
Proceedings of NTCIR-7 Workshop Meeting, December 16–19, 2008, Tokyo, Japan

 
 

ICL at NTCIR-7: An Improved KNN Algorithm for Text Categorization 
 
 

Wei Wang 
Inst. of Computational 

Linguistics, Peking 
University 

wwei@pku.edu.cn 

Sujian Li 
Inst. of Computational 

Linguistics, Peking 
University 

lisujian@pku.edu.cn 

Chen Wang 
Inst. of Computational 

Linguistics, Peking 
University 

goldeneagle@pku.edu.cn 

 
Abstract 

This paper describes our system for the NTCIR-7 Patent 
Mining Task which sought to make automatic text 
classification pragmatic. Our system employs an 
improved KNN algorithm which makes trade-off 
between effectiveness and time complexity. We have 
tried two distance metrics in our algorithm: cosine 
similarity and Euclid distance. Evaluation results on 
NTCIR-7 test data shows that the former one is slightly 
better. 
  
1. Introduction 
 

The NICIR Patent Mining Task (MT) aims to 
develop   techniques for technique trend analysis and 
mining. In those techniques, text categorization is a 
primary step for further processing. In NTCIR-7 MT 
English subtask, the participant is required to 
categorize research papers (abstracts) written in 
English into the International Patent Classification 
(IPC). IPC has a hierarchical structure, each IPC code 
is composed of five parts: section, class, subclass, 
group and subgroup. For example, the IPC code 
H04H 1/06  can be divided as follows:  

 
Table 1: An example of IPC code 

 Code Meaning 
H Section  Electricity 
04 Class Electric communication 

technique 
H Subclass  Broadcasting 
1 Group  Broadcast distribution system 

06 Subgroup Having frequencies in two or 
more frequency bands 
 

MT is basically a text categorization task. A variety 
of methods have been developed for text categorization. 
The most common way is to use VSM (vector space 
model) to represent text and statistic learning models 
to do the classification job. SVM is reported to achieve 
best performance over a wide range of tasks [1]. 
However, the training of SVM is time-consuming, 
especially when there are too many categories and 
features [2]. For example, if we use one-against-rest 
SVM, we will need about 30000(the number of IPC 

codes used in our task) classifiers. Tie-Yan liu [2] 
reports that it takes 102 hours to train flat SVMs for 
just 94 categories over OOSUMED [3]. The 
computational load will be unacceptable if we use such 
models. To tackle this problem, we turn to KNN model. 
For simplicity, we use an improved nearest neighbor 
searching algorithm which calculates the distance 
between the unlabeled node and centroid  node 
instead of all nodes. The centroid  node represents all 
nodes belonging to the same category. Experiments 
show that our method achieves promising results on 
the NTCIR-7 test data. 

The rest of this paper is organized as follows. Section 
2 briefly introduces our system. Section 3 describes the 
basics of our KNN algorithm including complexity 
analysis and detailed steps. Section 4 illustrates the 
experimental results and section 5 concludes the paper. 

 
2. System Overview 
 

Our system uses PAJ (Patent Abstracts of Japan) in 
1993-2002 as training data. The following is a patent 
file instance: 
 

<PATDOC> 
<B110>05000001</B110> 
<B511>   A01B 63/10    </B511> 
<B512>   A01C 11/02    </B512> 
<B542>ROLLING CONTROLLER OF WORKING 
MACHINE</B542> 
<SEC> 
<P>PURPOSE: To improve following performance 

of working machine to ground by restraining rolling 
control to local unevenness on the ground. </P> 

 
<P>COPYRIGHT: (C)1993,JPO&amp;Japio</P> 
</SEC> 
</PATDOC> 
 

 
Figure 1: An example of patent file 

 
05000001  in <B110> tag is the patent number, 

which is unique for each patent.  and 
 are the IPC codes for this patent (patent 
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can have more than one IPC code). The < B542> tag 
contains the patent title, and <SEC> tag contains the 
main content. 

