 402 

Although their length and biochemical characteristics vary across species, 403 

piRNAs interact with widely conserved Piwi proteins, part of the Argonaute 404 

family, to effect silencing (reviewed in 137). Broadly, genomically-encoded 405 

primary piRNAs guide Piwi proteins to complementary transcripts and initiate 406 

amplification of secondary small RNAs, resulting in gene silencing. In zebrafish, 407 

mice and D. melanogaster, the destruction of transposon mRNA guided by Piwi-408 

bound primary piRNAs can be coupled to the production of secondary piRNAs 409 

from the targeted transcript, leading to a feed-forward amplification response 410 

christened the Ping-Pong cycle137. In C. elegans, transcript targeting by piRNAs 411 

instead leads to the RdRP-catalysed production of 22G RNAs, which effect 412 

heritable silencing through the nuclear RNAi pathway in conjunction with hrde-413 

1112, 113, 134, 135, a machinery shared with heritable dsRNA-induced silencing. 414 

piRNA-mediated silencing not only represses transposons but also targets 415 

many endogenous transcripts, which can potentially be subject to 416 

transgenerational epigenetic memory82. 417 

Recent work in C. elegans has elucidated how primary piRNAs provide 418 

surveillance over germline transcription138-141. While piRNAs in mammals and D. 419 

melanogaster exhibit near-perfect complementary base pairing with targets137, 420 

C. elegans piRNAs, like miRNAs57, tolerate significant mismatches outside of a 421 

5’ seed region141. In this way, thousands of piRNAs can engage the entire 422 

germline mRNA transcriptome138. How do the genes necessary for germline 423 

function escape this promiscuous silencing? In C. elegans, recognition of ‘self’ 424 

has been associated with at least three potential mechanisms. Periodic 425 

sequence elements called PATCs, largely intronic, are associated with 426 

germline-expressed genes142 and protect foreign sequences from becoming 427 

silenced via an unknown mechanism141, 143. Another mechanism may involve 428 

as-yet-uncharacterised features intrinsic to the coding sequence which prevent 429 
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silencing139. A third mechanism is associated with the Argonaute CSR-1, whose 430 

bound 22G RNAs display complementarity to almost all germline-expressed 431 

genes144 and which has been proposed to license gene expression145, 146 by 432 

protecting mRNAs from piRNA targeting and subsequent siRNA generation138. 433 

Interestingly, both CSR-1 and the C. elegans Piwi orthologue PRG-1, along with 434 

newly discovered proteins that seem to have a role in transgenerational 435 

epigenetic inheritance147, 148, reside in perinuclear phase-separated liquid-like 436 

granules144, 149 with a defined spatial organisation147, suggesting that the 437 

temporal order of transit through this system of granules of mRNAs exiting the 438 

nucleus may be important for RNA-directed silencing and licensing 439 

mechanisms147, 148. However, this hypothesis awaits experimental verification. 440 

 441 

Mechanisms of stable silencing 442 

 443 

In C. elegans, once silencing has been initiated by piRNAs, target 444 

sequences can remain stably repressed for many generations even in the 445 

absence of the triggering piRNA-Piwi complex112, 113, 150, although in some 446 

cases Piwi may still act to maintain silencing139. The maternal transmission of 447 

tertiary 22G RNAs, downstream of secondary 22G RNAs and the germline 448 

nuclear RNAi pathway including hrde-1, is sufficient for inherited piRNA-initiated 449 

silencing, indicating that a feed-forward amplification loop maintains high levels 450 

of siRNAs in the absence of both the trigger and the initially silenced locus93.  451 

Mutually reinforcing feedback between small RNAi pathways and repressive 452 

chromatin, such as those demonstrated in Schizosaccharomyces pombe and 453 

Arabidopsis thaliana (reviewed in 151), would explain the extraordinary stability 454 

of this silencing83. An analogous mechanism has been proposed in D. 455 

melanogaster (reviewed in 152), although to date such a feedback has not been 456 

convincingly demonstrated in animals. Nonetheless, it is clear that stable gene 457 

silencing generally involves multiple epigenetic pathways. In C. elegans, the 458 

multigenerational stability of piRNA-initiated silencing requires both the RNAi 459 

pathway and chromatin modifiers, especially H3K9 methyltransferases113, 135. 460 

Secondary piRNAs also guide DNA methylation at the targeted locus in mice153, 461 
154 and the formation of heterochromatin at the targeted locus in D. 462 

melanogaster155-158 (Figure 2). 463 
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 464 

