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The linear birefringence of uniaxial crystal plates is known since the 17th century, and it 
is widely used in numerous optical setups and devices. Here we demonstrate, both 
theoretically and experimentally, a fine lateral circular birefringence of such crystal 
plates. This effect is a novel example of the spin-Hall effect of light, i.e., a transverse 
spin-dependent shift of the paraxial light beam transmitted through the plate. The well-
known linear birefringence and the new circular birefringence form an interesting 
analogy with the Goos–Hänchen and Imbert–Fedorov beam shifts that appear in the 
light reflection at a dielectric interface. We report the experimental observation of the 
effect in a remarkably simple system of a tilted half-wave plate and polarizers using 
polarimetric and quantum-weak-measurement techniques for the beam-shift 
measurements. In view of great recent interest in spin-orbit interaction phenomena, our 
results could find applications in modern polarization optics and nano-photonics. 

1. Introduction 

Spin-orbit interactions (SOIs) of light have attracted ever-growing interest during the past 
decade [1,2]. Because of their fundamental origin and generic character, SOI phenomena have 
become inherent in the areas of nano-optics, singular optics, photonics, and metamaterials. Indeed, 
SOIs manifest themselves in the most basic optical processes – propagation, reflection, diffraction, 
scattering, focusing, etc. – as soon as these processes are carefully considered at subwavelength 
scales. In this work, we describe a novel spin-orbit phenomenon, which occurs in a very simple and 
thoroughly studied optical system, namely, a thin uniaxial-crystal plate. 

The majority of SOI effects originate from the space- or wavevector-variant geometric phases, 
which result in the spin-dependent redistribution of the light intensity [1]. First, when the system 
possesses cylindrical symmetry with respect to the z -axis, SOIs produce spin-to-orbital angular 
momentum conversion, i.e., generation of a spin-dependent vortex in the z -propagating light [3–
14]. Second, if the cylindrical symmetry is broken, say, along the x-direction, SOIs bring about the 
spin-Hall effect of light, i.e., a spin-dependent transverse y-shift of the light intensity [11–24]. An 
example of the latter effect is the so-called transverse Imbert–Fedorov beam shift, which occurs 
when a paraxial optical beam is reflected or refracted at a plane interface [20–24]. 

The two main factors, which typically induce the SOI effects, are: (i) the medium 
inhomogeneity, which changes the direction of propagation of light and (ii) the anisotropy, which 
induces the phase difference between two polarization components of light [1]. Table I summarizes 
the above two types of SOI effects in inhomogeneous (but isotropic) and anisotropic (but 
homogeneous) systems. For instance, the radial inhomogeneity in the cylindrically-symmetric 
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focusing or scattering systems results in the spin-to-orbital angular momentum conversion [5–14], 
and a very similar effect appears in the paraxial light propagation along the optical axis in 
cylindrically-symmetric anisotropic media [25,26]. As we mentioned above, the simplest example 
of the spin-Hall effect occurs in the reflection or refraction of light at a sharp inhomogeneity of an 
isotropic optical interface [20–24]. Then, what is the counterpart of this phenomenon for the 
paraxial light propagating in an anisotropic medium? 

In this paper we demonstrate, both theoretically and experimentally, that the spin-Hall effect 
of light and the transverse spin-dependent beam shift appears in the light transmission through a 
uniaxial crystal plate (such as wave plates routinely used in optics) with a tilted anisotropy axis. 
This new type of spin-Hall effect is quite surprising for traditional optics, because it implies a weak 
circular birefringence of a uniaxial crystal plate. Indeed, the linear birefringence of a calcite plate is 
known since the 17th century [27], while here we demonstrate a circular birefringence of such a 
crystal in the orthogonal direction. Notably, the well-known linear birefringence and novel circular 
birefringence exhibit a close similarity with the Goos–Hänchen (GH) and Imbert–Fedorov (IF) 
beam shifts in the reflection/refraction of light at isotropic interfaces. We provide experimental 
measurements of this effect using a standard half-wave plate tilted with respect to the laser beam.  

The spin-Hall shift in the transmission of light through a uniaxial-crystal plate has the same 
order of magnitude as the IF beam shifts, i.e., a fraction of the wavelength. We use polarimetric 
techniques [28] to characterize the circular-polarization splitting and shifts of the transmitted beam. 
We also amplify the effect to the beam-width scale, using the “quantum weak measurement” 
approach [29–32]. This method was previously employed to amplify the usual linear birefringence 
of uniaxial crystals [33,34] and IF beam shifts at isotropic interfaces [22,35–41]. 
 