First we extract texts from<B542> and <SEC> tags. 
The copyright declaration in <SEC> is discarded. Then 
we calculate IDF for each word contained in patents. 
After that, we merge patent files sharing the same IPC 
code. Merged files and the topic file are represented 
with term vectors respectively. Then we find 1000 
nearest neighbors (most possible IPC codes) for each 
topic vector using two different distance metrics. The 
detailed algorithm will be illustrated in section 3. 

 
 
 
 
 
 
 
 
 
 
 
 

      
 

Figure 2: The processing steps of our system 
 

3. The Improved KNN Algorithm 
 
In this section we will describe the algorithm employed 

in our system, including complexity analysis and 
detailed steps. Our algorithm is improved mainly on the 
time cost. Whether the categorization result benefits 
from it remains to be resolved. 

 
3.1. Complexity analysis of our algorithm 
 

Tradition KNN calculates distance between each 
labeled node and node to be classified. Suppose there 
are N labeled nodes, and M different labels. The 
complexity of finding the most possible label for an 
unlabeled node from K nearest neighbors is N*logK. 
When N is large, the computation work will be time 
consuming. In NTCIR-7, there are about 5 million 
training patent files, and 879 topics. We have to assign 
each topic 1000 most possible IPC codes. Using the 
original KNN model, the computational expense is too 
large to afford. So we come up with an improved 
algorithm which makes trade-off between effectiveness 
and time cost.  Our algorithm uses the centroid node  
to represent all nodes that have the same IPC code, and 
we search 1000 nearest neighbors for each topic from 
centroid  nodes instead of the 5 million nodes. The 

computational cost of this method for a single topic is 
M*log(1000). If we use the original KNN algorithm, 
since we have to find 1000 most possible labels from K 
nearest neighbors, K must be very large to contain 
enough nodes of different labels. Normally K will be N. 
So the time cost is almost ( 65*10N , 43*10M ): 

 
2*log( ) 7.5*10

*log(1000)
N N

M         
times of our improved algorithm. In the following we 
will show more details of our algorithm. 
 
3.2. Detailed steps of our algorithm 
 

Assume the words are 1w , 2w  tw with IDF  

1idf , 2idf tidf  respectively, the topic vector is  

topicV =< 1idf * 1topictf  , 2idf * 2topictf  tidf *

ttopictf > . First we will have to denote the centroid 
node  for the ith merged text. Suppose the ith merged 
text is composed of ic   independent patent files, which 

means there are totally ic  different patents labeled with 
the ith IPC code. We define the centroid  vector for it 
as iV =< 1idf * ,1 /i itf c , 2idf * , /i itf c , 

tidf * , /i t itf c >, while ,i jtf  is the term frequency of the 

jth word in the ith merged text. After that, we can 
calculate the distance or similarity between the centroid 
vector iV  and the topic vector topicV . The first metric is 

Euclid distance: 
 

( , ) | |i topic i topicEuclid V V V V  

 
The Euclid distance metric prefers long topics because 
they have more words than short ones. The cosine 
similarity metric can avoid such problems since it s 
normalized.  

 

( , )
| | * | |

i topic
i topic

i topic

V V
Cosine V V

V V
 

 
Notice that smaller Euclid distance means higher 
possibility of correlation between topic and IPC code 
while cosine similarity is on the contrary. 

Here are the detailed steps of our algorithm: 
1. Extract patent file contents from raw data, 

compute the IDF for each word using the 
formula ( / )term i iIDF log N D . N is total 

number of patent files, and iD is the number of 
documents containing term i. In order to remove 
noise features we discard words appearing in 
less than 3 patents. 

2. Merge patents with the same IPC code into one 
file. Count the merged files  term frequency and 
get the centroid  vector iV  for the ith merged 
file ( 1,2,...i M ). 

3. Get the term vector topicV for each topic. Then 

calculate the distance or similarity between iV   

IDF Computing 

Merge patents with 
the same IPC code 

Get topic vector 

Topic 

Get centroid vectors 

Training file 

Find 1000 nearest neighbors 
for topic vector 
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and topicV . Construct a heap of size 1000 in the 

memory which records the 1000 vectors with 
minimum distances/maximum similarity and 
their corresponding IPC codes while computing 
the distance/similarity between topicV  and each 

centroid  vector. After the computing is done, 
get the IPC codes in the heap. Their rank is 
determined by the corresponding distance or 
similarity score. 

