
Chapter 51

Architecture of the IBM System/370i

Richard P. Case / Andris Padegs

Summary This paper discusses the design considerations for the archi-

tectural extensions that distinguish System/370 from System/360. It

comments on experiences with the original objectives for System/360

and on the efforts to achieve them, and it describes the reasons and

objectives for extending the architecture. It covers virtual storage,

program control, data-manipulation instructions, timing facilities, multi-

processing, debugging and monitoring, error handling, and input/output

operations. A final section tabulates some of the important parameters of

the various IBM machines which implement the architecture.

Introduction

The years since the introduction of System/360 in 1964 have

produced very substantial changes in most aspects of the design,

manufacture, and use of information-processing systems. The

hardware technology for realizing logic fiinctions has evolved from

semi-integrated circuit modules with single devices per chip to

hundreds or thousands of circuits on a single silicon chip. The

technology for high-speed storage has changed from magnetic

cores to dense arrays of transistors on silicon chips. The growth in

size and function of systems software has surprised even the

practitioners. It is not surprising, therefore, to discover that

extensions and refinements to the architecture^ of System/360

were found to be necessary.

This paper reviews the motivation for extending the System/360

architecture and describes the design considerations associated

with the extensions adopted for System/370.^ It comments on

some experiences with the original objectives and concepts of

System/360. Finally, it summarizes the characteristics of IBM

machines implementing the System/360 and the System/370

architectures [Amdahl, Blaauw, and Brooks, 1964; Amdahl, 1964;

^Comm. ACM. vol. 21, no. 1, January 1978, pp. 73-96.

*The term architecture is used here to describe the attributes of a system

as seen by the programmer, i.e., the conceptual structure and functional

behavior, as distinct from the organization of the date flow and controls,

the logical design, and the physical implementation.

This chapter is not the definitive reference work for the specification of

the features and functions discussed. For the official, and maintained,

description, refer to the IBM Sijsteml370 Principles of Operations , form

GA22-7000, which is available through local IBM branch offices.

Blaauw and Brooks, 1964; Blaauw, 1964; Padegs, 1964; and

Stevens, 1964].

Experience with System/360

At the time the major decisions were made on the System/370

architecture, a significant amount ofexperience was available with

the initial implementations of System/360. The major conclusions

from this experience were:

Compatibility

Compatibility really worked. It was in fact possible to transfer

programs routinely from one model to another and expect them to

produce the same results. Operational evidence was available that

architecture and implementation could be separated; one need

not imply the other.

Compatibility also helped reduce development expense. The

original plan called for verifying each element of software on each

model. Because of the growing confidence that programs which

ran on one model would also run on other models, it was possible

to significantly reduce the amount of cross-verification to be

performed.

Implementation of a whole line of computers according to a

common architecture did not take an undue amount of effort. It

did, however, require unusual attention to detail and some new

procedures, which are described in the Architecture Control

Procedure section.

Performance Range

A greater performance range must be planned for. The original

System/360 announcement included processors with a perform-

ance range of about 25 to 1. Six years later this had increased to

about 200 to 1, and plans were being made for even fijrther

extensions.

Main Storage

It was obviously necessary to plan for main-storage sizes of more

than 2^ bytes. The technological improvements in main storage

which reduced the relative cost had happened at a rate greater

than was expected. The result was that serious thought had to be

given to the planned replacement of 24-bit addressing.

The extension of the address size proved to be more difficult

than first- thought. Our experience in this respect agrees with that

of Bell and Strecker [1976], who say: "There is only one

mistake . . . that is difficult to recover from—not providing

enough address bits. ..."

The basic addressing mechanism of System/360 had anticipated

Chapter 51 ! Architecture of the IBM System/370 831

the eventual need and was well suited to the extension, since it

depended on base registers that were already 32 bits wide. The
interruption mechanism and the I/O control formats, however,
did not have the required extensibility. (We knew in 1962 that this

was the case, but the immediate cost and performance conse-

quences outweighed the need to meet the eventual long-term
requirements.) More importantly, the operating systems and

compiler-produced application programs had used the extra bits

in address words for control purposes and hence required
extensive modifications.

Operating Systems

Machine architecture must be developed in conjunction with

changes and extensions to existing operating systems. Whereas
the original System/360 architecture was developed to provide a

good basis on which a completely new operating system could be
built, extensions to that architecture have to consider the specific

usages and capabilities of the available operating systems.

Architecture Control

The design and control of system architecture must be an ongoing
function that can never be considered complete. We found
ourselves well into the 1970s making changes in the architecture
of System/360 to remove ambiguities and, in some cases, to adjust
the function provided.

Objectives of System/370

Motivation

The motivation to extend the System/360 architecture for the new
series of machines came from two main sources:

1 The experience with the System/360 architecture in writing
application programs, in designing and using operating
systems, and in debugging and maintaining both software
and hardware had identified a number of bottlenecks and
limitations in the efficiency of system use and had pointed
out areas where additional machine functions were desir-
able.

2 The general lowering of the cost of technology for main
storage and logic circuitry in relation to the overall system
cost made it possible economically to include fiinctions that
did not appear justified in the original System/360 architec-
ture.

Specific Objectives

The following were the specific objectives of the System/370
architecture:

1 Improving the level of detail, precision, and predictability
of the System/360 architecture. These improvements were
made primarily in the areas of interruptions, system
control, and the order of storage references. They were
motivated largely by reliability and serviceability consider-
ations.

2 Adding new instructions to enhance the performance of

frequent functions in application programs. A total of 17
new unprivileged instructions were introduced in the

System/370 architecture.

3 Extending the architecture to improve system reliability,

availability, and serviceability. Extensions were included to
assist diagnostics and recovery by software after a hardware
failure (machine-check extensions), to assist in debugging
software (program-event recording, monitoring, status

storing), and to facilitate formation of multiprocessing
systems with multiple CPUs sharing common main storage.

4 Adding new facilities to enhance the performance and
function of the operating system and to introduce uniform

machine-implemented protocols in the system. Dynamic
address translation, timing facilities, and a number of

privileged instructions were the main extensions provided
for this purpose.

Constraints on System/370

The System/370 architecture was developed subject to the

following main constraints:

1 Within the limitations described in the IBM System/370
Principles of Operation, the architecture must be upward
compatible with System/360 architecture as far as user

programs are concerned; that is, user programs written for

System/360 must run efficiently on System/370 models with
no modification to these programs. These limitations are
that the systems have the same or equivalent facilities and
that the programs have no time dependence, use only
model-independent functions defined in the Principles of
Operation, and not use unassigned formats and operation
codes. These limitations essentially mean that compatibility
applies only to valid programs.

2 It must be possible to run certain System/360 operating
systems unmodified on System/370 models. Even though
such operating systems could not fiilly benefit from the new
functions available in System/370, and new support was
planned, the ability to execute them was needed for the
transition period.

3 It must be possible to attach and operate most types of
System/360 I/O devices on System/370.

832 Part 4 Family Range, Compatibility, and Evolution Section 5
I

The System/360 and System/370 Family

The System/370 architecture must preserve and extend the

open-endedness and generahty of design characteristic of

the Svstem/360 architecture.

Summary of Architectural Extensions

Table 1 Hsts the major categories of architect-ural extension that

have been added to the System/360' architecture to form the

System/370^ architecture, including those that were originally

introduced on the System/360 Model 85. The extensions are

grouped in terms of architectural facilities, which are mechanisms

provided in the machine for performing a specific ftinction. The
table also lists the number of new instructions associated with the

facility. Note that many of the new facilities have no new
instructions associated with them. Table 2 lists all new instruc-

tions, which total 40.

Additionally in a number of areas the System/360 architecture

was made more specific and predictable within the freedom

permitted by the original definition. The following are two

examples:

1 The result of a decimal-arithmetic operation is made
predictable when an invalid sign code is encountered. This

is a common error in source data, and the change permits
correction and resumption of the operation.

2 The priority of recognizing program-interruption condi-

tions is specified to achieve repeatability and to make

debugging easier.

Compatibility with System/360

Methods ofAchieving Compatibility

Major emphasis in the design of the System/370 architecture was

placed on defining all changes and extensions so that a valid

System/360 program, executed on a System/370 machine, would

'The System/360 Model 20 is not discussed in the referenced papers nor in

this paper, as some of its architectural features are so specialized that it is

not convenient to discuss them in the same context.

^This paper covers only those facilities that are described in System/370

Principles of Operation. It does not discuss certain extensions that were
made available only on System/360 Models 44 and 67; nor does it describe

the following special facilities that are available only on some models:

virtual-machine assist (hardware assist for VM/370), extended control-

program support (hardware assist for OS/VSl and for VM/370), APL assist,

OS/DOS compatibility, the assist for optical character recognition,
emulators for other machines, as well as the System/370 extended facility

and recovery- extensions first made available on the IBM 3033 Processor

Complex.

Table 1 Architectural Extensions Incorporated In Sys-
tem/370

Chapter 51 Architecture of the IBM System/370 833

Table 2 New Instmctions Incorporated in System/370

Name Mnemonic Type

ADD NORMALIZED (extended)

CLEAR I/O

COMPARE AND SWAP
COMPARE DOUBLE AND SWAP
COMPARE LOGICAL CHARACTERS UNDER MASK
COMPARE LOGICAL LONG
HALT DEVICE

INSERT CHARACTERS UNDER MASK
INSERT PSW KEY

LOAD CONTROL
LOAD REAL ADDRESS
LOAD ROUNDED (extended to long)

LOAD ROUNDED (long to short)

MONITOR CALL
MOVE LONG
MULTIPLY (extended)

MULTIPLY (long to extended)

MULTIPLY (long to extended)

PURGE TLB

RESET REFERENCE BIT

SET CLOCK
SET CLOCK COMPARATOR
SET CPU TIMER

SET PREFIX

SET PSW KEY FROM ADDRESS
SHIFT AND ROUND DECIMAL
SIGNAL PROCESSOR
START I/O FAST RELEASE
STORE CHANNEL ID

STORE CHARACTERS UNDER MASK
STORE CLOCK
STORE CLOCK COMPARATOR
STORE CONTROL
STORE CPU ADDRESS
STORE CPU ID

STORE CPU TIMER

STORE PREFIX

STORE THEN AND SYSTEM MASK
STORE THEN OR SYSTEM MASK
SUBTRACT NORMALIZED (extended)

Op code

AXR

834 Part 4
|
Family Range, Compatibility, and Evolution Section 5

I

Ttie System/360 and System '370 Family

extensions, including the byte-oriented-operand feature and

virtually all new instructions.