 Spin-to-orbital AM conversion Spin-Hall effect for paraxial beams 

Inhomogeneity Focusing/scattering in cylindrically-
symmetric systems [5–14] 

Reflection/refraction at a plane 
interface (IF shift) [20–24] 

Anisotropy Propagation along the optical axis in 
a uniaxial crystal [25,26] 

Transmission through a uniaxial-
crystal plate with tilted optical axis 

Table I. Basic spin-orbit interaction effects, spin-to-orbital angular momentum 
conversion and spin-Hall effect, in inhomogeneous isotropic and anisotropic 
homogeneous systems. The present work completes this table by the highlighted cell. 

2. Gaussian beam transmitted through a uniaxial crystal plate 

To begin with, we consider polarized paraxial Gaussian beams propagating along the z -axis 
in free space. The beam represents a superposition of multiple plane waves (spatial Fourier 
harmonics) with close wave vectors  

 
 
k = kzz + kxx + kyy  k 1−

Θ2

2
⎛
⎝⎜

⎞
⎠⎟
z + kΘxx + kΘyy , (1) 

where k  is the wave number, x,y, z  are the unit vectors of the corresponding axes, while 
Θ = Θx ,Θy( ) , 

 Θ
2 = Θx

2 +Θy
2 ≪1 , are small angles of the wave vector with respect to the z -axis in 

the x, z( )  and y, z( )  planes (see Fig. 1). The Fourier (momentum) representation of the transverse 
electric field of the Gaussian beam can be written as [21,23,24] 

 
 

E⊥ Θ( )∝ α
β

⎛

⎝
⎜

⎞

⎠
⎟ exp − kw0( )2 Θ
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4
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⎦
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where 
α
β

⎛

⎝
⎜

⎞

⎠
⎟  is the normalized Jones vector of the wave polarization in the x, y( )  basis, 

α 2 + β 2 = 1 , and w0  is the beam waist. Performing the Fourier transform of Eq. (2), we obtain the 
transverse beam field in the real-space representation: 

 
 
E⊥ R( )∝ E⊥ Θ( )eik⋅r∫ d 2Θ ∝

α
β

⎛

⎝
⎜

⎞

⎠
⎟ exp −R

2

w0
2

⎡

⎣
⎢

⎤

⎦
⎥ . (3) 

Here d 2Θ = dΘxdΘy , R = x, y( ) , R2 = x2 + y2 , is the transverse radius-vector, and for simplicity 

we calculated the beam at the waist plane E⊥ R( ) ≡ E⊥ r( ) z=0 . The transition between the momentum 
(2) and real-space (3) representations of the beam can be realized using the stationary-phase 
asymptotic at the stationary point Θs R( ) = iR / zR :  E⊥ R( ) = E⊥ Θs R( )⎡⎣ ⎤⎦ , where zR = kw0

2 / 2  is the 
Rayleigh range.  

Now, let us consider the transmission of the Gaussian beam (1)–(3) through a thin uniaxial-
crystal (e.g., calcite or quartz) plate. The beam still propagates along the z -axis, whereas the 
anisotropy axis of the plate lies in the x, z( )  plane at the angle −ϑ  with respect to the z -axis, 
Fig. 1. It is well-known that the crystal plate induces linear birefringence between the ordinary (o) 
and extraordinary (e) polarization modes, which propagate with slightly different phase velocities. 
For the central plane wave in the beam, Θ = 0 , the extraordinary and ordinary modes correspond to 

the x - and y - linear polarizations: α
β

⎛

⎝
⎜

⎞

⎠
⎟
e

= 1
0

⎛
⎝⎜

⎞
⎠⎟

 and α
β

⎛

⎝
⎜

⎞

⎠
⎟
o

= 0
1

⎛
⎝⎜

⎞
⎠⎟

 (these can also be called 

TM and TE modes, respectively). Thus, the action of the plate on the central plane wave can be 
characterized by the following Jones equation and matrix: 

  
!E⊥
′
⊥ 0( ) = M̂ 0

!E⊥ 0( ) ,    M̂ 0 =
e− iΦ0 /2 0
0 eiΦ0 /2

⎛

⎝
⎜

⎞

⎠
⎟ , (4) 

where Φ0 ϑ( )  is the phase difference between the o and e modes, which is acquired upon the 
propagation in the plate, the prime indicates the field of the transmitted wave, and we ignore the 
common phase factor. 