Conclusions and outlook 465 

 466 

Non-DNA sequence-based inheritance of information occurs in multiple animals 467 

and is important for development and physiology. One of the main purposes of 468 

epigenetic inheritance is the perpetuation of repression of repetitive elements. 469 

However, it may also serve to transmit information about particular gene 470 

expression programs, e.g. the germline program in C. elegans. What is more 471 

controversial is the extent to which transmitted epigenetic information is 472 

modulated by the environment and physiology, and whether this is ever 473 

adaptive.  474 

We have shown that non-DNA sequence-based inheritance of acquired 475 

information can occur over different timescales, with the set of mechanisms 476 

changing and narrowing as we look to further generations. Parental effects over 477 

a single generation can act via many mechanisms and can have large 478 

phenotypic consequences. However, there is still little evidence for 479 

physiologically consequential multi-generation memory of environmental 480 

change, even though the potential for longer-lasting memories has now been 481 

repeatedly demonstrated and the underlying mechanisms dissected. Epigenetic 482 

inheritance of transcriptional repression can, for example, sometimes be 483 

perturbed by environmental insults, with a gradual restoration over generations 484 

of perturbed repression leading to a transgenerational transfer of information 485 

about ancestral environmental experience. Similarly, on shorter timescales, 486 

inheritance of small RNAs can occur. However, evidence is still lacking for 487 

either of these capacities for information transfer ever being employed to alter 488 

progeny physiology adaptively in the light of ancestral experience. Due to the 489 

long generation time of humans, adaptive epigenetic inheritance seems unlikely 490 

over any generational timescale, although instances of environmental insults 491 

leading to intergenerationally-inherited disorders, as demonstrated in rodents, 492 

could have a medically relevant impact on individual physiology. 493 

Regardless of the species, parental experiences are more likely to predict 494 

environmental conditions than those of more distant ancestors. As such, 495 

adaptive effects seem more plausible in the context of intergenerational, rather 496 

than transgenerational, paradigms. The more numerous and often more 497 
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tractable cases of inheritance over a single generation therefore offer fertile 498 

ground for researchers who wish to probe the mechanisms and adaptive 499 

significance of environmentally-responsive non-DNA sequence-based 500 

inheritance, despite the hype surrounding transgenerational inheritance. For 501 

example, the details of how soma-to-germline information transfer could occur 502 

are still elusive and may be better understood by studying experimentally 503 

tractable intergenerational systems. Indeed, research effort may be better 504 

directed at confirming and expanding the often-scant mechanistic details of 505 

previously described cases of intergenerational and transgenerational 506 

inheritance rather than seeking out novel phenomena. Much work remains to 507 

establish how epigenetic information survives and is propagated between 508 

tissues and across generations, how widespread intergenerational and 509 

transgenerational phenomena are in natural contexts and what the physiological 510 

relevance of naturally-occurring intergenerational and transgenerational 511 

inheritance may be. 512 
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Figure/Table Legends 518 

 519 

Table 1. Examples of intergenerational or transgenerational inheritance 520 

over different timescales. Here we provide illustrative examples of some of 521 

the more compelling and better-characterised reports of inter- and 522 

transgenerational inheritance. These examples are chosen with a view to 523 

providing a diversity of mechanisms and demonstrating which mechanisms are 524 

more typical over different generational timescales. Many other examples are 525 

discussed in the main text. 526 

Figure 1. Mechanisms of transfer of information about ancestral 527 

environment or physiology over generations. a) Many mechanisms of 528 

transmission of information about environmental experience or physiological 529 

state can underlie inheritance over a single generation, from parents to 530 
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progeny, both genome-associated (e.g. covalent modifications of histones) and 531 

genome-independent (e.g. microbiome transfer). Apparent paternal effects are 532 

not always mediated by gametes but may act via the mother. b) Gradual 533 

changes in epigenetic marks might underlie transgenerational memory. A loss 534 

of gene repression caused by an environmental or physiological insult, for 535 

example by perturbation of heterochromatin-mediated transcriptional 536 

repression, can reset gradually over generations, providing a transgenerational 537 

memory of ancestral experience. c) Mutations or natural variation in various 538 

epigenetic pathways can lead to mortal germline (Mrt) phenotypes in C. 539 

elegans, where fertility is lost gradually over generations but can be rapidly 540 

restored by changing conditions. The prevalence of this phenotype in mutants 541 

affecting chromatin modifications and small RNA pathways indicates the 542 

importance of epigenetic pathways in the maintenance of normal development 543 

and physiology. 544 

Figure 2. Small RNA pathways can direct histone/DNA methylation to 545 

repress specific loci. Small RNAs guide proteins of the Argonaute family to 546 

destroy target mRNA transcripts and deposit repressive marks on 547 

corresponding genomic loci. These marks are often heritable and cross-talk 548 

between small RNA and chromatin pathways may be essential for stable gene 549 

silencing. 550 

  551 
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Duration Trigger Species Effects on progeny Proposed mechanism of 
inheritance 