This approach was used also to ensure that all subsequently

introduced extensions, such as dynamic address translation and

program-event recording, are compatible with the System/370

architecture as initially announced. An exception was that the

unused positions in the 16 control registers introduced at the

original System/370 announcement were not checked for zeros

but instead were reserved for future extensions by an explicit

warning in the Principles of Operation. This safeguard was chosen

because only privileged programs can load and store control

registers, because checking scattered bit positions in the 16

registers is expensive and time-consuming, and because even

greater cost would have been required for a predictable ending of

an invalid loading operation.

Mode Control. Defining mode-control and mask bits in control

registers such that the reset state specifies an operation compati-

ble with System/360. The external, channel, and machine-check

masks, as well as a number of other controls, were defined this

way.

Manual Switches. Introducing a manual switch for setting up a

mode where the machine stops on encountering a deviation from

System/360 operation. This approach was taken to handle CPU
and channel diagnostic logouts. In System/360, the logout area

starts with location 128 and, while no limit is set on its size, its

extent is smaller than that on a comparable System/370 model.

Since such a logout on a System/370 machine may overlay a

program or data which assumes System/360 logout, stopping

avoids continuation with invalid information. It was assumed that

the stop-on-logout mode would be selected only for the rare

situations when the machine is operated without the correct

error-recovery program.

Incompa tibilities

The extensions introduced for System/370 do not meet the

compatibility objectives in the following five cases. In each case a

program may exist that meets the System/360 validity require-

ments but does not obtain the same results on System/370. These

incompatibilities, however, are confined to programs that are

either executed in the supervisor mode or are components of an

operating system, and they were deemed justified, considering

both the alternative solutions and the likelihood and difficulty of

operational problems. The five incompatibilities are reviewed

here in some detail to empahsize the kind of careful attention that

compatibility requires.

Use of USASCII-8 Bit for Control of EC Model. System/360

anticipated the adoption of a proposal for a "Decimal ASCII" in

punched cards and of a technique for expanding the seven-bit

standard to eight bits. This data representation is referred to as

USASCII-8 in the System/360 manuals. Both the card code and

the particular expansion technique have since been rejected as a

national standard.

System/360 provides for USASCII-8 by a mode under control of

PSW bit 12. When bit 12 of the System/360 PSW is one, codes

preferred for USASCII-8 are generated for decimal results. When
PSW bit 12 is zero, the codes preferred for EBCDIC are

generated.

In System/370, the USASCII-8 mode and the associated

meaning of PSW bit 12 are removed, and all instructions whose

execution in System/360 depends on the setting of PSW bit 12 are

executed to yield the EBCDIC codes. PSW bit 12 is used instead

to control the format of the PSW and of the information stored on

an interruption.

This incompatibility affects only those System/360 programs
that specify the USASCII-8 mode. Since the anticipated standard

was never adopted, it is highly unlikely that any production

programs ever used it. In fact, we are not aware of any instance of

its use.

The alternative for System/370 was to assign a control-register

bit for controlling the PSW format. Such a definition would not

have permitted changing at the same time both the mode and the

PSW contents which the mode controls, and it would have

precluded program control of the PSW format on initial program

loading.

Clearing Storage on Power Off. In System/360, main storage

originally was implemented with magnetic cores, and the archi-

tecture specifies that the storage preserve its contents when the

power is turned off and on, provided that the CPU is in the

stopped state. In System/370, with solid-logic technology, the

power-on sequence normally clears storage to zeros. Incompati-

bility exists to the extent that a program that depends on

information stored before power was turned off (in order to dump
storage contents, for example) will not operate on System/370.

This change was mandated by the change from core to

solid-logic technology, and it had minor impact on compatibility.

A "power warning" interruption is available as a feature on

some models of System/370 which, in conjunction with equipment
that monitors line voltage, signals when loss of power is immi-

nent. The timing of the signal should be such that the operating

system can transfer the contents of main-storage (or at least critical

.sections) to a permanent medium before the system stops

operating. This usually requires some type of stored energy

supply.

Operation Code for HALT DEVICE. The first eight bits of the

operation code assigned to the new System/370 instruction HALT
DEVICE are the same as those originally assigned to HALT I/O,

the distinction between the two being specified by bit 15. In

Chapter 51 Architecture of the IBM System/370 $35

System/360, bit 15 is ignored, and HALT I/O is performed in both

cases. Incompatibility exists to the extent that a HALT I/O

instruction of a System/360 program is executed on a System/370
model as HALT DE^TCE if bit 15 happens to be one.

This choice of the operation code was made to facilitate the

attachment of the IBM 2880 Block Multiplexer Channel, which

implements HALT DE\ ICE, to the Model 85 CPU, the design of

which did not initially provide for this new instruction. The

likelihood of a problem is minimal, because:

1 Normally bit 15 is zero, since it is set to zero by IBM
compilers and assemblers.

2 In many cases the function performed by HALT DEVICE
may be substituted for and may even be preferable to that

performed by HALT I/O.

3 The occurrence of the HALT I/O instruction is infrequent.

Command Retry. Most System/370 channels provide the

command-retry facility, whereby the channel, in response to a

signal from the device, re-executes a channel command. This

re-e.\ecution is usually invoked when the device or control unit

detects a malfunction. The following is a list of some of the effects

of command retry:

1 An immediate command specifying no chaining may result

in condition code being set rather than condition code 1.

2 Multiple interruptions may be generated for a single

channel-command word (CCW) with the program-
controlled interruption flag.

3 Since CCWs may be refetched, programs which dynami-
cally modify CCWs may be affected.

4 The residual count in the channel-status word reflects only
the last execution of the command and does not necessarily
reflect the maximum storage used in previous executions.

These potential difficulties were not deemed to be serious

enough to warrant the hardware and software cost of placing

command retry under mode control. No problem exists with the

compatibility of I/O devices announced prior to System/370, as

they do not signal for command retry.

Channel Prefetching. In System/360, on an output operation
the channel may prefetch and buffer as many as 16 bytes;

similarly, with data chaining specified, the channel may fetch the

new CCW when up to 16 bytes remain to be transferred under

control of the current CCW. In System/.370, the restriction of 16

bytes is removed.

This incompatibility may affect programs that change data or

command words during the execution of the operation. The

change was needed for performance reasons and, as with com-

mand retry, was not deemed to warrant a mode control.

Extendability and Generality

The compatible evolution of the System/360 architecture into the

System/370 architecture was made possible largely by judicious

reservation in System/360 of unassigned formats and operation
codes. The System/370 architecture maintains and extends the

principle of frugal and controlled allocation of architecture

resources, so that System/370 can be extended in the future to

meet new requirements. The following are some examples where

provision is made for future extension:

1 Main-storage-address fields in the new PSW format,

control registers, and the permanently allocated storage
locations were assigned 32 bit positions, should they be
needed for address expansion.

2 The new EC-mode PSW format was defined to provide

space for additional control bits.

3 The control registers provide a general method of handling
control information that is not contained in the PSW, and

provide space for new facilities and for an expansion of the

present facilities.

4 The time-of-day clock format contains 12 unassigned
low-order bit positions, which could be used for higher
resolution.

5 A new instruction format was introduced for instructions

that need a single operand address. The unuse"d eight-bit
field in this format is made a part of the operation code,
thus expanding the number of available operation codes by
255.

Architecture Control Procedure

Beginning with the development of System/360, and continuing to

the present day, IBM has gradually adopted a process for the

specification and control of architecture. This process has been

largely successful in maintaining compatibility among many and

varied machines developed in several laboratories around the

world. The following are some important attributes of this

process.

Specification

There is but one specification of the architecture. It tells IBM
machine designers the functions the machine must provide, and it

describes to IBM programmers how the machine operates. The

same specification, called the Principles of Operation, is made
available outside IBM and is the only authoritative specification

that describes the architecture.

The architecture specification covers all functions of the

machine that are observable by a program. It either specifies the

836 Part 4 Family Range, Compatibility, and Evolution Section 5 The System/360 and System/370 Family

action the machine performs or states that the action is unpredict-

able. The latter applies to the detailed functions for which neither

frequency of occurrence nor usefiilness of results warrants

identical action in all models or at all times. Normally the

specification of unpredictable operation is a considered architec-

tural choice, since the architecture specification must anticipate

future implementations and the potential cost of providing specific

results of marginal value. OccasionalK', it is introduced into the

definition because the specific detailed function is overlooked in

the initial stages of the architecture resoltuion process or because

the designs of the machines initially implementing the architec-

ture mandate different operations.

All machine implementations are strictly monitored for compli-

ance with the architecture specification. Affirmation ofcompliance

with the architecture is a part of the internal IBM procedure for

product-development control, and actual compliance is verified

by formal and informal compliance audits and reviews of machine

specifications. Deviations from the architecture must be correct-

ed. In the rare cases when the cost to change the design or to

retrofit installed machines is excessive in relation to the practical

value of the compliance on that machine, deviations are permit-

ted. Any deviation that is likely to affect the execution of a

program is published in the IBM System Library manual for the

machine.

Most machines have a few deviations, covering such aspects as

the precise meaning of the test light on the operator-control

panel, the indication of access exceptions for an unused part of an

instruction, or the precise instant during execution of the WRITE
DIRECT instruction when serialization is performed. A deviation

by one implementation does not necessarily lead to a specification

of unpredictability, as compliance with the definition may be

essential for other applications, and the specific definition better

conveys the intended structure, making the architecture simpler

and easier to understand.

Development Procedure

The architecture definition starts out with a proposal for extending

or improving the Rmction of the machine in a specific area.

Extensions to the architecture normally are adopted as part of the

development of a new machine or set ofmachines, and the process

includes a number of steps:

1 Preliminary Review: Depending on the scope of the

extension, the cost and performance implications of new
ideas may be evaluated in various studies and reviews

among the architects and the machine and software design-
ers. A number of iterations of such reviews and architecture

definitions may take place.