Importantly, the zero-order transmission Jones matrix (4) is exact only for the central plane 
wave in the beam, Θ = 0 . Fourier components with Θ ≠ 0  propagate in slightly different directions 
and, hence, are described by slightly different Jones matrices. First, the waves with the in-plane 
deflection Θx ≠ 0  propagate at angles  θ ϑ +Θx  to the anisotropy axis (Fig. 1b). This slightly 
modifies the phase difference between the o and e polarizations of such waves: 

 
Φ θ( )  Φ0 +

dΦ0

dϑ
Θx . Second, the waves with the out-of-plane deflection Θy ≠ 0  propagate (in the 

linear approximation in Θy ) at the same angle to the anisotropy axis but in slightly different planes 
of propagation, which are rotated about the anisotropy axis by the azimuthal angle  φ Θy / sinϑ  
(Fig. 1c). Such rotation induces additional geometric phases for circularly-polarized plane waves 
with Θy ≠ 0 , i.e., effects of spin-orbit interaction of light (see the detailed descriptions in [1,24]). 
The above corrections modify the reflection Jones matrix (4), resulting in the Θ -dependent terms: 

  
!E⊥
′ Θ( ) = !̂M Θ( ) !E⊥ Θ( ) ,    

  

̂M 
e− iΦ0 /2 1+ΘxXe( ) e− iΦ0 /2ΘyYe

−eiΦ0 /2ΘyYo eiΦ0 /2 1+ΘxXo( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

, (5) 
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where 

 
    
Xe,o = 

i
2

dΦ0

dϑ
,    

   
Ye,o = 1− exp ±iΦ0( )⎡⎣ ⎤⎦cotϑ . (6) 

 

 
Figure 1. Schematics of the transmission of a paraxial beam through a tilted uniaxial-
crystal plate. (a) General 3D geometry of the problem with the angle ϑ  between the 
anisotropy axis of the plate and the beam axis z . The small angles Θ = Θx ,Θy( )  
determine the directions of the wave vectors k  in the incident beam. (b) The in-plane 
Θx -deflections of the wave vectors change the angle between k  and the anisotropy axis 
and result in the well-known birefringence shift X , analogous to the Goos–Hänchen 
shift [24]. (c) The view along the anisotropy axis of the crystal is shown. The transverse 
Θy -deflections of the wave vectors rotate the corresponding planes of the wave 
propagation with respect to the anisotropy axis by the angle  φ Θy / sinϑ . This causes 
a new helicity-dependent transverse shift Y , i.e., a circular birefringence or spin-Hall 
effect similar to the Imbert–Fedorov shift [20–24]. 

 
Remarkably, we notice a one-to-one correspondence between the effective Θ -dependent 

Jones matrix (5) and (6) and a similar matrix for the total internal reflection of the beam at a 
dielectric interface [24]. In this manner, the e and o polarization modes of the crystal correspond to 
the TM (p) and TE (s) modes of the interface, and the phase difference Φ0  corresponds to the 
difference between the phases of the Fresnel reflection coefficients for the p and s modes in the total 
internal reflection. (Note that there are some inessential differences in signs in anisotropic-plate and 
total-internal-reflection equations, which appear because of the difference between the transmission 
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and reflection geometries.) In the beam reflection from an interface, the terms proportional to    
X p,s  

describe the in-plane GH beam shift [24], while the    
Yp,s  terms are responsible for the transverse IF 

shift or spin-Hall effect of light [20–24]. Therefore, the beam transmission through a uniaxial 
crystal plate must exhibit similar shifts. In this manner, the GH-like shifts described by the    

Xe,o  
correspond to the usual linear birefringence between the ordinary and extraordinary rays, while the 
shifts described by    

Ye,o  correspond to a new type of the spin Hall effect of light and effective 
circular transverse birefringence of a uniaxial plate. 

The Θ -dependent Jones matrix (5) describes the transformation of the paraxial beam field in 
the momentum representation. To write this field transformation in the coordinate representation, 

we make the Fourier transform of Eq. (5),  M̂ R( ) = !̂M Θs R( )⎡⎣ ⎤⎦ : 

 E⊥
′ R( ) = M̂ R( )E⊥ R( ) ,    

  

M̂ 
e− iΦ0 /2 1+ i x

zR
Xe

⎛
⎝⎜

⎞
⎠⎟

i e− iΦ0 /2 y
zR

Ye

−i eiΦ0 /2 y
zR

Yo eiΦ0 /2 1+ i x
zR

Xo

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

. (7) 

The real-space Jones matrix (7) contains R -dependent terms, which describe an 
inhomogeneous polarization distribution in the cross-section of the transmitted beam. Most 
importantly, even for the e  and o  polarizations of the incident beam, the transmitted field exhibits 
an inhomogeneous distribution of elliptical polarizations due to the y -dependent terms in M̂ R( ) . 