Ref 

1 generation Paternal high-sugar 
diet 

D. 
melanogaster 

High triglyceride levels 
(on high-sugar diet) 

Chromatin modifications 
in sperm (H3K9me3, 
H3K27me3) 

23 

1 generation Young mother C. elegans Slow development, 
reduced resistance to 
starvation, reduced 
fecundity 

Reduced maternal 
provisioning of yolk to 
embryos (for starvation 
resistance and 
development) 

30

1 generation Paternal low-
protein or high-fat 
diet  

Mus 
musculus, 
Rattus 
norvegicus 

Differential gene 
regulation during 
embryogenesis, 
metabolic disorders 

Somatic tsRNAs acquired 
by sperm during 
epididymal transit 

18, 20, 
55, 61 

1 generation 
(for 
developmental 
phenotype) 

Maternal antibiotic 
exposure 

D. 
melanogaster 

Delayed development Heritable depletion of 
riboflavin-producing 
commensal bacteria 

9

1-2 generations Ancestral high 
glucose diet 

C. elegans Reduced fecundity, 
resistance to oxidative 
stress 

COMPASS H3K4 
methylases required for 
inheritance of stress 
resistance 

25 

2 generations Maternal dietary 
supplementation 
with methyl donors 

M. musculus Alterations in coat colour Increased DNA 
methylation at the agouti 
locus caused by 
retrotransposon insertion 

36 

2 generations Undernourishment 
during pregnancy  

M. musculus Metabolic alterations Hypomethylation of 
specific loci in F1 males 

17, 43 

2 generations Paternal odour-
conditioned fear 
response 

M. musculus Inherited fear response 
to specific odour 

Neuroanatomical changes 
in progeny, locus-specific 
hypomethylation in 
sperm 

121 

2-3 generations Exposure to various 
mild stresses 

C. elegans Increased stress 
resistance and 
proteostasis 

Somatic insulin signaling, 
COMPASS H3K4 
methylases in germline 

111 

3 generations Ancestral mutation 
in COMPASS H3K4 
methyltransferases 

C. elegans Increased longevity Altered histone 
methylation, longevity 
phenotypes due to 
possible alteration in lipid 
metabolism 

79; 159 

3 generations Overexpression of 
H3K4 demethylase 
in sperm 

M. musculus Reduced survival, 
developmental 
abnormalities 

Alterations in sperm-
borne RNA 

109 

3 generations Ancestral 
development at 
elevated 
temperature 

C. elegans Alterations in gene 
expression 

Disruption of piRNA-
initiated repression of 
endogenous transcripts 
by the RNAi pathway 

82

Up to 3-4 
generations 
(typically) 

RNAi triggered by 
exogenous dsRNA 

C. elegans Inherited gene repression Secondary siRNAs; 
histone methylation  

80, 88, 89

3 generations Ancestral starvation 
during larval stage 
in wildtype worms 

C. elegans Alterations in gene 
expression and plasticity; 
increased stress 
resistance and lifespan 

Inheritance of siRNAs 
bound to the nuclear 
Argonaute HRDE-1 (for 
expression differences)  

108, 119, 
120 



3 generations Heat shock during 
embryogenesis 
(multiple 
generations) 

D. 
melanogaster 

Alterations in eye colour Disruption of 
heterochromatin by 
phosphorylation of ATF-2 

123

3-9 generations Ancestral starvation 
during larval stage 
in AMPK mutants  

C. elegans Reduced fecundity Abnormal methylation of 
H3K4 by COMPASS 
histone methylases 

110

14 generations Growth at elevated 
temperature 
(multiple 
generations) 

C. elegans Increased expression 
from repetitive transgene 
array 

Loss of H3K9me3-
mediated repression 

115

Indefinite Spontaneous 
transgene silencing 
in the germline  

C. elegans Stable gene silencing with 
no reversion 

piRNA-targeting  induced 
nuclear RNAi guided by 
secondary siRNAs; 
histone methylation 

112, 113, 
134, 135  

Table 1.  
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