A Graphical Method for Parameter Learning of
Symbolic-Statistical Models

Yoshitaka KAMEYA, Nobuhisa UEDA, and Taisuke SATO

Dept. of Computer Science, Graduate School of Information
Science and Engineering, Tokyo Institute of Technology
2-12-2 Ookayama Meguro-ku Tokyo Japan 152-8552
{kame,ueda,sato}@cs.titech.ac. jp

Abstract. We present an efficient method for statistical parameter learning of
a certain class of symbolic-statistical models (called PRISM programs) includ-
ing hidden Markov models (HMMs). To learn the parameters, we adopt the
EM algorithm, an iterative method for maximum likelihood estimation. For
the efficient parameter learning, we first introduce a specialized data structure
for explanations for each observation, and then apply a graph-based EM algo-
rithm. The algorithm can be seen as a generalization of Baum-Welch algorithm,
an EM algorithm specialized for HMMs. We show that, given appropriate data
structure, Baum-Welch algorithm can be simulated by our graph-based EM
algorithm.

1 Introduction

To capture uncertain phenomena in a symbolic framework, we have been devel-
oping a symbolic-statistical modeling language PRISM in the past years [10, 11].
PRISM programs is a probabilistic extension of logic programs based on distri-
butional semantics, and its programming system has a built-in mechanism for
statistical parameter learning from observed data. For parameter learning, we
adopt the EM algorithm, an iterative method for maximum likelihood estima-
tion (MLE). With this learning ability built into the expressive power of first-
order logic, as shown in [10], PRISM not only covers existing symbolic-statistical
models ranging from hidden Markov models (HMMs) [1, 8] to Bayesian net-
works (BNs) [6] and to probabilistic context-free grammars (PCFGs) [1], but
can smoothly model the complicated interaction between gene-inheritance and
a tribal social system discovered in the Kariera tribe [11].

Our problem with the current learning algorithm for PRISM is that although
our learning is completely general, it lacks the efficiency achieved by other spe-
clalized EM algorithms such as the Baum-Welch algorithm [1, 8] for HMMs. We
therefore propose an efficient learning framework, in which the learning can be
done as efliciently as these specialized EM algorithms without hurting the in-
tegration of learning and computing. By inspecting closely our EM algorithm,
we have found it is possible to eliminate computationally intractable part of
it by imposing a couple of reasonable conditions on modeling, which results in
a general but efficient learning algorithm running on a special type of graph
structures.

The purpose of this paper is to show mathematically how this improvement
becomes possible for what reason. The rest of the paper is organized as follows.

We first modify the semantic framework, slightly, of PRISM in such a way that
the modification justifies the elimination of computational redundancy which
was inherent in our EM algorithm. Next we introduce a special class of directed
acyclic graphs, each of which is a structural representation of explanations for an
observation. We call them support graphs. We then show that the graph-based
EM algorithm, a new EM algorithm implemented on support graphs, attains the
same time complexity as the Baum-Welch algorithm.

2 Modifying PRISM to PRISM*

2.1 Distributional semantics

We here shortly describe distributional semantics, the theoretical basis of PRISM
(See [9] for details), and some preliminary definitions. A program DB we deal
with is written as DB = F U R where F is a set of facts (unit clauses) and R
is a set of rules (clauses with a non-empty body). In theoretical context, DB
is considered as a set of (possibly infinitely many) ground clauses. We define a
joint distribution Pr on the set of all possible interpretations for F', and think
of each ground atom as a random variable taking 1 when true and 0 otherwise.
We call Pr a basic distribution. Then, there exists a way to extend Pr to a
joint distribution Ppp on the set of all possible interpretations for ground atoms
appearing in DB. The denotation of a logic program DB is defined as Pppg.

We here put head(R) as the set of heads appearing in R and then assume
that F' N head(R) = @ holds. In such a case, DB is saild to be separated. To
make matters simple, we further assume that there is a fixed set of ground
atoms GP% C head(R) representing possible observations, and our observation
corresponds to randomly picking up one of atoms in G?** as a goal (to be proved
by our modeling program). Collecting T observations means statistically making
T independent selection of goals Gy (Gy € GPo¥ 1 <t < T).