For example, taking the e-polarized incident beam (3) with 
α
β

⎛

⎝
⎜

⎞

⎠
⎟ =

1
0

⎛
⎝⎜

⎞
⎠⎟

, the transmitted beam 

field (7) yields 

 

 

E⊥
′ R( )∝

1+ i x
zR

X e

−i eiΦ0
y
zR

Yo

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

exp −R
2

w0
2

⎡

⎣
⎢

⎤

⎦
⎥ , (8) 

Since 
 
−i eiΦ0Yo = sinΦ0 + i 1− cosΦ0( )⎡⎣ ⎤⎦cotϑ , for Φ0 ≠ 0mod2π  the beam polarization acquires 

weak a right-hand ellipticity at y > 0  and a left-hand ellipticity at y < 0  in the x = 0  cross-section, 
as shown in Fig. 2. This signifies the transverse y -splitting of the right-hand and left-hand circular-
polarization components in the beam [13,20], i.e., the spin Hall effect of light. This splitting can be 
measured via direct polarimetric methods (see Fig. 6 below) or detected by placing a crossed o- ( y -
axis) polarizer after the crystal plate. Such polarizer cuts the y -component of the transmitted field 
and produces a two-hump Hermitte–Gaussian intensity distribution (see Fig. 7 below) [20]: 

 
 
E⊥y
′ R( )∝ y

zR
Yo exp −R

2

w0
2

⎡

⎣
⎢

⎤

⎦
⎥ . (9) 

3. Beam shifts and their amplification via quantum weak measurements 

We are now at the position to calculate the beam shifts induced by the    
Xe,o  and    

Ye,o  terms in 
Eqs. (5)–(7). The beam shifts can be determined straightforwardly by calculating the centroid of the 
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intensity distribution of the transmitted field E⊥
′ R( )  [20,21,23,24]. However, since we will also use 

a method of quantum weak measurements [29–32] to amplify and detect the shifts, we will follow 
the general quantum-mechanical-like formalism developed in [38–40]. 
 

 
Figure 2. Distribution of the polarization in the extraordinary (a) and ordinary (b) 
Gaussian beams transmitted through a uniaxial crystal plate. Right-hand and left-hand 
polarization ellipses are shown in magenta and cyan, respectively. The background 
grayscale distributions show the Gaussian intensities of the beams, x -shifted due to 
ordinary linear birefringence. Transverse y -dependent separations of opposite helicities 
and tilts of the polarization ellipses indicate the σ - and χ -dependent transverse 

birefringence, described by the    
Ye,o  and  Y  terms in Eqs. (5)–(9). The parameters used 

here are: kw0 = 10  , ϑ = π / 4 , Φ0 = 2π / 3 , and   dΦ0 / dϑ = −5 .  
 

We first write the momentum-representation Jones matrix (5) as [40] 
 
!̂M = 1− ikΘ⋅ R̂( )M̂ 0  , 

and introduce the matrix operators R̂ = X̂,Ŷ( ) : 

 

 

X̂ = ik−1 Xe 0

0 Xo

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

,    

 

Ŷ = ik−1
0 e− iΦ0Ye

−eiΦ0Yo 0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (10) 

Then, using the “state Jones vector” ψ =
α
β

⎛

⎝
⎜

⎞

⎠
⎟  of the incident beam, and the corresponding state 

vector of the transmitted beam, ′ψ = M̂ 0 ψ =
e− iΦ0 /2α
eiΦ0 /2β

⎛

⎝
⎜

⎞

⎠
⎟  ( ′ψ ′ψ = ψ ψ = 1 ), we calculate 

the x - and y - shifts of the transmitted-beam centroid as the expectation values of operators (10): 

 
  

X = ′ψ X̂ ′ψ = τ 1
2k

dΦ0

dϑ
, (11) 

 
  
Y = ′ψ Ŷ ′ψ = cotϑ

k
−σ 1− cosΦ0( ) + χ sinΦ0
⎡⎣ ⎤⎦ . (12) 

Here we used Eqs. (6) and introduced the normalized Stokes parameters of the incident-beam 
polarization: 
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  τ = α
2
− β

2
,    

 
χ = 2Re α *β( ) ,    

 
σ = 2Im α *β( ) . (13) 

These parameters describe the degrees of extraordinary/ordinary, diagonal ± 45°  linear, and right-
/left-hand circular polarizations, respectively. 

The polarization-dependent beam shifts  X  and  Y  are counterparts of the GH and IF shifts 
in the total internal reflection from an isotropic dielectric interface [24]. First, the analogue of the 
GH shift, Eq. (11), describes the usual linear birefringence between the ordinary and extraordinary 
rays. Here it is written in the form of the Artmann formulae [24]. Such a phase-gradient form of the 
birefringence shift was recently employed for a fine weak-measurement detection of the “photons 
trajectories”, i.e., streamlines of the optical momentum density [42,43]. Note that the experiment 
[42] was set such that Φ0 = 0mod2π  and the transverse effect in Eqs. (6) and (12) vanished: 

   
Ye,o = Y = 0 . 

