Scene Segmentation
in Adverse Vision Conditions

Evgeny Levinkov*

Max Planck Institute for Informatics, Saarbriicken, Germany
levinkov@mpi-inf.mpg.de

Abstract. Semantic road labeling is a key component of systems that
aim at assisted or even autonomous driving. Considering that such sys-
tems continuously operate in the real-world, unforeseen conditions not
represented in any conceivable training procedure are likely to occur on
a regular basis. In order to equip systems with the ability to cope with
such situations, we would like to enable adaptation to such new situ-
ations and conditions at runtime. We study the effect of changing test
conditions on scene labeling methods based on a new diverse street scene
dataset. We propose a novel approach that can operate in such condi-
tions and is based on a sequential Bayesian model update in order to
robustly integrate the arriving images into the adapting procedure.

1 Introduction

Driving assistance systems have been rapidly evolving lately due to a constantly
increasing interest in real-world application as well as studies conducted in the
field of computer vision. An important task of such systems is road scene labeling
in order to derive the semantic structure of the observed scenes. One of the big
challenges is making such systems robust so that they can reliably operate in a
wide range of conditions. However, capturing and training every possible condi-
tion a car can encounter throughout years of driving seems to be an impossible
task.

Recently, there has been an increased interest in approaches of domain adap-
tation [8,7] in computer vision that are able to adapt existing classifiers to new
domains and conditions. These require supervision from the target domain, that
can not be provided by the envisioned systems that continuously operate in the
real-world. Existing adaptive methods [1] allow the use of machine generated la-
bels in order to refine the classifier and help it to adapt to changing conditions.
However, they perform only global adaptation, for which they require access to
the whole test set. Again, this is against the idea of a continuously operating
system.

In contrast, we aim at an adaptive algorithm that is able to perform adap-
tation on the fly. Therefore, this paper proposes a sequential Bayesian update
strategy that pursues multiple model hypothesis for semantic scene labeling. In

* Recommended for submission to YRF2014 by Dr. Mario Fritz



2 Evgeny Levinkov

order to circumvent typical problems of online learning by a “self-training” pro-
cedure, we perform model updates under the assumption of a stationary label
distribution.

2 Naive Model Update

Typical self-training approaches are based on a two step procedure. First, a
lately arrived batch of images is labeled using the current model. Second, af-
ter an optional threshold on a confidence rating, these samples are used to
update/re-train the model. In more detail, we get an output probability distri-
bution P(x(; ;)) from our classifier for each pixel (4,7) and the predicted class-
label for it ¢* = argmax .y P(z(; ;) = c). Then, samples are taken for which
P(z(;,; = ¢*) > X holds, where A is a acceptance threshold parameter. High
probability P(z; jy = c¢*) should indicate high confidence of the classifier in the
predicted label. This is a completely heuristic approach, as the classification of
the test data is only an approximation to the un-accessible groundtruth.

Taking new samples with the predicted labels which have high confidence is
not necessarily a reliable way of updating the model due to inaccuracies in the
intermediate models. While we want to be robust w.r.t. changes in the feature
distribution, stationarity of the label distribution is a milder assumptions in
many scenarios. We adopt ideas from J. Alvarez et al. [1] who employ a pixel-
wise, normalized class-histogram on the off-line data as a prior distribution to
weight the output probability distribution of the classifier at testing time.

In detail, we compute histogram for each pixel and after per-pixel Li- normal-
ization we get a prior P,E,Zﬂ’]) for each pixel (4,7),i =1,... ., Wy, j = 1,..., Hp,.
In our experiments images in the testing dataset all have various dimensions,
so we perform nearest-neighbor sampling from the prior distribution Péi’”.
Then at testing time output probability distribution P(z(; ;) for all pixels
(4,5),i = 1,...,W,j = 1,..., H from our classifier for an image with dimen-
sions W x H is element-wised multiplied with the corresponding prior
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This is used for accepting or rejecting new training examples on a per-pixel basis

3 Sequential Bayesian Model Update under Structured
Scene Prior

We propose a new model to leverage unlabeled data for a sequential model
update for scene labeling. Our approach is based on a Bayesian model update. We
maintain a population of models (particles) that approximate the distribution
over the model-space p(h:|L:), instead of relying on a single model, as in the
previous formulations. The required integration over the model-space is solved
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by a Monte-Carlo method — just like in Condensation and Particle Filters that
are well known from tracking applications [5,4]. Consequently, scene labeling at
test time will be performed by marginalization over the model distribution

p(X|Ly) = / p(X|h)p(he|Lr) b, @)

where X is the labeling of a test image for which we want to do prediction.