For each G € G?%* we assume there are finite sets (1) ..., S(™) of ground
atoms from F such that iff(R) F G « S v ... v 8™ where iff(R) is the com-
pletion [2] of R. Each of S .. 80 ig called a support set for G. A minimal
support set (or an explanation) is a support set which is minimal w.r.t. set inclu-
sion ordering. For later use, we introduce ¥ pp(G) as a set of minimal support
sets of G for G € GP*¥,

2.2 PRISM programs

PRISM programs must satisfy the following conditions on facts F' and the basic
distribution Pg.

1. A ground atom in F is of the form msw(i,n,v). It is supposed to represent
the fact that a multi-valued probabilistic switch named ¢ yields a value v
at n-th sampling. v is taken from V;, a finite set of ground terms specified
beforehand.

2. Put V; = {v1,va,...,vx}. Then exactly one of msw(i,n,v;), msw(i,n,ve),
..., msw(i,n,vK) always holds true. Put differently,) .. 6:(v) = 1 always
holds where 6;(v) is the probability of msw(i,n,v) (v € V;) being true. We
call 8;(v) a statistical parameter (or simply a parameter) of the program.

3. For n # n', msw(¢,n,-) and msw(¢,n’,-) are independent and identically
distributed (i.i.d.) random variables with common statistical parameter 6;.
Also for ¢ # ¢, msw(4,-,-) and msw(¢,-,-) are independent.

We note that if V; = {1,0}, msw(i,n,v) coincides with a BS atom bs(i,n,v)
in [9]. The second condition just says that the switch ¢ takes a value v with
probability 8;(v).

2.3 A program example

For an example of a PRISM program, let us consider an HMM M whose pos-
sible states are {s0,s1}, and whose possible output symbols are {a,b}. Our
HMM follows the definition described in [8] (not in [1]). The following is a pro-
gram which represents M, where hmm(String) denotes the observable fact that
String is a string sampled from M. The probabilistic behaviors of state transi-
tion and output are specified by the switches of the form msw(tr(.),-,-) and
msw(out () ,-,-), respectively. The length of a string is fixed to three.

= Declarations ——————————————————————- %
target (hmm,1). % Only hmm(_) is observable.
data(’hmm.dat’). % Data are contained in ’hmm.dat’.

values(init,[s0,s1]). % Switch ’init’ takes ’s0’ or ’sil’.
values(tr(_),[s0,s1]1). % Switch ’tr(_)’ takes ’s0’ or ’s1’.
values(out(_),[a,b]l). % Switch ’out(_)’ takes ’a’ or ’b’.
= Model --——————————————— - %
strlen(3). % The length of a string is fixed to 3.

hmm(Cs):- msw(init,null,Si),hmm(1,81,Cs). % Start from state Si.

hmm(T,S, [CICs]):- strlen(L),T=<L, % Loop:
msw(out(S),T,C), % Output C in state S.
msw(tr(S),T,NextS), % Transit from S to NextS.
T1 is T+1, % Put the clock ahead.
hmm(T1,NextS,Cs). % Repeat above (recursion).
hmm(T,_,[]1):- strlen(L),T>L. % Finish the loop.

2.4 Learning PRISM programs

Learning a PRISM program means MLE (maximum likelihood estimation) of
parameters in the program. That is, given observations G; (1 <t < T'), we max-
imize the likelihood of these atoms Hz;l Ppp(G:=1|9) by adjusting parameters
8 associated with msws in the program. The learning will be done by the following
two-phase procedure:

1. Search exhaustively for S such that S € ¥ pp(G:), for each observation G;.
2. Run the EM algorithm and get the estimate of parameters 6.

In the second step, the EM algorithm makes calculations based on the statistics
from ¥ pp(Gt). This section describes a detail of the second step.

In what follows, we consider a set X of random variables as a random vector
whose elements are X. Note that the realization of X is also a vector. Also 1

(resp. 0) is used to denote a vector consisting of all 1s (resp. 0s). We now make
some definitions for G € G?*%. rely(G) is a set of relevant switches to G, namely
USG’/’DB(G) S. Then define