Second, the transverse shift (12) is the anisotropic counterpart of the IF shift or the spin Hall 
effect of light, and it is the central subject of our study. This transverse shift shows a new transverse 
birefringence of a uniaxial crystal plate, which is now caused by the finite size of the beam and is 
proportional to the  −σ 1− cosΦ0( ) + χ sinΦ0  polarization parameter. For Φ0 = π mod2π  this 
becomes purely circular birefringence, i.e., pure spin-Hall effect of light. Remarkably, this effect 
occurs already in the simplest anisotropic wave plates routinely used in optical setups but now tilted 
with respect to the beam propagation (for the normal incidence, the optical axis is orthogonal to the 
z -axis, ϑ = π / 2 , and the effect vanishes: 

   
Yo,e = Y = 0 ). Note also that, akin to the IF shift at 

interfaces, the spin-Hall-effect terms in the uniaxial crystal diverge for the propagation along the 
optical axis: ϑ → 0 , cotϑ →∞ . This implies a singular transition to the cylindrically-symmetric 
problem of the on-axis propagation in uniaxial crystals: equation  φ Θy / sinϑ  is valid only in the 

 φ 1  approximation. In the on-axis propagation, the SOI manifests itself as the spin-to-orbital 
angular-momentum conversion [25,26]. 

It is worth noticing that in the problem under consideration, the operators X̂  and Ŷ , Eqs. 
(10), are Hermitian. Therefore, their expectation values (11) and (12) are purely real, which 
corresponds to the presence of spatial beam shifts and the absence of angular beam shifts (i.e., 
changes in the direction of the beam propagation) [24,38,40]. 

The spin-Hall effect can be measured either directly, via subwavelength shift (12) of the beam 
centroid [20,21,23,24], or via various other methods including quantum weak measurements 
[22,29–41]. The latter method allows significant amplification of the shift using almost crossed 
polarizers at the input and output of the system. As before, the input polarizer and matrix M̂ 0  

determine the “pre-selected” polarization state ′ψ = M̂ 0 ψ =
e− iΦ0 /2α
eiΦ0 /2β

⎛

⎝
⎜

⎞

⎠
⎟ , while the output 

polarizer corresponds to another, “post-selected” polarization state 
 

ϕ =
!α
!β

⎛

⎝
⎜

⎞

⎠
⎟ . The resulting 

beam shifts after the second polarizer are determined by the weak values (instead of expectation 
values (11) and (12)) of the operators R̂ , Eqs. (10). In contrast to the real expectation values of 
Hermitian operators, their weak values are complex. The real and imaginary parts of the weak 
values determine the spatial and angular beam shifts, R weak  and Θ weak , respectively [37–40]: 

 R weak = Re
ϕ R̂ ′ψ
ϕ ′ψ

,    Θ weak =
1
zR
Im

ϕ R̂ ′ψ
ϕ ′ψ

. (14) 



 8 

As the beam propagates from its waist z = 0  along the z -axis, the angular shifts produce shifts in 
the beam centroid growing with z . The resulting shifts at z ≠ 0  are 

 Rz weak
= R weak + z Θ weak . (15) 

Thus, the quantum-weak-measurements technique can significantly amplify the beam shifts in two 
ways. First, the spatial shifts R weak  can be much larger than the expectation values R  when 

 ϕ ′ψ ≪1. Second, the appearance of angular shifts Θ weak , Eqs. (14), results in large beam 
shifts (15) in the far-field region:  z≫ zR . 

Amplification of the regular birefringence shift, X weak , was previously measured in [33,34], 
and this was the first experimental example illustrating the quantum weak measurements paradigm. 
Quantum weak measurements were also used for amplification of the spin Hall effect shifts in the 
beam refraction and reflection at isotropic interfaces [22,35–41]. Here we analyze the amplification 

of the new spin Hall effect shift, Y weak . Let the incident beam be e -polarized, ψ = 1
0

⎛
⎝⎜

⎞
⎠⎟

, while 

the post-selection polarizer is almost orthogonal: 
 
ϕ = sinε

cosε
⎛
⎝⎜

⎞
⎠⎟
! ε

1
⎛
⎝⎜

⎞
⎠⎟

,  ε ≪1 . Then, using 

Eqs. (6) and (10), equations (14) and (15) yield 

 Yz weak
= 1
εk
sinΦ0 cotϑ + z

zR
1
εk

1− cosΦ0( )cotϑ . (16) 

Here the first (spatial) and second (angular) terms correspond to the imaginary and real parts of the 

   
Yo,e  quantities, or to the χ - and σ -dependent contributions to the regular beam shift (12). 
Importantly, the second term becomes dominant in the far-field zone and is amplified for two 
reasons: because  ε ≪1  and  z≫ zR . Note that the singular limit ε → 0  is regularized by the 

condition of applicability of the above weak-measurement equations:  1≫ ε ≫ kw0( )−1  [31,32]. 