2 Resolution Meetings: AAer an architecture definition has

been produced and reviewed by all interested areas, the

adoption of the definition is placed as an item on the agenda

of an architecture resolution meeting. These are periodic

meetings where all interested and affected groups are

represented by people with authority to commit their

projects. Depending on the need, the meetings may take

place monthly, weekly, or even more frequently. A
proposal may be adopted or rejected at the resolution

meeting, or concerns may be identified that require further

study. A proposal that is adopted at an architecture

resolution meeting becomes part ofthe architecture specifi-

cation.

3 Resolution Conferences: In order to set the direction for a

new product line, stop debate on some issue, or resolve all

loose ends, a resolution conference is called. Such confer-

ences may take place a few times during the development
of a product. They differ from regular resolution meetings
in that participation is wider, higher level ofmanagement is

involved, and more use is made of executive decision

making.

4 Interpretation: The architecture specification occasionally

leaves out some aspect of the operation, or the wording

may not be quite clear. Implementers are instructed to

question the architecture on any doubtful point rather than

make assumptions. Most questions are raised and answered

by telephone, and the architect then periodically docu-

ments the questions and the answers for review by all

implementers. These architecture interpretations supple-
ment the original definition and are eventually integrated
into the definition. Some questions demand further study
or require action at one of the resolution meetings.

Although the need for interpretation of the architecture

normally diminishes after the initial implementation of the

definition, some valid questions are raised and changes in

the wording made years later. Continual maintenance and

updating of the architecture specification are essential parts

of the architecture control procedure.

Responsibility

Although the adoption of the architecture specification and

compliance with it are based as much as possible on cost and

performance analyses and on consensus among machine and soft-

ware implementers, final authority for the architecture defini-

tion rests with the architecture group. Architecture is recognized

within IBM as an autonomous function which analyzes the

requirements of users and implementers and, in response,

produces the specification of how the machine must appear to the

program. It is an ongoing operation, as the definition must be

maintained and extended across product cycles.

One person, the chief architect, is responsible for the contents

of the Principles of Operation. He must obtain the approval of the

managers of each implementation before any change can officially

be made, and he calls and chairs architecture resolution meetings.

The architect's decisions at these meetings are binding unless and

until successfully appealed to high authority.

I

Chapter 51 Architecture of the IBM System/370 837

These procedures, especially the parts that result in less

authority or autonomy for implementing engineers, were not

accepted lightly or without considerable debate and management

leadership. Most of this methodology was developed by Fred

Brooks during the early days of the System/360 development, and

it has survived to the present. It succeeds in large part because of

the high competence and personal professional dedication of the

architecture group. They win most of the arguments by being

right, not just because they have nominal authority. The process

also works because the architecture group has considerable

experience and sympathy with the problems of practicing engi-

neers and programmers.

Architecture Extensions

the main features of the System/370

and provides some discussion of the

This section describes

architecture extensions

motivation for them. It includes a brief summary of the architec-

ture, the purpose of the function, the reasons for the architectural

decisions, and some of the main alternatives considered.

Virtual Storage

Motivation

The single item that most distinguishes the architecture of

System/370 from its predecessor, System/360, is the availability of

a dynamic-address-translation facility, which allows programming

systems to efficiently implement a group of functions which are

collectively known as virtual storage. This sytem incorporates

paging from a backing store as introduced in Atlas [Kilburn et al.
,

1962], and a second level of indirection, segmentation, as

suggested by Dennis [196.5] and as further detailed by Arden et al.

[1966].

The System/370 version of this facility was largely patterned

after the System/360 Model 67[Gibson, 1966]. Our experience

with that machine and its operating system, TSS, had verified the

value of many of the concepts and had given us actual usage data

with which to judge design decisions for System/370.

The motivation for virtual storage and some of its value can be

understood by considering several somewhat overlapping topics:

1 Roll-in and roll-out

2 Fragmentation of real main storage

3 Application-program development

4 Dynamic size adjustment

5 Compatibility of large and small storage sizes

6 Protection and sharing

7 Virtual-data access

8 Virtual-machine simulation

The following sections discuss each of these items.

Roll-In and Roll-Out. Prior to the introduction of virtual

storage, each application program was assigned real main-storage

locations at the time it was initiated. Thereafter, the program, as

well as its data, might be swapped out of main storage while

waiting for terminal or I/O service. When the program was

subsequently returned to main storage, it was constrained to

occupy the same real locations as it did previously, since

relocation to a different set of locations was extremely inconve-

nient.'

This restriction of programs and data to the initially assigned

real-storage locations leads to conflicts, such as when a program
that is ready for execution is barred from entering main storage by
another program residing at the assigned locations, even though

contiguous unused space of sufficient size is available at some

other address, and even though the CPU may not be fully

occupied. The overall result is that system throughput is reduced

and response time increased.

With virtual storage, any part of main storage is available for any

application, regardless of the locations to which it had initially

been assigned. By preventing conflicts for real-storage locations,

the performance of the whole system may well be significantly

improved.^

Fragmentation of Real Main Storage. If the various application

programs are of differing size, the storage-allocation problem is

even more difficult. Not only may a program be blocked from its

initially assigned locations, but even in batch operations, which

run applications to completion after they are initially loaded, only

part of the main storage can be utilized at any one time. As jobs

are completed at various times, the available storage can be

'It has been argued that this is not necessarily so. The basic System/360

architecture makes all problem-program main-storage references via a

register. With appropriate programming conventions, an operating sys-

tem might be built to allow the relocation of programs and data on

arbitrary boundaries without dynamic-address-translation hardware. In

practice, however, such a design would probably become too restrictive in

the types of programs allowed, or too complex and too slow to be

acceptable for a broad class of applications. It would be particularly

inconvenient for programs that store base-register values for later use or

for programs which do arithmetic on base-register values, as is often

required for the use of SS-format instructions. Finally, because it would

introduce new programming conventions, it is very unlikely that such

relocation could be applied to existing programs.

^This benefit could also be obtained by a system with a simpler relocation

mechanism than the one described here.

838 Part 4
|
Family Range, Compatibility, and Evolution Section 5

I

The System/360 and System/370 Family

assigned to new jobs only to the extent to which the waiting jobs

can utilize the available contiguous spaces. As a result, relatively

long-lived "holes" are formed in main storage which are individu-

ally too small for any job, but which collectively are larger than

needed for some or all waiting jobs.

Virtual storage allows the efficient collection of fragments of

main storage into one contiguous address space without moving or

disturbing the programs in process. The result is a more efficient

use of main storage and more throughput.

Application-Program Development. Prior to virtual storage, the

size of the installed main storage constrained application-program

development. Often the effective upper limit of an application

program had to be much less than the installed storage size in

order to provide for a resident supervisor and I/O package, and

because partitions for other applications were needed to ensure a

reasonable level of multiprogramming.
In many cases, a considerable programming effort was expend-

ed in planning overlays or phases in processing. This was true

even when the application program was such that most of the code

was seldom executed, it being present only for unusual or error

situations. Furthermore, sometimes modifications to a program
which once fitted its allocated partition would cause it to just

exceed the available space. Fitting this program into its previous

space was likely to require substantial rework for little return.

Virtual storage allows programs to run with an allocation of real

main storage which is independent of the size of the application

code. It allows many applications to be coded with little regard for

absolute space limits. Space in real main storage is not assigned to

seldomly executed parts of the program, and programs can

continue to be properly executed even if they grow.
It is, of course, misleading to suggest that developers of large or

frequently executed applications should remain ignorant of their

main-storage requirements or addressing patterns. Poor design
can require extensive paging and thus result in poor system

performance.

Dynamic Size Adjustment. In many cases it has been observed

that the dynamic allocation of storage to a program can be more

effective than the best static allocation by a programmer. Thus,

the effective size of an application may well be smaller under

dynamic allocation than with preplanned overlays. This allows

even more efficient use of main storage and may further increase

system throughput. The functions of dynamic location assignment
and dynamic size control interact with each other in a favorable

way. The "working size" of the application changes with time, and

the allocation capability allows more applications to be resident in

a fixed memory space. Without dynamic size adjustment, contigu-

ous storage was often reserved to meet the largest storage

requirement for the application, part of the storage being unused

for most of the execution time.

Compatibility of Large and Small Storage Sizes. The machine

compatibility objectives of System/360 stated that valid programs
on one model would also be valid programs on another model,

provided (in part) that the second model was configured with at

least as much main storage as the program required. On some

models it was not possible to install a large enough main storage.

The advent of virtual storage makes this condition obsolete.

Since the available virtual storage of all models is now equal,

programs written to run under a virtual-storage operating system

may be freely transferred to another model, provided that it

meets the real storage-size requirements of the operating system.

Performance, of course, is significantly degraded on a model that

has much less main storage. The ability to run a program on any

model, even if at a degraded performance, may prove particularly
'

useful in emergency situations where critical processing must be

done when the normal equipment is unavailable.

In addition, virtual storage allows, without reprogramming, an

immediate increase in system performance when real main

storage is enlarged. This may be important to installations with

increasing workload where it is not desired to recode or restruc-

ture the application set.

Although usually the contrary is assumed, it is possible to

consider systems in which the real main storage is larger than the

virtual storage assigned to any one program. Several routines,

multiprogrammed, then would reside to utilize the available main

storage. Such a system would have the advantage that address

constants in problem programs could be smaller. Only the

supervisory program would need to have enough total addressa-

bility to access the entire main storage.

Protection and Segmentation. By appropriately managing the

contents of the address-translation tables, an operating system

may allow one problem program access to only a part of the total

data in main storage, or, alternatively, may allow two or more

programs to share the same data. This ability to share some but

not the entire contents of main storage and to prevent all access to

other contents is very useful in maintaining the integrity and

security characteristics of an installation.

This method of protection is more flexible and selective than

the System/360 key-controlled protection because even routines

with key are restrained from accidental access to data that is not

assigned to them by translation-table entries. (It may be possible

for these routines to modify the tables.) Furthermore, whereas the

keys permit up to 15 different concurrently resident programs to

be isolated from each other, translation tables permit individual

access control for any number of programs. Operating systems

may well use a combination of storage keys and translation-table

contents for maximum flexibility and control.