Ype(G) def relv(G) U { msw(i,n,v) | v E V},Elv'(msw(i,n,v') € relo(@),v # v) },

and Ypp déf UGeGPatt ZDB(G) For S € ¢DB(G), put

g~ &f {mSW(i,n,v) | v € Vi, W' (msuli,n,v') € S0 # v)}

Srest déf EDB - (S U S_)
S~ can be seen as the complement of S, since S~ =0ifS=1.Tand @ respectively
stand for the set of all switch names and the set of all parameters appearing in
Xpgp, ie. T def {i | msw(,-,-) € Ypp} and 0 def {6i(v) | i € I,v e V;} in
notation. Let S be an arbitrary subset of Xpg. S is said to be inconsistent if
there are msws such that msw(si,n,v), msw(i,n,v’) € S and v # v'. If there is
no such pair, S is consistent. Suppose 5,5’ C Y pp are consistent respectively
but S U S’ is inconsistent. In such a case, they are called disjoint. We assume
the following disjointness condition:

Disjointness condition: For any S € ¥pg(G) and G € GP*®, S is consistent,
and disjoint from S’ such that S" € ¥pp(G),S" # S.

Under the disjointness condition and Pg’s third condition, i.e., if ¢ # ¢ or
n # n' (¢ i, n, and n’ are all ground terms), random variables msw(é,n,-)
and msw(¢',n’,-) are independent of each other, the likelihood of G € GP** ig
calculated by the followings:

Ppp(G=1/8 Pr(S=1l6) (1)

)= Zse¢DB(G)
PF(S=1|0) = HiEI,vEVi Gi(v)ai'v(S)a (2)
where o0, ,(5) is the count of distinct msw(¢,-,v)s in the support set S. Under

the notation in [9], & ,(S) corresponds to |S = iJ,.
To realize MLE of PRISM program, we first introduce Q function by

Qnew,8) = X1 3, Ppp(Epp=2|Gi=1,0)log Ppp(Zpp=2,Gt=1|0new). (3)

From the definition, it is straightforward to show that Q(8,..,0) > Q(6,0)
implies Hz;l Ppp(Gt = 10new) > Hz;l Ppp(Gy = 1]6). Our MLE procedure
learn-PRISM shown below is an EM algorithm making use of this fact. It
starts with initial values 8(°), and iteratively updates, until saturation, #("™
to 8™+ such that Q(A(+1D 6(m)) > Q(#™) (™)) to find 6 that maximizes
ITi=: Pos(G; = 116).

procedure learn-PRISM begin
foreach i€ I,v € V; do /* Initialize the parameters: */

Select some 9_50)(1)) such that ZvEV~ GEO) (v) =1;

A© =51 log Ppp(Ge=1/0'2);
m = 0;
repeat
foreach i € I,v € V; do begin /* E(zpectation)-step */
fori:t=1tono .
ON; (v) :=ZSE¢DB(G1) PF(S:llG(m)){gi,v(S) + fyi(S)GEm)(v)};

ON; (v) := ON;(v)/ Ppp(Ge=1]0™);
end;
m:=m+1;
foreach i, v do Ggm)(v) = ON;i(v)/ >
A = ST log Ppp(Ge=1/0");
until A — A~V < o /x Terminate if the log-likelihood saturates. */
end.

ON;(v'); /* M(azimization)-step */

v €V

In learn-PRISM, ¢ is a small positive constant. By the definition of Y'pp and
Srest, for ¢ € I, the count of distinct msw(z,-,v)s in S,.s; is constant for each
v € V;, so it is written as v;(.5). The above algorithm is a general learning
algorithm applicable to any PRISM programs, but the existence of the term
7:(8)6;(v) hinders efficient learning. We next replace Pr by a more specialized
distribution to eliminate this term.

2.5 Constructing PRISM* programs

Suppose our program DB = F U R with the basic distribution satisfies the
following uniqueness condition.

Uniqueness condition: For any goal G € GP% G’s explanation does not
explain other goals in GP*%. That is, for G, G’ € GP% and G £ G, S € ¥pp(G)
lf S (S ¢DB(G) AISO ZGEGpa'tt PDB(G=1|9) =1 hOldS.

Then, under the disjoint and the uniqueness condition, it is possible to con-
struct from DB a new program (let us call them PRISM* programs) DB" =
F* U R with a new fact set F* and a new basic distribution Pg« such that

1. Every atom in F™* takes the form of msw(¢,n,v) and the range of v is V* def
V; U {*}. Here V; stands for a set of ground atoms assigned to ¢ and * is a
new constant symbol appearing nowhere else.