Thus, the maximal achievable beam shift at ε ~ kw0( )−1  is of the order of the beam width in the far 

field: w0z / zR . For the ordinary input polarization ψ = 0
1

⎛
⎝⎜

⎞
⎠⎟

 and post-selection 
 
ϕ ! 1

−ε
⎛
⎝⎜

⎞
⎠⎟

, 

the weak-measurement transverse shift is given by Eq. (16) with the “minus” sign before the first 
(spatial) term. 

We demonstrate the weak measurements of the spin-Hall shifts (16) in the next Section. Here, 
to illustrate the beam-shift behavior, we calculate the centroid shifts (11) and (12) for a typical tilted 
anisotropic plate. As an example, we consider a quartz plate with thickness d = 1 mm . The phase 
difference between the ordinary and extraordinary waves is given by 
 

 Φ0 ϑ( ) = k nodo ϑ( )− !ne ϑ( )de ϑ( )⎡⎣ ⎤⎦ . (17) 

Here no = 1.544  is the refractive index for the ordinary wave,  !ne ϑ( ) = neno ne
2 cos2ϑ + no

2 sin2ϑ  is 
the refractive index for the extraordinary wave propagating at the angle ϑ  to the optical axis, 

 ne = !ne π / 2( ) = 1.553 , and the distances of propagation of the ordinary and extraordinary rays in the 
tilted plate are 

 
 
de ϑ( ) = !ne ϑ( )d

!ne
2 ϑ( )− cos2ϑ

,    do ϑ( ) = nod
no
2 − cos2ϑ

. (18) 
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Using Eqs. (17) and (18), in Figure 3 we plot the linear-birefringence and spin-Hall shifts (11) and 
(12) as functions of the tilt angle ϑ . One can see that the transverse shift Y  due to the spin Hall 
effect reaches wavelength-order magnitude, typical for other spin-Hall systems in optics [20–24]. In 
contrast to the IF shift in the reflection/refraction problems, here the transverse shift Y  as a 
function of ϑ  displays two-scale behavior. Namely, the fast oscillations in Fig. 3b originate from 
1− cosΦ0( )  term with the rapidly growing (or decreasing) function Φ0 ϑ( )  (see Fig. 5 below), 

whereas the slow envelope corresponds to the universal cotϑ  factor in SOI terms. 
 

 
Figure 3. Longitudinal (in-plane) and transverse (out-of-plane) shifts of the beam 
transmitted through a tilted uniaxial crystal plate, Eqs. (11) and (12). These plots 
correspond to a 1 mm thick quartz plate and wavelength λ = 2π / k = 632.8 nm . The 
polarizations are: (a) τ = 1  (extraordinary wave) and (b) σ = −1  (left-hand circular). For 
the opposite polarizations, τ = −1  and σ = 1 , the beam shifts have opposite sign, which 
signifies the usual in-plane linear birefringence between the ordinary and extraordinary 
waves, as well as the transverse circular birefringence, i.e., the spin Hall effect of light. 

 

4. Experimental results 

To verify the above theoretical predictions, we performed a series of experimental 
measurements using the setups shown in Figure 4. For the anisotropic plate, we used a multiple-
order half-wave plate (WPMH05M-670, Thorlabs, USA) made of crystalline quartz and designed to 
operate at a wavelength of 670nm . As a source of the incident Gaussian beam, we employed a 
semiconductor laser diode of wavelength λ = 2π / k = 675 nm . The laser radiation was passed 
through a single-mode fiber and collimated using a microscope objective lens. 

Since the wavelength of the beam differed from the nominal wavelength of the wave plate, we 
chose to measure the anisotropic phase difference Φ0  versus the angle of the tilt ϑ  via direct 
Stokes-polarimetry methods [28,44] instead of calculating it via Eqs. (17) and (18). For this purpose 
we used the setup shown in Fig. 4a. The double Glan-Thomson polarizer P1 selected the desired 
linear-polarization state in the incident beam. In the first experiment, this was 45°  polarization, i.e., 

α
β

⎛

⎝
⎜

⎞

⎠
⎟ =

1
2

1
1

⎛
⎝⎜

⎞
⎠⎟

. Then, the beam passed through the tilted wave plate, a quarter-wave plate 

(QWP) with retardation angle δ , and the second polarizer P2 with angle γ . We measured the 

integral intensity of the transmitted beam, ′I δ ,γ( )  ( ′I = ′I∫ R( )d 2R = ′E R( ) 2∫ d 2R ), and 
determined the integral Stokes parameters in the transmitted beam as 
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 S0 = ′I 0°,0°( ) + ′I 0°,90°( ) ,    S1 = ′I 0°,0°( )− ′I 0°,90°( ) ,  