Virtual Data Access. Normally I/O operations are used to

transfer data between the data sets on an external storage device

Chapter 51
[

Architecture of the IBM System/370 839

and the storage that can be directly addressed by the program.

Virtual storage can be used to avoid these explicit I/O operations.

This is accomplished by combining the mechanism used to

manage virtual storage with that used for managing external files.

Programs which implement virtual storage include tables,

related to the address-translation tables, that identify, for pages

not currently in main storage, the location of the page on the

external storage medium, such as a disk. Analogous tables

normally exist for external data files, which map data-set names to

locations in external storage. With appropriate design of these

tables and data formats, it is possible to "move" data between the

virtual-storage area and the data-set area by modifying table

entries, thus taking advantage of the paging mechanism to

perform the I/O operation.

Such data access improves efficiency, as actual data movement

into main storage occurs only when the application program refers

to the data; on output, movement may be avoided when the data is

already in the external device.

Viewed from another perspective, this approach provides a way
of extending the size of the virtual storage to encompass all online

data, with the restriction that any one program can have only part

of the online data in its own virtual storage at any one time.

This technique was advantageously used in the TSS operating

system on System/360 Model 67, where it was known as VIO.

Virtual-Machine Simulation. It has been found useful in many
installations to use an operating system to simulate the existence

of several machines on a single physical set of hardware. The IBM
VM/370 operating system is one example. This technique allows

an installation to multiprogram several different operating sys-

tems (or dififerent versions of the same operating system) on a

single physical machine. The dynamic-address-translation hard-

ware allows such a simulator to be efficient enough to be used, in

many cases, in production mode.

Dynamic-Address-Translation Mechanism

Address translation is achieved by treating the addresses supplied

by and available to the CPU program as designating locations in

virtual storage. The dynamic-address-translation mechanism

translates these addresses to real addresses, which designate

locations in real main storage.'

Translation Procedure

Translation is performed by the use oftwo stages of tables in main

storage. The high-order bits of the virtual address are used to

select an entry from the segment table. This entry contains the

origin of a page table, which is indexed by the mid-order bits of

'The actual reference to main storage may occur only after a further

translation known as "prefixing." This is described in the section on

multiprocessing.

the address. The low-order bits of the virtual address are

concatenated with the real address contained in the page-table

entry to form the real main-storage address. The origin of the

segment table is designated by the contents of control register 1.

The extent of virtual storage accessed through a segment-table

entry and a page-table entry is referred to as a segment and a page,

respectively.

Controls are provided in the PSW to turn dynamic address

translation on and offand in control register to specify the size of

segments and pages. The instruction LOAD REAL ADDRESS
allows a program to explicitly determine the current real address

corresponding to any virtual address. This is needed in several

routines that translate channel programs or allocate and manage
real main storage.

The two-stage translation procedure was selected for several

1 It provides a convenient way for segments to be shared

among different programs, using difiFering virtual address-

es, without requiring multiple page tables and multiple
table changes when the pages are replaced.

2 It results in less total storage taken by the tables by
permitting the tables to be abbreviated when the total

possible virtual storage is only sparsely allocated.

3 It limits the size of the largest table to less than a page, thus

facilitating the allocation of main storage to the tables.

4 It provides a convenient way for a portion of the tables (the

page tables) not to be resident in main storage at all times.

The page tables themselves may be paged out, in which

case the "invalid" bit in the segment-table entry causes an

interruption on an attempt to use the page table for

translation.

Translation-Lookaside Buffer. If translation tables in main

storage were actually accessed for each storage reference, the

number of storage references would be tripled, causing a totally

unacceptable performance degradation. In order to avoid such

degradation, all implementations in the System/370 line include a

hardware facility called the translation-lookaside buffer (TLB).

The TLB is a group of fast-access registers that contain the results

of recent references to translation tables. The access time to

information in these registers is a small fraction of the main-

storage access time, and they intercept about 99% of all the

references to tables in storage. The TLB makes the performance

degradation associated with table references minimal.

The instruction PURGE TLB causes the TLB to be cleared of all

entries. It provides a way of informing the translation mechanism

that the software has changed the contents of the current

translation tables in main storage and that the tables must be

reaccessed rather than relying on their previous contents as

reflected in the buflfers.

840 Part 4 Family Range, Compatibility, and Evolution Section 5 I
The System/360 and System/370 Family

Segment and Page Sizes. The architecture, as well as its

machine implementations, provides for any combination of two

different segment sizes (64K bytes and IM bytes) and two

different page sizes (2K bytes and 4K bytes).'

These parameters were provided to accommodate the range of

expected main-storage sizes and disk characteristics. Small page

sizes are needed for efficient use ofthe smaller main-storage sizes,

while large pages are needed to reduce CPU and I/O time in

main-storage to disk transfers. Large segment sizes allow conve-

nient handling of large data and program files, while small

segment sizes provide for easier storage allocation to translation

tables and for more segment names.

Each IBM operating system uses only one combination, the use

being as follows:

Segment Page System

64K

Chapter 51 Architecture of the IBM System/370 841

program-status word (PSW), which provides a convenient way of

introducing a new CPU state by an instruction or an interruption,

as well as a way of saving the old state on an interruption. The new

facilities introduced by System/370 expanded the amount of

information relevant to the CPU state, as certain additional

control information had to be specified that spans the execution of

a sequence of instructions; and, on encountering exceptions,

additional status information had to be provided to the program.

Since no unused bit positions were available in the PSW, the

requirements for the additional control and status information

were met by modifying the PSW format, by introducing a set of

sixteen 32-bit control registers, and by assigning locations in main

storage for control and status purposes.

Additional space in the PSW is obtained by removing the 16-bit

interruption code and the two-bit instruction-length code from

the System/360 format and by replacing the six channel masks

with a single I/O mask. Two new controls are placed in the

PSW—one bit to turn program-event recording on and off and

one bit to turn dynamic address translation on and off.

All additional control information is placed in the control

registers. The control registers are, in effect, an extension to the

PSW, except that their contents are not changed by the machine

on an interruption. Two instructions, LOAD CONTROL and

STORE CONTROL, are provided for loading and inspecting their

contents. The control registers are addressed similarly to the 16

general registers, and multiple contiguous registers may be

handled by one instruction.

All information that describes the cause of an interruption is

placed in specifically assigned main-storage locations. The infor-

mation is arranged by interruption classes, with additional fields

left unassigned for future expansion.

For I/O, a four-byte location is also assigned in main storage

that contains an address that specifies the storage area for diag-

nostic channel logout. Additionally, a four-byte location is as-

signed in main storage where channel identification is placed

on execution of the instruction STORE CHANNEL ID. These

I/O related fields are in main storage rather than a control regis-

ter since they must be accessed or modified by the channel. The
channel is, in effect, a separate processor sharing main stor-

age but having otherwise a limited ability to communicate with

the CPU.
PSW bit 12 specifies the format ofthe PSW and the execution of

interruptions. When PSW bit 12 is 0, the PSW has the System/
360 format, and the CPU is said to operate in the basic-control

(BC) mode; when bit 12 is one, the new PSW format and the

extended-control (EC) mode are specified. It should be noted that

the BC-EC mode distinction pertains only to information appear-

ing in the PSW. Control registers, as well as the facilities

associated with control registers (monitoring, machine-check

controls, extended external masking, etc.), are operative in both

modes, subject to the availability of PSW control bits. Pro-

gram-event recording is defined to be off in the BC mode,
as is implicitly invoked dynamic address translation, but the in-

struction LOAD REAL ADDRESS with the associated explicit

use of the dynamic-address-translation facility is valid in the BC
mode.

The following observations guided the architectural decisions:

1 On an interruption, as well as on a programmed transfer of

control (LOAD PSW), the machine must indivisibly replace
a certain amount of control information, including the

instruction address, protection key, problem-supervisor
mode specification, and masks to disable further interrup-
tions. For performance reasons, changing of other control

information should be optional and can be explicitly

performed by the supervisory program. This applies partic-

ularly to control information that pertains to system
functions and that is changed infrequently (page size,

controls for recovery from machine errors, etc.).

2 Certain information in the BC-mode PSW is meaningful

only for the determination of the cause of the interruption
and is not used to control machine operation. Priority for

PSW space should be given to control information. The

interruption code and the instruction-length code, which
for most interruptions is only a fraction of the total status

information provided, can as well be placed with the rest of

the status information in main storage.

One alternative for handling the additional control information

was to expand the size of the PSW. Such an approach leads to the

temptation to define a program status block for the control of the

machine containing all information for a dispatchable program

unit, including the values of general and floating-point registers,

timer values for accounting purposes, etc. This in turn requires

some assumptions for operating-system procedures, such as

conventions for passing parameters in subroutine linkages. Thus,

it leads to further extensions of the control block with information

required by the operating system.

Such an approach would have increased the time for simple task

switches, already too slow. Additionally, a number of considera-

tions argued against incorporating operating-system structures in

the machine architecture. A number of operating systems, with

differing requirements, were anticipated for the System/370 line

of machines, and no one set of formats and algorithms could satisfy

them all. More importantly, the architectural extensions intro-

duced a number of new concepts and facilities that had not yet

been implemented in a total system design. As a result, the

general design principle was adopted to include in the machine

architecture only the essential primitives and elemental tools for

performing the needed function.

84£ Part 4
I Family Range, Compatibility, and Evolution Section 5 The System/360 and System/370 Family

System-Mask Handling

Normally, on System/360 machines, the OS/360 operating system

operated either entirely enabled or entirely disabled for I/O and

external interruptions; accordingly, enabling and disabling was

accomplished by setting PSW bits 0-7 to a byte of ones or zeros.

With the change in the PSW format and the introduction of

dynamic address translation, program-event recording, and other

potential extensions having control bits in PSW bit positions 0-7,

setting all bits to the same value was no longer appropriate, and

the operating system had to be modified to treat the system mask

accordingly. This required the identification of all places in the

program where the mask is changed, including interruptions and

execution of LOAD PSW or SET SYSTEM MASK (SSM).