 
4. Evaluations 
   

The following evaluation is two-fold. First we will 
compare the performance of our system with other 
participants. Each participant can submit at most 3 
results. Of the 20 results submitted by nine participants, 
our best result ranks 12th. Second we will compare the 
performance of the two distance metrics: Euclid 
distance and cosine similarity.  Evaluation results show 
that the cosine similarity metric is better on average.  

  
4.1. Comparison of our system and other systems 
 

The NTCIR-7 task contains 879 topics. Each user can 
submit at most 1000 IPC codes for a single topic. 
Usually there are 1-3 IPC codes given by the organizer 
for each topic as the answer. There are totally 2051 
answers for 879 topics. Our system retrieves 1888 of 
them. Here is a comparison of our system s retrieved 
answer number with other participants: 

 
Table 2: Comparison of retrieved answer number 

Participant Retrieved IPC  (Relevant 
2051) 

NEUN1_S1 1975 
xrce_e2j2e 1932 

KECIR 1892 
ICL07_1 1888 

nttcs2 1848 
BRKLY-PM-EN-02 1488 

AINLP04 1455 
rali1 953 
PI-5b 895 

 
The IPC numbers showed in Table 2 are the 

maximum numbers retrieved by each participant. From 
this table we can see that the top 5 results (including 
ours) show no significant difference with each other. In 
fact, our system s gap with other top systems lies in the 
precision indicators. There are mainly three kinds of 
precision measurements for this task. The first is the 
average interpolated recall precision (I-precision). 
Suppose there are N topics, for topic i, the maximum 
precision when the recall is bigger than an interpolated 
value, say 0.50, is iP . Then the I-precision at 0.50 is 

defined as
1

/
topicN

i topic
i

P N ( topicN is the number of topics). 

Here is the detailed average interpolated recall precision 
of our system and three other top systems. 

 
Table 3: Comparison of I-precision  

Interp
olated 
Value 

ICL07_1 NEUN1
_S1 

xrce_e2j
2e 

KECIR 

0.00 0.2118 0.5965 0.5318 0.3973 
0.10 0.2118 0.5965 0.5318 0.3973 
0.20 0.2068 0.5936 0.5302 0.3949 
0.30 0.1922 0.5718 0.5075 0.3721 
0.40 0.1613 0.5308 0.4658 0.3300 
0.50 0.1587 0.5254 0.4555 0.3201 
0.60 0.1142 0.4522 0.3821 0.2507 
0.70 0.1021 0.4183 0.3536 0.2212 
0.80 0.0980 0.4085 0.3469 0.2113 
0.90 0.0962 0.4029 0.3424 0.2062 
1.00 0.0961 0.4027 0.3424 0.2062 
 
The micro average interpolated recall precision 

(micro I-precision) is similar with average interpolated 
recall precision. The only difference is that the recall 
and precision is calculated using all topics. For example, 
the micro I-precision at 0.50 is defined 

as ,
1

1
1 1000}{ ,

topic

topic

N

i k
iN

max c k k when the 

overall recall ,
1

/
topicN

i k answer
i

c N is bigger than 0.50( ,i kc  

is the number of correct answers in top k results for 
topic i, answerN  is the number of correct answers for all 
topics). Here is the detailed micro I-precision of our 
system and three other top systems. 

 
Table 4: Comparison of micro I-precision 

Interp
olated 
Value 

ICL07_1 NEUN1
_S1 

xrce_e2j
2e 

KECIR 

0.00 0.1024 0.4664 0.4107 0.2708 
0.10 0.0846 0.4664 0.4107 0.2708 
0.20 0.0556 0.3874 0.3305 0.1862 
0.30 0.0417 0.3874 0.2704 0.1486 
0.40 0.0312 0.3201 0.2392 0.1090 
0.50 0.0230 0.2353 0.1669 0.0744 
0.60 0.0163 0.1770 0.1007 0.0468 
0.70 0.0112 0.1097 0.0609 0.0252 
0.80 0.0062 0.0519 0.0293 0.0124 
0.90 0.0027 0.0149 0.0075 0.0038 
1.00 0.0000 0.0000 0.0000 0.0000 

 
From Table 4 we can see that all the four systems  

micro I-precision at 1.00 are zero, since no system has 
retrieved all answers.   