 S2 = ′I 0°, 45°( ) − ′I 0°,135°( ) ,    S3 = ′I 90°, 45°( ) − ′I 90°,135°( ) . (19) 

(Note that the normalized Stokes parameters (13) τ ,χ,σ( )  correspond to S1,2,3 / S0  in the incident 
beam.) Finally, the phase difference between the ordinary and extraordinary modes was determined 
as [28,44] 

 Φ0 = tan
−1 S3

S2

⎛
⎝⎜

⎞
⎠⎟

. (20) 

The measured phase (20) versus the tilt angle ϑ  of the anisotropic plate is shown in Figure 5.  
 

 
Figure 4. Schematics of the experimental setups used for the polarimetric 
measurements (a) and quantum weak measurements of the beam shifts (b). 

 
The phase difference Φ0 ϑ( )  calculated via the integral Stokes parameters (19) completely 

characterize the action of the tilted wave plate of the central plane wave in the beam. To investigate 
the spin-Hall effect in the transmitted beam, we preformed a series of measurements of local 
intensity distributions ′I R( )  and corresponding local Stokes-parameters Si R( )  and in the beam 
cross-section. 

First, we measured the distributions of the normalized third Stokes parameter in the 
transmitted beam, 

 s3 R( ) = S3 R( )
S0 R( ) , (21) 

which characterizes the local ellipticity of the field, or the normalized z -component of its spin 
angular momentum density [45]. These distributions are shown in Figure 6 for the extraordinary 
and ordinary polarizations of the incident beams. In agreement with theoretical predictions, Fig. 2, 
one can clearly see the transverse y -separation of positive and negative ellipticities (cf. [13,20]). 
This is the first experimental confirmation of the spin-Hall effect of light produced by the 
transmission through a tilted anisotropic plate. 
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Figure 5. The polarimetrically-measured phase difference Φ0 ϑ( ) , Eq. (20), between 
the ordinary and extraordinary modes for the beam transmitted through the tilted half-
wave plate. The inset shows the actual measured phase in the range −π ,π( ) , whereas 
the main plot shows the unwrapped phase. 

 

 
Figure 6. Experimentally-measured distributions of the local Stokes parameter s3 R( ) , 
Eq. (21), in the extraordinary (a) and ordinary (b) beams transmitted through the tilted 
half-wave plate with  ϑ ! 35°  and  Φ0 ϑ( ) ! −π  (see Fig. 5). The y -splitting of opposite 
spin states with s3 > 0  and s3 < 0  corresponds to the splitting of opposite polarization 
ellipticities in Fig. 2 and signals the spin-Hall effect of light. 

 
Second, we investigated deformations of the intensity distributions and beam shifts using the 

quantum weak-measurement method described in Section 3. We used the setup shown in Fig. 4b 
with additional focusing (L1) and imaging (L2) lenses. The two polarizers P1 and P2 produced pre-
selected and post-selected polarization states ψ  and ϕ , respectively, while the lenses controlled 
the amplification propagation factor z / zR  in Eq. (16). Namely, the first lens L1 of focal length 
5 cm produced a focused Gaussian beam with the Rayleigh range  zR ! 3840µm  (determined from 
the 1/ e2  spot size of the original laser beam, 374 µm , and the spot size of the focused beam in the 
focal plane, 28.72 µm ), while the second lens L2 of focal length 5 cm collimated the beam and 
provided the effective propagation distance z = 5 cm . Thus, the propagation amplification factor 
was  z / zR ! 13 , and the second, angular term in the beam shift (16) strongly dominated the first, 
spatial term (cf. [22,23]). 
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We performed weak-measurement experiments with the pre-selection in the e-polarized state, 

ψ = 1
0

⎛
⎝⎜

⎞
⎠⎟

, and post-selection in the almost-orthogonal state 
 
ϕ = sinε

cosε
⎛
⎝⎜

⎞
⎠⎟
! ε

1
⎛
⎝⎜

⎞
⎠⎟

,  ε ≪1 , as 

well as with the pre-selection in the o-polarized state ψ = 0
1

⎛
⎝⎜

⎞
⎠⎟

 and post-selection in 

 
ϕ ! 1

−ε
⎛
⎝⎜

⎞
⎠⎟

. In both cases, the transverse beam shift is described by the second (angular) term in 

Eq. (16). The transverse intensity distributions ′I R( )  in the o-polarized beam transmitted through 
the tilted half-wave plate and post-selected with ε = −1.4 ⋅10−2, 0, 1.4 ⋅10−2  are shown in Figure 7. 
One can clearly see beam deformations typical for quantum weak measurements [30–34]. Namely, 
the two-hump Hermitte-Gaussian y -distribution takes place for ε = 0 , whereas Gaussian-like 
distributions are considerably shifted in opposite y -directions for ε = ±1.4 ⋅10−2 . These intensity 
deformations and shifts provide the second experimental evidence of the transverse circular 
birefringence and spin-Hall effect in the system. 
 