Because of the difficulty of finding all occurrences of SSM and

because in the EC-mode PSW bits 0-7 normally are not replaced

in their entirety, a mode was introduced where the execution oi

SSM is suppressed and instead causes a program interruption.

The interruption signals where the original program needs to be

modified.

The suppression of SSM is useful also for the conversion of the

operating system from uniprocessor to multiprocessor operation.

In a single-CPU system, the disabling of the CPU is a sufficient

means for avoiding use of a serially reusable resource associated

with I/O or external interruptions. When two or more CPUs share

those routines, such disabling is not adequate, as the use of the

resource by the other CPU also must be prohibited. Access to

the serially reusable resource must be controlled by other means,

and the interruption on encountering SSM aids the conver-

sion by signaling where the semaphore instructions should be

placed.

The two new instructions STORE THEN AND SYSTEM
MASK and STORE THEN OR SYSTEM MASK provide the

means for turning any bit in PSW bit positions 0-7 oflF or on.

Furthermore, these instructions save the original value of the field

in main storage so that a service routine making these changes

could, on exit, restore the field to its original value. In System/360

the current value of the masks can not be determined without

causing an interruption.

PSW-Key Handling

In the original design, most parts of the OS/360 operating system

operated with a protection key of zero, thus having access to all

parts of main storage. In the design of the OS/VS2 operating

system, one step taken to catch programming errors was to use a

nonzero protection key for the various components of the control

program, thus protecting one component from inadvertent stor-

ing by another component.
Two instructions are provided for inspecting and setting the

protection key in the PSW: INSERT PSW KEY (IPK) and SET

PSW KEY FROM ADDRESS (SPKA). The first one places the

protection key into a general register, and the latter replaces the

key in the PSW with the four low-order bits of the operand
address.

These instructions permit the key in the PSW to be set and

subsequently restored when a component is entered with an

unknown key and subsequently left, or when a routine must

modify data having a different storage key. When a supervisor

routine which normally uses a key of zero is called to perform a

service that involves storing in a user region, SPKA is also useful

for verifying that the requestor is authorized to perform the

storing. In this case, the supervisor can use SPKA to set up the

user's key for the duration of the operation.

Interruptions

System/370 expands the five System/360 interruption classes

(machine check, supervisor call, program, external, and I/O) by

introducing a new class—the restart interruption. This interrup-

tion occurs in response to the externally initiated restart signal

and is intended for the manual debugging of the machine and for

intervention by another CPU. In view ofthe intended purpose, no

mask bit is provided for disallowing the interruption.

The control of interruptions is made more flexible by providing

mask bits in control registers for each type of external condition,

for each I/O channel, and for the different types of machine-check

conditions. For any specific source, an interruption can occur only

when both the corresponding mask in the control register and the

class mask in the PSW allow it.

By means of the masks in the control registers, the supervisory

program can disallow interruptions for some sources within a

class, such as for machine-check recovery reports. They also allow

the enabling for conditions of higher priority after an interruption

for a lower-priority condition within the class has occurred, but

before other interruptions from the lower-priority condition can

be permitted. Thus, the program can simulate an interruption

mechanism with a priority hierarchy.

Data-Manipulation Instructions

Well over a hundred instructions were considered for inclusion

in System/370 architecture to improve the cost effectiveness of

the machine for the applications and data structures that had

evolved with the use of System/360 or that were anticipated for

System/370.

Out of these, seven general instructions, one decimal instruc-

tion, and seven floating-point instructions were adopted for

System/370. The floating-point instructions provide for arithmetic

on the new extended-precision format, as well as for rounding

Chapter 51 Architecture of the IBM System/370 $43

I

from extended to long precision and from long to short precision.'

The extended-precision format has a fraction of 28 hexadecimal

digits, and the considerations associated with the design of the

architecture are described by Padegs [1968].

The following is a summary of the operation and design
considerations for the general and decimal instructions.

Justification Methodology

The value of a new instruction can be expressed in terms of an

increase in CPU performance and a reduction in the program size,

the performance gain being a function of the gain per occurrence

of the instruction and its frequency of use. On the other hand,
each instruction has a machine implementation cost that can be

expressed in terms of additional circuits and control storage

locations. A serious attempt was made to express the cost

effectiveness for the more promising proposals in terms of specific

value and cost numbers. However, the decision was ultimately

based largely on judgment because of the following difficulties:

1 The performance of a new instruction depends on the

extent to which it is integrated in the machine. A specific

estimate for an addition to the architecture can be made

only when the basic design of the machine is already laid

out, and such an estimate normally is made assuming the

least perturbation of the design, yielding lower perform-
ance.

2 An instruction is used depending on its performance, and
its performance in a new machine design is a function of its

frequency of use. A new instruction without a proven value

is likely to be implemented at minimum cost and perform-
ance.

3 When the function performed by a new instruction is a

concatenation of functions performed by a sequence of

more primitive instructions, the cost and performance
considerations differ in large and small machines;

The elimination of the instruction fetching time may
yield some performance gain in a medium-speed ma-
chine but is likely to be insignificant in a very small serial

machine or in a large machine that overlaps phases of

execution.

In a large machine, frequent simple instructions may be

performed in their entirety in hardware as part of the

instruction decoding phase. If such a simple function is

made a part of another more complex instruction, either

the execution of the composite function is made slower

by implementation in microcode, or additional cost in

hardware is incurred.

'The extended-precision floating-point capability was also available on

System/360 Models 85 and 195.

4 Some instructions, such as those for conversion between
fixed- and floating-point formats, are used only in specia-
lized environments, and an average number for their

frequency of use is not meaningful. The potential usage of

other instructions, such as those for setting and testing bits,

is so pervasive that it is not possible to determine a

meaningful usage frequency.

5 For some instructions, such as those for moving bit strings
or for operations on fist structures, justification cannot be
based on where the new instructions could be used in

programs currently written but rather on what new applica-
tions or program structures the instructions would make
attractive.

The final choice of the new instructions was strongly moderated

by such somewhat subjective attributes as consistency of design,

generality of function, and simplicity of use. It was made subject
to the rule that a new instruction can be adopted only if it will

appear in the object code compiled from a high-level language
or if it will be used within a programming system in a signifi-

cant way.

Movement and Comparison with Long Operands

The two instructions MOVE LONG (MVCL) and COMPARE
LOGICAL LONG (CLCL) are enriched versions of the basic byte
movement and comparison operations, respectively. They pro-
vide for operand sizes of up to 16,777,215 bytes, true" length

designation, padding, marking the byte of mismatch (for CLCL),
and test for destructive overlap (for MVCL).
Many users had asked for "move" and "compare" instructions

with long operands, and the padding function in MVCL is

valuable for clearing storage to zeros, blanks, or any other code.

The specific attributes of these instructions, however, were

established largely to permit convenient byte-string manipulation
in programs generated by the PL/I compiler. At the time a

byte-string operation is compiled, the size and relation of the two

operands is not known, the specific parameters being bound in

the program only at execution time. Hence, the object code must

provide for various special cases of overlap, length mismatch, etc.

It was estimated that MVCL could eliminate as many as 1,000

bytes in the PL/I object-code library.

Because the processing of an operand of 16 million bytes would

take much longer than the execution time ofany other System/370

instruction, execution of MVCL and CLCL was made interrupti-

ble, thus avoiding the loss of real-time responsiveness due to the

potentially long operands. If a condition is due to cause an

interruption, the execution of the instruction is suspended,

operand addresses and counts in the general registers are adjusted

by the number of bytes processed, and the instruction address is

left to point to the MVCL or CLCL instruction. When control is

844 Part 4 1 Family Range, Compatibility, and Evolution Section 5
|

The System/360 and System/370 Family

returned to the interrupted program, execution ofthe interrupted

instruction is resumed. To the machine, the initial start and the

resumption of execution are identical.

Handling of Bytes in Registers

The three instructions INSERT CHARACTERS UNDER MASK,
STORE CHARACTERS UNDER MASK, and COMPARE LOGI-

CAL CHARACTERS UNDER MASK are provided to increase

the convenience of manipulating a variable number of bytes

between general registers and storage. The instructions select

the bytes in the designated register by means of a four-bit mask,

with the bits corresponding to the four bytes. The storage oper-

and contains the bytes in a contiguous field. Among other fijnc-

tions, the instructions permit loading and testing 24-bit address-

es.

Conditional Swapping

The two instructions COMPARE AND SWAP (CS) and COM-
PARE DOUBLE AND SWAP (CDS) are intended for use by

programs sharing common storage areas in either a multiprogram-

ming or multiprocessing environment. They may be used to add

or delete elements in chained lists or to identify the holder or

requestor associated with a lock for a serially reusable resource.

They are System/370 primitives which can be used to control

access to critical regions in a manner similar to Dijkstra's

semaphores.
These two instructions designate a storage operand and two

register operands. They cause the storage operand to be com-

pared with the first register operand: if they are equal, the storage

operand is replaced with the second register operand; if not, the

first register operand is replaced with the storage operand. The

result is indicated by the condition code. When an equal

comparison occurs, no access is permitted to the storage location

between the fetching of that operand and its replacement. The

two instructions are the same except that for CS the operand

comprises one word and for CDS a doubleword.

The following is an example of a procedure using CS, whereby a

program can modify the contents of a storage location even though

the possibility exists that the program may be interrupted by

another program that will update the location or that another CPU

may simultaneously update the location.

First, the storage operand is loaded into a general register,

which then contains the first register operand. Next, the updated

value is made the second register operand. Then CS is executed.

If condition code is set, the update has been successful. If

condition code 1 is set, the storage location has been found to

contain a different value, the update has not been successful, and

the first register operand has been replaced by the new current

value of the storage operand. The program in this case can repeat

the procedure, bypassing the first step.

Decimal Shifting

The SHIFT AND ROUND DECIMAL instruction is provided for

the convenience ofdecimal shifting, which is common in commer-

cial applications and in the simulation ofthe decimal floating-point

format. To permit "late binding" in the object code generated by a

compiler, both left and right shift are included in one instruction.

Rounding is accomplished by adding a specific digit specified in

the instruction.