The third precision (doc-precision) is defined as the 
precision at a certain number of retrieved answers. For 
example, the doc-precision at 10 means the average 
precision of the top 10 answers for all topics. Due to 
limited pages we don t present detailed evaluation 
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results. The situation is similar: our system is 
significantly lower than the top systems. 

Our system s low precision indicates that our rank 
function   is not good enough. It s partly because of the 
model we use. Our KNN model is flat , that is, it treats 
all categories equally. However, the IPC has a 
hierarchical structure. By using flat KNN, the structure 
information is lost. Besides, currently we haven t done 
much work on feature selection and term weight 
adjusting. We just simply use words as features, and 
IDF as term weights. This may not be appropriate 
sometimes, for example, words in patent titles are 
usually more informative than words in claims, so 
maybe we should assign such words higher weights.  
 
4.2. Comparison of two distance metrics 
     

We have submitted two results, using cosine 
similarity and Euclid distance as the distance metric 
respectively. The former one retrieves 1888 answers, 
while the other retrieves 1277. The precision of cosine 
similarity is also higher than that of Euclid distance. 

 
Table 5: Comparison of I-precision and micro I-    

precision for two distance metrics 
Recall I-precision micro I-precision 

 Cosine Euclid Cosine Euclid 
0.00 0.2118 0.2094 0.1024 0.1149 
0.10 0.2118 0.2094 0.0846 0.0914 
0.20 0.2068 0.2058 0.0556 0.0535 
0.30 0.1922 0.1899 0.0417 0.0319 
0.40 0.1613 0.1543 0.0312 0.0173 
0.50 0.1587 0.1509 0.0230 0.0060 
0.60 0.1142 0.0967 0.0163 0.0019 
0.70 0.1021 0.0845 0.0112 0.0000 
0.80 0.0980 0.0807 0.0062 0.0000 
0.90 0.0962 0.0796 0.0027 0.0000 
1.00 0.0961 0.0796 0.0000 0.0000 

 
However, for the micro I-precision, the Euclid 

distance metric is higher than Cosine similarity metric 
at recall 0.00 and 0.10. This means that for the few top 
answers, the Euclid distance metric s answer is more 
accurate. It s more obvious when compared with doc-
precisions. 

 
Table 6: Comparison of doc-precision for two 

distance metrics 
Top K answers Cosine Euclid 
5 0.0710 0.0719 
10 0.0536 0.0501 
15 0.0447 0.0397 
20 0.0388 0.0337 
30 0.0312 0.0261 
100 0.0147 0.0107 
200 0.0087 0.0058 
500 0.0040 0.0027 
1000 0.0021 0.0015 

 

We can see that for the top 5 answers, the Euclid 
distance metric is higher. This is possibly because it can 
take into account negative features, that is, if two words 
don t appear in two texts, their term vectors  Euclid 
distance will be smaller, on the contrary, only common 
words in two texts make contribution to cosine 
similarity. 

 
5. Conclusion and future work 
 

Much work remains to be done. Our current model is 
simple, effective, at the cost of information loss. 
Negative features, and the hierarchical structure of IPC, 
are ignored by our system (especially for the cosine 
similarity metric). In the future, we will try to take into 
account these factors. Also our feature selection method 
needs to be improved. Currently, we just simply discard 
words with DF (document frequency) less than 3. We 
will try more sophisticated methods, like IG, MI and 
LSI to remove noise features and redundant features. 
Besides, we will use mixed models to improve the 
precision of our system. That is, we will first use the 
KNN model to extract top 1000 IPC codes. Then, we 
will use other models like ME or SVM to rescore each 
IPC code.   
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