While the above-mentioned tracking formulations have a measurement step
that evaluates image evidence, we measure the compatibility with the scene prior
S. This is again based on the assumption of a stationary label distribution PIS?J )
as for the previous method.

Bayesian Model Update We are interested in modeling an evolving tar-
get distribution over models in order to account for the uncertainty in the un-
observed scene labels. Therefore, we model the unobserved scene labels [; of
the unlabeled data u; at time step ¢ as a latent variable (Figure 1). Rather than
sticking to a single model hypothesis, we seek to model a distribution over model
hypothesis h;. Therefore we update a distribution over model hypothesis given
labels p(h¢|L¢). Here Ly = {lo,l1,...,li—1,1:}.

We describe the incorporation of the unlabeled examples in a Bayesian frame-
work by integrating over all model hypothesis

p(he|Li—1) = /p(ht\ht—hUt)p(ht—1|Lt—1)dht—1- (3)

In the measurement step, we apply the Bayes’ rule in order to get the updated
distribution over model hypothesis

p(le|he—1,S)p(he|Le—1)

ha|Ly) = ,
p( t| t) p(lt|Lt—1)

(4)

with
p(lt|ht—175) :p(lt|ht—1)p(lt|5)7 (5)

where p(l¢|hi—1) is the probability of a certain scene labeling prediction given a
model hypothesis h,_1 and p(I;|S) is a scene labeling prior P57,
Sampling We perform inference with a Monte-Carlo approach [5]. At each

time step the model distribution p(h:|L;) is represented by a set of particles

sgN) with weights W,EN). Next, the particles are propagated to the next time step
via p(h¢|hi—1, us) that takes into account the existing models and the unlabeled
data. In traditional tracking application this transition is modeled with a de-
terministic part and a stochastic component. In our setting, we propose to do
model propagation by randomly choosing a subset of images which are provided
to a particular particle to retrain as well as picking a randomized acceptance
threshold A per particle. The benefits are twofold. First, a diverse set of mod-
els is generated for the next iteration. Second, parameters like the acceptance
thresholds are dealt with within the model and no hard choices have to be made.
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Road Scenes [9] New Diverse Road Scene Dataset

- o

Fig. 2. First column shows examples of road scene dataset from [9]. Other columns
show examples of the new diverse road scene dataset exhibiting very different appear-
ances and a wider range of conditions.

In summary, our particle filter over
model space works as follows. For each
particle ¢ out of IV:

1. Pick a particle s¢ from S,EN), which
represents p(h¢|L;), according to
the weights ﬂ',gN

2. Sub-sample set of unlabeled im-
ages us to Uy

3. Predict labels [, = argmax; p(I|h¢)
for subset

4. Accept or reject samples based on

some threshold A
5. Retrain model using (@, ;) and

Fig. 1. Bayesian network for the proposed
Sequential Bayesian model update.

Ly
Traditional tracking approaches
would now follow up with a measurement in order to update the weights 7T,§N).

Similarly, we update the weight wt(N) of each sample (model hypothesis) accord-

ing to (4). In this equation p(h¢|L;—1) is the distribution represented by our
particles after the propagation step from above and p(l;|ht—1,S) is the product
of the likelihood of the labeling times the likelihood of the labeling given the
scene labeling prior. We don’t compute the denominator - but rather directly

normalize the weights of the particles Wt(N) to sum to 1.

4 New Diverse Road Scenes Dataset

In order to study the problem of adaptation we need a dataset, which exhibits
considerable amount of appearance variation between the training and test set.
Typical road scene datasets like [9,2] (Figure 2, first column) already exhibit
some visually difficult situations like changes in object appearances due to mo-
tion blur effect, deep shadows which appear and disappear suddenly, changes in
lightning conditions like over- or under-saturated regions, but the overall feature
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Fully connected CRF error, %
Road |Background|Sky|Average
Old 0.7 2.2 2.7 1.9
New 52.7 6.5 35| 314
Table 1. Comparison of Krahenbiihl et al. [6] semantic image labeling algorithm on
the old and the new test test.