Byte-Oriented Operands

System/370 removes the original System/360 requirement that

halfword, word, and doubleword operands in storage must be

aligned on the natural boundary for the size of the operand.

Instead, it permits the operands of virtually all nonprivileged

instructions to start on any byte boundary.
'

This change was made to allow direct processing of all fields

obtained from external sources without knowledge of whether

they are properly aligned. The primary motivation was to make it

easier for users to determine record lengths and to allow

compilers to provide a consistent alignment algorithm and

therefore to permit convenient data exchange among programs

written in different languages. The principal compiler problem

occurs when sub-parts of data structures are passed as parameters

to separately compiled procedures. In this situation the receiving

program cannot assume the starting alignment position, and no

universal padding convention can be established to shift the field

to its natural boundary. In addition, the change may assist in

processing records which are obtained from or destined for

equipment not in the System/360-370 famihes.

The use of operands which are not aligned on natural bounda-

ries will result in considerable performance penalties on some

models, especially the faster ones. All machines, however, are

designed with the guideline that the performance penalty should

be less than the time required to move the operand to an aligned

location and then move the result back.

Timing Facilities

Summary

The new timing facilities are introduced as a replacement for the

System/360 location-80 interval timer. The 31-bit format of the

interval timer provided for a resolution of 13 microseconds and a

'Tlie byte-oriented-operand capability was also available on System/360

Models 8.5 and 195.

Chapter 51 Architecture of the IBM System/370 845

period of about 15.5 hours and did not meet some of the more

demanding timing requirements. Furthermore, the need to share

the single timer for the various timing needs introduced signifi-

cant software overhead.

System/370 offers three new facihties for measuring time: a

time-of-day clock, a clock comparator, and a CPU timer. These

facilities jointly provide the time measurements which a program

may need. System/370 continues to provide the interval timer at

location 80 in main storage, which is included for compatibility

with System/360. It meets no requirements not already met by
the other three facilities.

The time-of-day (TOD) clock is a binary counter with a period of

about 143 years and a resolution, depending on the model, that is

on the order of one microsecond. The doubleword format allows

for an extension of the resolution to one-quarter nanosecond.

Operating in conjunction with the TOD clock, the clock compara-
tor causes an interruption when the TOD clock has advanced to a

value greater than that in the clock comparator. The CPU timer is

also a binary counter, with a format the same as that of the TOD
clock, except that it is considered to have a signed value. The

contents of the timer are decremented, and an interruption occurs

when the value is negative.

Three "setting" instructions are provided whereby the program
can place a specific value in each of these timers, and three

"storing" instructions allow for placing the current contents of the

timers into main storage for subsequent inspection. The STORE
CLOCK instruction is not privileged so that any program can have

access to the TOD clock; the other five instructions are made

privileged to ensure integrity of the timer values and to permit

sharing the clock comparator and CPU timer among programs.

Additionally, the SET CLOCK instruction is interlocked with the

operation of a console switch, so that the program can alter the

clock setting only when such alteration is allowed by the operator.

This interlock ensures that the clock value does not get changed

accidently because of an error in the operating system, which is

helpful for recovering and debugging system operation.

To provide a compatible recording of time among systems,

January 1, 1900, am GMT is established as the standard time

origin, or epoch, that is the calendar date and time to which a

clock value of zero corresponds. This date permits retroactive

assignment ofTOD clock values to transactions. The enforcing of

this convention is the responsibility of the operating system. Local

time is calculated when needed by subtracting an offset from the

TOD clock value. It is only this offset that needs to be changed for

different time zones, daylight-savings time, etc.

Design Considerations

The interaction of several design considerations was involved in

the final specification.

Timing Functions. The new timers are provided to meet four

distinct timing functions. Two of these needs related to real time:

The current real-time value, which is needed for labeling
events and transactions with the time of their occurrence

(time-stamping) and for measuring elapsed real time. Time

stamping is needed, for example, to record the time when an

exceptional condition is detected or when a transaction request
is received. Elapsed real-time measurements, obtained by
taking the difference between two real-time values, are

needed for such purposes as determining the duration of

real-time processes and establishing charges for use of the

system's storage media or terminals. This need is met by the

TOD clock.

An interruption at a specific real-time instant, which is needed
for the control of many real-time processes. Applications may
include sampling a sensor, changing traffic light patterns for an

approaching rush hour, or polling a terminal. This need is met

by the clock comparator.

The time which accrues only when the CPU is actually

executing a particular program is referred to as the process time

for that program. The following two needs must be met in relation

to process time:

The current process time value, which is needed for establish-

ing elapsed process time for performance evaluation and

accounting for the use of the CPU, and related functions.

An interruption at a specific process-time instant, which is

needed for such functions as checking a program to protect

against unending loops and rotating the use of the CPU among
different programs, referred to as "time-slicing."

The system must maintain as many accumulators of process

time as the number of independent programs that concurrently

reside in the system. However, since the CPU executes only one

process at a time, only one of these times can be running at one

time, and hence only one machine timer is needed. The CPU
timer is provided to satisfy both needs associated with the process

time.

Long TOD-Clock Period. In order to permit direct problem

program access to the TOD-clock value and to avoid the need for

special software procedures for handling of clock overflow, the

period should span the lifetime of the environment using the

format and algorithm for time measurement. As a minimum, it

should cover a number of hardware and operating system

generations. A period of 143 years provides this, even with a time

origin set to the year 1900.

Unique TOD-Clock Values. The clock should provide nonrepet-
itive readings, so that the time-stamp labels provided by the clock

S46 Part 4
I
Family Range, Compatibility, and Evolution Section 5

I
The System/360 and System/370 Family

can serve as unique serial numbers for the identification and

cataloging of system objects. In view of this, the STORE CLOCK
instruction is defined such that no two references to the TOD
clock of a CPU, or to any of the TOD clocks of a shared-main-

storage multiprocessing system, provide the same value. Either

the clock has a high enough resolution to be updated between two

such instructions, or references to the clock are specifically

interlocked to ensure the uniqueness of readings.

Synchronization with External Signals. For the accuracy of the

TOD clock's real-time indication to be comparable to its resolu-

tion, it must be possible for the program to set the clock to a

specific value and then start its operation in response to an

external signal. This function is particularly essential for synchro-

nization ef the clocks of two CPUs and is provided by the

TOD-clock synchronization control, which is included in the

multiprocessing feature. When the control bit is one and SET
CLOCK is executed, the clock stops. It resumes incrementing

only after a synchronizing signal from the other CPU arrives. This

signal is generated by a carry into bit position 31 of a running

clock, and is defined so that, with zeros in bit positions 32-63 of

the stopped clock, the low-order words of the two clocks are

subsequently incremented in synchronism. The high-order words

of the clocks, approximately corresponding to counts of seconds,

can be synchronized by the program.

Format. For interpretation by people, a TOD clock format of

such form as vear-month-day-hour-minute-second-fraction is most

convenient. Such a format, however, was rejected because of the

difficulties it would present for arithmetic operations. The specific

format was adopted because of the efficiency of binary encoding
and by observing that the external formats may have to meet

difiPerent operating-system or installation requirements and hence

should be under software control.

Implementation. In spite ofthe need for the functions, inclusion

of three 64-bit timing facilities would appear rich if each actually

required a hardware register. It is possible, however, for a

microprogrammed machine to implement the clock comparator
and the CPU timer with a small counter and two doublewords of

local storage. This is, in fact, the implementation used on most

models. Further savings are permissible by implementing most

high-order bytes of the TOD clock in local storage.

Multiprocessing

System/370 architecture includes a number of facilities that

permit formation of a system where two or more CPUs share

common main storage and are controlled by a single copy of the

operating system. Such a system has a number of advantages:

1 It offers higher processing power and throughput.

2 It improves reliability by making an alternate CPU availa-

ble and by increasing the redundancy of other system

components.

3 It permits more flexibility in sharing I/O and external

storage devices.

4 It provides a larger pool of main storage, channels, and I/O

equipment for allocation of these resources in response to

demands by various jobs.

This section reviews the facilities included in System/370 for

multiprocessing.

A rudimentary form of some multiprocessing facilities was

available also on System/360 Models 65 and 67, which offered a

shared-main-storage multiprocessing capability. Prefixing on

these models was provided using a manually settable prefix. A
limited interprocessor signaling capability was made available

througli the use of the channel-to-channel adapter. Instructions-

stream synchronization and serialization were left mostly unspeci-

fied by the architecture; the action of the machine was determined

by the implementation. In addition, configurations of modified

Model 50 CPUs, designated the IBM 9020, were built as part of a

special system for the Federal Aviation Administration.

It should be noted that although current implementations offer

multiprocessing systems comprised of two CPUs, the architecture

allows for a multiplicity of CPUs.

Synchronization and Serialization

In a uniprocessor, the execution of a single instruction, as well

as of a disabled routine, can be considered instantaneous in that

no other program can observe or change any intermediate re-

sult values, and all references to main storage can be considered

to occur in the sequence specified by the program.' In a multi-

processing system, the results of all communication between

CPUs through main storage are based on the actual storage ac-

cesses. When these accesses are observed by another processor,

they may differ from the expected operation in the following

1 A single instruction may make a number of distinct

addresses to main storage, and accesses associated with

single instructions may be interleaved by CPUs.

2 The accesses due to a single instruction and due to any two
instructions are not necessarily performed in the specified

order.

'This statement is not strictly true with respect to channels which may
access an area of storage concurrently with the CPU. The channel may see

intermediate or out-of-sequence result values if the CPU changes the

contents of the I/O data areas during channel operation.

Chapter 51 Architecture of the IBM System/370 847

3 Accesses within a field, such as for an instruction or an

operand, may be made piecemeal.

4 Multiple accesses may be made to a storage location for a

single use of its contents.

Results become unpredictable, and the conventions of a

uniprocessor communications protocol become inadequate when

one CPU is changing the contents of a common storage location

while the other is observing it, or when both CPUs are updating

the contents of the location at the same time.

System/370 architecture includes a number of specific rules and

extensions to make a multiprocessor communications protocol

more flexible and efficient. Included are constraints on the

concurrency, multiplicity, and order of storage accesses. Specific

instnictions are defined to serialize and synchronize events. A
detailed discussion of those considerations is beyond the scope of

this paper.