 
Figure 7. The transverse intensity distributions ′I R( )  in the o-polarized beam 
transmitted through the tilted half-wave plate and post-selected in the almost e-polarized 
state with ε = −1.4 ⋅10−2, 0, 1.4 ⋅10−2  (see explanations in the text). The two-hump 
Hermitte-Gaussian distribution at ε = 0  corresponds to Eq. (8), while the opposite shifts 
Yz weak

 at ε = ±1.4 ⋅10−2  are the spin-Hall shifts amplified via quantum weak 
measurements, Eq. (16). Like in Fig. 6, the tilt angle with  ϑ ! 35°  corresponds to 

 Φ0 ϑ( ) ! −π , i.e., maximizes the spin-Hall effect ∝ 1− cosΦ0( ) . 
 

The transverse y -shifts of the Gaussian distributions in Fig. 7 are the beam shifts Yz weak
 

described by Eq. (16). These are strongly amplified from the typical subwavelength scale k−1 , 
Eq. (12), to the beam-width scale with the overall weak-measurement amplification factor 
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A = 1

ε
z
zR
! 929 . (22) 

The experimentally-measured transverse beam shift Yz weak
 versus the tilt angle ϑ  are plotted in 

Figure 8 for the e and o pre-selected polarizations and the corresponding post-selections with 
ε = 1.4 ⋅10−2 . Since the phase difference Φ0 ϑ( )  is known from independent polarimetric 
measurements (Fig. 5), we compare the measured beam shifts with the analytical result in Eq. (16). 
Figure 8 shows a very good agreement between the experiment and theory. This provides the 
quantitative confirmation of the spin-Hall effect and circular birefringence of light transmitted 
through a tilted anisotropic plate. 
 

 
Figure 8. Transverse beam shifts Yz weak

 determined via quantum weak measurements 

(Fig. 7) and theoretically calculated using Eq. (16) with the phase Φ0 ϑ( )  taken from 
polarimetric measurements (Fig. 5). The measurements are done for the e-polarized (a) 
and o-polarized (b) input beams, and the post-selection with ε = 1.4 ⋅10−2  (see 
explanations in the text). 

 

5. Conclusions 

We have considered the transmission of a Gaussian light beam through a uniaxial crystal plate 
with a tilted anisotropy axis. The action of the plate on a plane wave is well-known and is described 
by the diagonal Jones matrix with a phase retardation between the ordinary and extraordinary 
polarizations. However, birefringence phenomena require the consideration of confined beams 
rather than infinite plane waves. We have shown that taking into account multiple plane waves with 
slightly different wavevector directions in the beam spectrum results in nontrivial beam shift 
effects. First, the transmitted beam experiences the in-plane shift between the o and e linear 
polarizations. This is the well-known linear birefringence. Second, the beam experiences a 
transverse out-of-plane shift dependent on the circular (and also diagonal) polarization degrees, i.e., 
a circular (and diagonal) birefringence. This is a manifestation of the spin-orbit interaction and a 
novel type of the spin-Hall effect of light.  

Notably, the usual linear birefringence and new circular birefringence form a close analogy 
with the Goos–Hänchen and Imbert–Fedorov beam shifts that appear in the light reflection at a 
dielectric interface. This is because mathematically-similar spin-orbit interactions appear: (i) in the 
beam reflection due to the medium inhomogeneity and different Fresnel coefficients for the TE and 
TM polarizations and (ii) in the beam transmission through a crystal plate due to the medium 
anisotropy and different transmission coefficients for the o and e polarizations. 
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We have provided a detailed theoretical description and experimental measurements of the 
novel circular-birefringence phenomenon. The remarkably simple system of a tilted half-wave plate 
and polarizers was used for this. Our measurements clearly demonstrated the spin-Hall effect and 
transverse beam shifts in the transmitted beam via both polarimetric and quantum-weak-
measurement methods. Using the weak-measurement technique we strongly enhanced the 
transverse beam shift to the beam-width size and also transformed the spatial shift into an angular 
shift, which is clearly seen in the far field. 

Thus, we have described a novel basic phenomenon in a simple thoroughly-studied system. 
Due to the great recent interest in optical spin-orbit interaction phenomena and the wide use of 
anisotropic plates in numerous optical setups and devices, our results could find applications in 
polarization optics and nano-photonics. The methods developed in this work can be extended and 
applied to other types of anisotropic plates: dichroic, circular-birefringent, etc. 
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