Test set

statistics stays similar between training and test. Therefore, we have collected
a new dataset which exhibits much richer appearance variation, using freely
available images from the Internet. Figure 2 shows examples from 220 images
in our dataset. All images were hand-labeled into 3 classes: road, sky, and back-
ground. The dataset expose a much stronger appearance variation than previous
datasets. Typical challenges include roads covered with autumn leaves or snow
as well as different types of roads such as dirt and gravel roads and even images
taken at night, although we leave out such issues like bad lighting, low contrast,
or rain.

5 Experimental Results

In our implementations we employed a Random Forest [3] classifier (consisting of
10 trees each having maximal depth 15 with 20% bagging) and features from [9].
We used the training set from [9] for training (Figure 2, first column) and per-
formed testing or adaptation on the new diverse road test set. Groundtruth
annotation of the test set is not used in any way, other than for computing error
rates.

Non-adaptive methods In order to show that non-adaptive methods
have a limited capability of generalizing to a different and strongly varying fea-
ture distribution as presented in our new dataset, we took one of the state-of-
the-art methods for semantic image labeling of Krahenbiihl et al. [6], and trained
it on the training set and tested on both the old and the new test set (Table 1).
The old test set has a similar appearance as the training set (Figure 2, first
column), so the resulting numbers are very good. But when we test on the new
test set, the method shows strong accuracy degradations caused by the changed
feature distribution. Particularly, the road recognition rate gets more than 50
times worse, because background and sky have more or less similar appearance
as in the training set, while appearance of the road usually does not resemble
the one in the training set.

Adaptive methods Global adaptive methods consider the whole test set
at once and try to adapt to it. The main restriction of such methods is that
they require access to the whole test set. In the real world setting, when new
images constantly arrive, global algorithms would have to deal with a constantly
increasing test set. Alvarez et al. [1] proposed such an globally adaptive scheme
for road scene segmentation. Table 2 (first row) presents resulting numbers for
their original method, which the authors kindly agreed to run on our test set.

Table 2 shows resulting numbers for adaptive methods after they have pro-
cessed the whole test set. Our algorithms were run 3 times and the results were
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Error, %
Update type|Method Road |Background| Sky | Average
global Alvarez et al. [1] 76.2 12.7 25.5 38.2
Naive 26 +1.4| 15.4+0.4 [9.3+1.4| 17+0.7
sequential |Naive + Scene Prior|21+2.7| 18.5+0.6 |6.5+0.9|15.5+1.4
Bayesian Model 19+0.6| 18.3+0.6 |4.5+0.4(13.9+0.3

Table 2. Comparison of different adaptive approaches after processing the whole test
set (mean plus std). Bold font highlights the best numbers.

input evolution of labelings in our method

B -----

groundtruth

Fig. 3. Example results showing the input image and evolution of the labelings through
the proposed Sequential Bayesian Update method. The last two columns show the

corresponding ground truth annotation and the output of the global adaptive method
of Alvarez et al. [1]. Green color denotes background, red - sky, and blue - road.

averaged over. The numbers show that sequential adaptive methods have a larger
capability in adapting to changing feature distribution in the setting, when new
images arrive constantly during (possibly infinite) test time. Our proposed Se-
quential Bayesian Model Update shows the best average performance and the
lowest variance.

Figure 3 shows some examples of how labelings for certain images evolve as
our Bayesian Model Update method processes one batch of consequent images
from the test set after another. It is remarkable how our approach can recover
from initially poor segmentation results and adapts to the new conditions. We
also show the results of the method of Alvarez et al. [1], over which we show
quantitative as well as qualitative improvements.

6 Conclusion

Today’s semantic scene labeling methods show good performance if the training
distribution is representative for the test scenario. But when this feature distri-
bution does change, as we showed, such techniques deteriorate in performance
quickly. We collected a challenging dataset of images which has very different
appearance statistic compared to the established scene segmentation datasets.

We proposed a Bayesian Model Update that sequentially updates the seg-
mentation model as new data arrives, allowing to benefit from new information
at test time and providing a possible application in scenarios when the new data
is not available all at once, but rather arrives constantly in small batches.
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