Prefixing

The control and status information associated with a CPU (PSWs,

interruption codes, I/O control words, etc.) reside in fixed

low-order locations of main storage. When storage is shared by

multiple CPUs, each CPU must have a private control and status

area. This is accomplished by providing in each CPU a prefix

address, which specifies the storage block to which references

with addresses to 4,095 are relocated. In order for each

processor to have access to all of the attached storage, and for one

processor to access another's fixed addresses even if they are

prefixed with a value of zero, reverse prefixing is employed: that

is, references to the 4K-byte block identified by the prefix address

cause access to block 0. Prefixing, as well as reverse prefixing, is

applied after dynamic address translation, and it applies to all

storage references by the CPU. Two instructions, SET PREFIX
and STORE PREFIX, are associated with the facility.

Prefixing is not applied to storage references associated with I/O

data transfers. This decision was made to avoid any logical affinity

between a channel and a CPU, thus permitting any CPU to start

an I/O operation on any channel in a multiprocessing configura-

tion. It also avoids some additional cost for the relocation

hardware in standalone channels and for keeping the prefix

address in each subchannel.

Interprocessor Signaling

To fully utilize the potential advantages of a multi-CPU system,

some explicit ability for programmed communication among the

CPUs is necessary. Such communication is needed for initial

startup of the operation, to dispatch jobs because of changes in

priority or because of an imbalance of I/O equipment, to recover

operations after software or hardware failure, and to diagnose a

machine or program problem.

All program-initiated CPU-to-CPU communication is per-

formed by means of the SIGNAL PROCESSOR (SIGP) instruc-

tion, which designates the addressed CPU and indicates an order

specifying an operation to be performed. The instruction can be

addressed to the issuing CPU. The orders provide for the

following types of functions:

Start; Stop. These two orders are the same as the correspond-

ing operator-console functions.

Stop and Store Status. A sequence of operations is performed

comprising the corresponding two operator-console functions.

Restart. A restart interruption is initiated at the addressed

CPU, which can be used for initial startup or for dispatching a

job.

External Call; Emergency Signal. These two signals cause the

corresponding type of external interruption at the addressed

CPU, each type of interruption being controlled by a separate
mask. They can be used to establish a communications protocol
of two priority levels, covering general and unusual conditions.

Sense. The signaling CPU is informed whether the addressed

CPU is stopped, still has an external call pending, is in

check-stop state, etc.

Reset. Four types of orders are provided for resetting the

addressed CPU, permitting a choice in whether channels must
be reset and in whether some program-addressable registers

must be initialized.

When a CPU enters the check-stop state or loses power, it

implicity generates a malfunction alert. This signal is broadcast to

all other CPUs in the system and causes an external interruption in

those CPUs that are enabled for it. This mechanism provides for

an automatic error alert if and only if programmed communica-

tions are no longer possible; at any other time, signaling of all

exceptional conditions is under explicit control of the program.
The address assigned to a CPU may be determined by issuing

STORE CPU ADDRESS on that CPU. The CPU address may be

used to associate with the CPU any facilities that are unique to it,

such as an emulator or I/O devices accessible only by it.

Debugging and Monitoring

Two facilities are introduced in System/370 for selectively passing

control to a supervisory program on the occurrence of specific

events during program execution: program-event recording and

monitoring. Additionally, the status-storing facility provides an

operator control for recording program status.

Program-Event Recording

The program-event-recording (PER) facility extends and places

under program control functions that previously have been

848 Part 4
j
Family Range, Compatibility, and Evolution Section 5 The System/360 and System/370 Family

available only to the console operator. It is a debugging tool that

can be invoked without any preplanning in the design of the

program.
The PER facility causes a program interruption on the occur-

rence of one or more of the following events:

1 Successful execution of a branch instruction

2 Alteration of the contents of designated general registers

3 Fetching of an instruction from a designated main-storage

Status Storing

The status-storing facility consists of an operator control that

causes the contents of the current PSW and of all addressable

registers to be stored at preassigned locations in main storage. It

provides a means of preserving the essential status information,

upon the failure of a program, for subsequent dumping and

analysis. This facility makes it possible for a standalone dump
program to record the status of the failing program, without the

dump program destroying the status that is to be saved.

4 Alteration of the contents of a designated main-storage area Machine-Error Handling

The information concerning a program event is provided by
means of a program interruption, with the cause of the interrup-

tion being identified in the interruption code. The occurrence of

the event does not affect the execution of the instruction, and the

PER interruption is taken after the execution of the instruction

responsible for the event. The supervisory program has control

over the conditions that are considered events for recording

purposes and specifies the registers and the storage area involved.

The PER facility does not affect CPU performance when it is

completely disabled by means of the PSW mask, but on most

models it reduces performance when the machine is instructed to

search for some events. Its primary use is under conditions when
the program is suspected of having a bug. In order to reduce the

frequency of PER interruptions, the debugging procedure can

select events hierarchically, the initial monitoring being only for

instruction fetches or storage alteration occurring outside (or

within) a designated area. Recording successful branches or base

register alterations should be invoked only when the fault is

localized to a particular routine.

Monitoring

The monitoring facility causes an interruption when the MONI-
TOR CALL (MC) instruction is encountered. Each MC instruc-

tion identifies itself as belonging to one of 16 separately maskable

classes and provides a 24-bit code. On a monitor-call interruption,
both the class number and the code are stored to identify the

condition.

The MC instruction takes very little execution time when the

class is not enabled for interruption; it is useful for signaling
critical points in a program, such as dispatching, procedure
entries, queue access, and page faults. It is expected that

potentially useful points will be identified as part of the design of

the program, and that the instruction will be a permanent part of

many routines. These instructions then could be used to assist in

debugging the system, as well as to record frequency and path
information for system performance analysis.

System/370 implementations provide extensive checking for

equipment malfunction and include a number of steps for

automatic recovery by the machine. The architecture includes

extensions that permit reporting of error conditions to assist

maintenance and repair and to help with programmed recovery.
It provides model-independent structure for the initial response
and damage assessment and permits passing additional informa-

tion for model-dependent analysis. This section reviews the

architecture extensions and outlines the characteristics of the

implementations that motivated the architecture extensions.

Model independence, or compatibility, in the context of

machine-check handling has objectives and constraints somewhat
different from those applying to the rest of the system. First, the

architecture specifies machine actions in the case when the

machine is failing, and hence absolute compliance cannot be

guaranteed. Second, the architecture has to reflect the physical
structure of the machine, and thus has to provide for some model

dependence. As a result, the architectural definition permits a set

of actions and alternatives, allowing the machine to choose among
them and requiring that it indicate the action it has taken. For

virtually all error situations, the machine must, however, comply
with certain basic rules.

One of the fundamental rules of both System/360 and System/
370 architecture is the separation of programming and machine

errors. Specifically, it must not be possible either inadvertently or

by deliberate programmed action to cause an indication of

machine malfunction. (This excludes the use of the instruction

DIAGNOSE, which is intended for diagnostic and maintenance

functions.) Any condition indicating that the operation of the

equipment deviates from that normally expected is brought to the

attention of the program either via a machine-check interruption
or by turning on the corresponding equipment-error bit in the

statusword stored by the channel or the SIGNAL PROCESSOR
instruction. Conversely, all invalid program situations that are

detected by the machine are reported by condition codes, status

bits, and interruptions that are distinct from those used for

machine errors. In order to ensure that the machine is in a known

Chapter 51 Architecture of the IBM System/370 849

valid state at the initiation of processing, System/370 architecture

defines and introduces a hierarchy of specific reset ftinctions.

The machine-check architecture assumes a rather extensive

recording and analysis program as a part of the operating-system

facilities. In many cases it is possible to limit the bad efiects of a

malfunction to just one user, and it should usually be possible to

perform an automatic restart so that newly submitted jobs can

run. Some solid failures, of course, prevent any useful work from

being done. In these cases information must be recorded to

expedite diagnosis and repair of the fault.

Recovery Mechanisms

System/370 implementations provide some or all of the following

five mechanisms to minimize the destructive efiect of machine

malfunctions and to ensure integrity of system operation.

Data-Error Detection. Most data and control paths in the CPU,
in channels, and on the I/O interface include redundant bits to

verify correct transmission and readout of information. The

redundancy typically is one bit per byte, or 12.5%. The redundant

bit is so chosen as to provide an odd parity for the nine-bit field,

thus requiring that at least one bit always have a nonzero value.

This organization is capable of detecting any single-bit error.

Data-Error Correction. Main storage for all models except

Model 195 is organized into blocks of eight bytes, with eight

redundant bits included with the block. The redundant bits form

an error-correction code capable of correcting any single-bit error

and detecting any double-bit error. When a single-bit error is

detected on readout, the error is corrected in the storage array,

correct parity is provided to the CPU, and an alert condition is

generated. On double-bit errors, an error indication is generated.

Error correction may be used also in other parts of the system.

Checking and correction is accomplished typically in a fraction of a

machine cycle.

CPU Retry. Recovery from transient errors can be accom-

plished by reexecuting the sequence of steps in which the error

occurred. On some models such reexecution, or retry, is invoked

automatically by the machine whenever an error is detected, and

the steps typically cover the execution ofone or a few instructions.

CPU retry requires that the machine periodically establish points,

referred to as checkpoints, with a known machine-state informa-

tion. Whenever changes to the machine-state are subsequently

made, the previous value for the changed attribute is recorded. In

the case of an error, the machine-state is restored to that at the

checkpoint, and reexecution is attempted. If the error persists,

retry from the same check-point typically may be performed eight

times. If the retry is successful, an alert condition is generated; if

not, an error is indicated. The time for CPU state restoration and

error analysis may be a millisecond or significantly more.

Unit Deletion. On some models, malfunctions of certain trans-

parent units of the system can be circumvented by discontinuing

the use of the unit while still continuing processing. Examples
include the disabling of all or a part of the cache, translation

lookaside buffer, or the high-speed multiplier. When such

automatic reconfiguration has occurred, a special signal indicating

degradation of operation is generated.

Command Retry. The command-retry facility, which permits

recovery from errors detected by the I/O device, is described in

the section "Incompatibilities."

Error Reporting

System/370 architecture groups machine errors by type and

severity and provides model-independent means for their identifi-

cation. All machine-check interruptions are subject to the control

of PSW bit 13. Additionally, masks for specific conditions permit
control over the causes that are to be reported.

Two major types of machine-check conditions are identified,

repressible and exigent. The indication of repressible conditions

can be delayed without afiecting the integrity of CPU operation.

They include recovery indications, alerts of degradation or

imminent power loss, and indications of damage to timing or

external facilities.

For exigent machine-check conditions, the execution of the

current instruction or interruption cannot safely continue and

normally is terminated. If the CPU is disabled for machine-check

interruptions, the CPU enters the check-stop state. The machine,

however, may choose to proceed with processing when the

check-stop-control bit so permits. This option is desirable for

some real-time applications.

When a machine-check interruption occurs, extensive model-

independent information is provided describing the cause of the

error. In addition to the machine-check old PSW and source

identification, contents of control registers, general registers,

floating-point registers, TOD clock, clock comparator, and CPU
timer are stored, and, for storage errors, the address of the

suspected location is provided. Such automatic saving avoids the

need for programmed storing, which may be impossible because

of the error condition. Because of the check-point capability in

models with CPU retry, the interruption resulting from an exigent

machine-check condition may identify a point in the recovery

cycle which is prior to the point of error. For this reason a number
of bits are stored to describe the validity of the status information

and the relation between the points of error and interruption.

Finally, extensive model-dependent logout information may be

S50 Part 4
I
Famfly Range, Compatibility, and Evolution Section 5 Ttie System/360 and Sysfem/370 Family

provided at permanently-assigned locations in main storage or in

an area designated by an address in a control register.

Storage Validation

Since the block size for error correction may be larger than the

bus width of the system, only part of the checking block may be

replaced in any one CPU cycle. In the case of an uncorrectable

storage error, such replacement cannot force valid checking-block
code on the entire storage block, as no information is available as

to which part of the block is invalid. Furthermore, on some
models validation of storage contents can be performed only when
the entire "cache line" is replaced, which may include a number
of checking blocks.

To permit validating storage, that is, replacing storage contents

with a valid checking-block code, the instructions MOVE and
MOVE LONG are defined to force valid checking-block code on
the destination operand when the operand designation meets
certain size and alignment requirements.

Machine Identification

The instruction STORE CPU ID provides information that

identifies the particular CPU executing the instruction by type,
model number, version, and serial number. It also provides the

length of the model-dependent status and error-logout fields for

this model. The instruction STORE CHANNEL ID provides

analogous information for the addressed channel. These instruc-

tions make it possible to invoke model-dependent recovery

programs and help a general-purpose analysis routine to record

essential information about the physical unit for diagnostic and

repair purposes.

Input/Output

System/370 architecture adds several facilities and functions in the

area of input/output (I/O) operations to improve channel utiliza-

tion, to make the control of operations more efficient and flexible,

and to increase the maximum data rate on the I/O (channel-to-

control-unit) interface. This section discusses some of the more

important additions.

Utilization of Channel Facilities

The System/360 architecture provided for two channel types, a

selector channel capable of operating with relatively high data

rates but with only one device at a time, and a byte-multiplexer
channel capable of simultaneously operating many devices but at

relatively low data rates. System/370 adds the block-multiplexer'

'The IBM 2880 Block- Multiplexer Channel included most of the System/
370 I/O architecture extensions and was available on System/360 Models
85 and 195.

channel with both high-data-rate and multiple-device capabilities

[Brown, Gibson, and Thorn, 1972].

The block-multiplexer channel is similar to a byte-multiplexer
channel in that both have a number of subchannels, each
associated with an I/O device or a group of I/O devices. The
subchannel is the logical entity that controls an I/O operation and
contains the addresses, count, and control bits associated with the

operation. The channel provides the data paths and controls for

communicating with the CPU, main storage, and I/O control units

and for associating the proper subchannel with each communica-
tions sequence. The main difference between the block- and

byte-multiplexer channels is in the level of multiplexing: whereas
the byte-multiplexer channel can interleave the transfer of

individual bytes for different subchannels, the block-multiplexer
channel, being designed for high data rates, is limited to

interleaving complete blocks of data.

The block-multiplexing capability is particularly advantageous
when used in conjunction with rotational position sensing on

rotating-storage devices, such as disks and drums. This feature

allows the device to disconnect from the channel during the

period of rotational delay, thereby releasing the channel for

operation with other devices. When the addressed sector is

approaching on the track, reconnection is attempted for the

transfer of data. In case the channel is so busy that the connection
cannot be established by the time the sector is reached, another

attempt is made after a delay of one rotation time.

Rotational position sensing is available, for example, on the

IBM 2305 fixed head file. The control unit for this file can appear
to have 16 devices, each associated with its own subchannel and
able to sustain an I/O operation.

In the absence of the block-multiplexing capability, efficient

utilization of I/O facilities required separate START I/O instruc-

tions to specify the position of the arm on the disk and the

subsequent reacfing or writing. On the block-multiplexer channel,
these commands are chained, thus avoiding the interruption of

the CPU at the completion of the positioning operation. The
number of START I/O instructions is also reduced.

Control

Since the periods when the block-multiplexer channel is busy
transferring blocks of data are asynchronous to CPU operation, a

new interruption, the channel-available interruption, is provided
to indicate when the channel is free to process a CPU instruction.

The block-multiplexer channel generates this signal when the

busy condition ceases to exist that had previously caused rejection
of an I/O instruction.

The new HALT DEVICE instruction also is introduced largely
because of the block-multiplexer channel. It is similar to the

previously available HALT I/O except that, when the channel is

busy, only the operation on the addressed subchannel is affected.

Chapter 51 Architecture of the IBM System/370 851

HALT I/O terminates the current burst operation on the channel,

ignoring the device address.

The new CLEAR I/O instruction is provided to permit freeing

the subchannel associated with the addressed device without such

freeing being contingent on the completion of the current I/O

operation at the device. This function is useful for situations

involving machine errors or reconfiguration of I/O devices and

control units.

Finally, an extension is provided to reduce the CPU time to

start an I/O operation. When START I/O (SIO) is issued, the

channel signals the device as part of SIO execution to ascertain the

device's ability to execute the command. This involves a number
of signal sequences and the associated propagation delays and

logic delays in the channel and the control unit. According to the

I/O interface specification [IBM, 1978a], the portion of the total

delay introduced by the circuitry in the control unit can be as high
as 32 microseconds. Additional delays may be introduced by the

channel. On a CPU that can perform a few million average

instructions per second, the delay due to the communications

with the device can be equivalent to a hundred or more

instruction executions.

The new instniction START I/O FAST RELEASE (SIOF) allows

the acceptance to be signaled and the CPU to be released as soon

as the channel has fetched the channel address word from main

storage. The channel subsequently initiates the operation at the

device and verifies the validity of the command information. Any
exceptions are signaled by means of an interruption. Normally
such exceptions are infrequent, and thus, overall, little time is

spent processing the interruptions.

Some channels do not currently implement the early release on

SIOF and instead execute SIOF as SIO. Such implementations are

compatible and permit early conversion of programs to the use of

SIOF.

Data Rates

The original System/.360 I/O interface specification was adequate
for data rates up to about IM bytes per second. In special cases for

disk devices and for very short channel cable lengths, a rate up to

I.25M bytes per second could be supported. With the advent of

storage technologies employing higher recording densities, it was

necessary to increase this limit. A higher limit was desirable also

for certain buffered devices. Changes to System/360 were made in

both the width of the interface and in the interface signaling

protocols.

The fully interlocked signaling protocol on the System/360 I/O

interface allowed one channel cable connection to sustain data

transfer at a very wide range of rates, with both the channel and

device having complete control over the timing of each byte
transfer. It did, however, require an electrical signal to be

propagated between the channel and the control unit four times

for each byte transferred.

The System/370 channels modify this signaling protocol, with

two additional wires in the interface, to provide the same level of

transfer interlocks at the expense of only two propagation times

per byte transferred. It depends on the control unit if the new

facility is used, so that control units implemented to operate with

the System/360 protocols can be attached to System/370 channels.

The basic interface bus is one byte wide, comprising eight data

bits arid a parity bit. On some System/370 models the bus width

can be extended optionally to two bytes, thus doubling its data

transfer capacity.

As a result of these two additions, the System/370 I/O interface

can sustain a data transfer rate of over 1.5M bytes per second in

the one-byte version and over 3.0M bytes per second in the

two-byte version. Concurrently with the data rate improvement,
the allowable cable lengths have been increased.

Implementation

While this chapter is concerned mainly with the logical structure

of the system as seen by the programmer, some of the parameters
of the realizations are important for practical and efficient use

of the equipment and to understand the motivation behind some

of the features. This section summarizes some attributes of the

System/370 models. For convenience of comparison, it includes

also the corresponding values for the models of System/360. Only
the most recent characteristics are listed; some of the models were

improved after initial announcement.

Central Processing Units

Variation in the cycle time and data-flow width of the central

processing unit (CPU) and in the characteristics of its control

storage is one important way of obtaining cost and performance
differences in a compatible family of machines. Table 3 shows

these factors for the various models of System/360, and Table 4 for

System/370.'

Depending on the CPU, a different amount of "work" is

accomplished per CPU cycle. Hence these numbers cannot be

used directly as a measure of relative speed. CPU data-flow width

is given in bytes and indicates the largest field that can be handled

in one cycle time. Instruction fetches and a limited set of

operations may be handled by wider paths, as indicated by
footnotes.

Control storage, which contains the microprogram, is described

in terms of the following attributes: capacity (in K words, where

'In this chapter, capacities and widths are usually given in bytes. A byte is

composed of eight bits. Physical implementations include additional bits

for error detection and correction. This redundancy in CPU data flow and

in processor storage typically is one bit per byte.

852 Part 4 Family Range, Compatibility, and Evolution Section 5 The System/360 and System/370 Family

Table 3 System/360 CPU and Control Storage Characteristics

Chapter 51 Architecture of the IBM System/370 853

Table 4

Table 5

Chapter 51 Architecture of the IBM Systenn/370 $55

Table 7