2. Put V* = {vy,...,vk,x}. Exactly one of msw(i,n,v1), ..., msw(i,n,vg),
msw(¢,n,*) becomes true.

3. Define §* & {msw(é,n,*) | msw(i,n,-) € S}, and S}, def {msw(i,n,x*) |

msw(i,n,) € Spest}. For every S € ¥pp(G),G € GPo¥%,
Pr«(S=z,8" =27 ,8" =2", Srest =2, Srest =2"|0)

aef [Pp(S=1l0) ifz=z"=1,2"=2"=2=0
~—]o otherwise.

(4)

From the disjointness and the uniqueness condition, it follows that Pr+« becomes
a probability distribution. We also note that, in the third condition, Pg« is
defined on the original PRISM program’s Pr and ¥pg.

2.6 Learning PRISM" programs

The EM learning algorithm learn-PRISM* for PRISM* programs is much sim-

pler thanks to the change of the basic distribution. Define X7 5 def Ypp U

{ msw(i,n,*) | msw(i,n,) € Yppg } and a new @ function (called Q* func-
tion):

Q (Onew, 0) = 37 3 Pop (T =2|Gr=1,0)log Pos+ (Spp =, Ge =1|0new).

(5)
Similarly to learn-PRISM, we can derive learn-PRISM* which updates 8(™) to
6(m+1) such that Q*(8(+1), 6(™)) > @*(8(™) #("™)), and thus realizes MLE for
a PRISM" program. By definition of PRISM", it is easy to show Ppp(G=1|8) =
Py (G =1]6) for any 8 and G € GP** hence we can say learn-PRISM" also
realizes MLE for the original PRISM program. Also, it is roughly proved in
Appendix A.2 that by definition of PRISM*, learn-PRISM" is just learn-PRISM

with the term ~;(.5)6;(v) deleted which causes computational inefficiency.

3 Graphical EM algorithm

This section introduces another learning procedure for PRISM programs. The
new procedure makes use of a graphical structure for efficient learning.

1. For each observation G;, We first have an exhaustive search for S such that
S € ¥pp(Gt). While searching, using search techniques such as tabulation,
we construct a data structure, called a support graph, for each Gy.

2. We then run a graph-based EM algorithm, called the graphical EM algorithm,
on the constructed support graphs, and get the estimate of parameters 6.

In the rest of this section, we assume that the suitable support graphs are given,
and consider the second step. It then can be proved that the learning algorithm
for PRISM* programs (i.e., learn-PRISM") and the graphical EM algorithm
yield the same estimate of # (see Appendix B).

3.1 Support graphs

The support graph for G; (1 <t < T) is a triplet (U, E, l;), where U, is a set of
nodes, Fy C U; x Uy is a set of edges, and I : Uy — (X% 5 U {Gy,0}) is called a
labeling function. A support graph (Uy, E, ;) for G4 should satisfy the following
conditions:

— (U, E4) is a directed acyclic graph which has exactly one node (referred to
as ufoz)) that is not terminal node of any edges in E;, and exactly one node
(referred to as u’°?) that is not initial node of any edges in E;. We define
Ubety €y, _ {yloF ybot).

— 4/’ and u?°* have special labels, i.e., l(u’?) = G, and L, (ub??) = 0.

— In any path from ufoz} to ul°?, no switch occurs more than once, i.e., u,u’ €
nodes(r) Au #£ u' = li(u) # l(u) for r € path(u;?, ul°?), where path(u,u’)
is a set of directed paths from u to u', nodes(r) is a set of nodes in the
directed path r.

— For r,7' € path(ul”?,ul°?) and r # ', labels(r) and labels(r’) are disjoint

from each other, where labels(r) Lef {li(u) | v € nodes(r)} — {G:,0O} for the
directed path 7 in (U, Ex, 1t).
— Ypp(Gy) ={r't |7 € H(Ui’Ei)}, where

1VF) (| 3r(r € path(u,u),w = nodes(r) — {ul”, ul*'})},
def ° o
1020 9 [0 (fop ypot)
P {li(u) |vwen}form C UtbOdy.

We sometimes omit the superscript (Uy, E;) and abbreviate 7't as 7 if it does
not make a confusion.

3.2 Graphical EM algorithm

Once we have constructed the support graphs for all observations, parameters
are learned by the graphical EM algorithm. To specify this, we should add some
definitions. parent(u) and child(u) refer to a set of parent nodes and that of child
nodes of u, respectively. p(u,8) is then defined for u € |J, Uy and 6:

p(u, 6) def { 0:;(v) ifue UtbOdy and li(u) = msw(i,-,v)
1 otherwise

The graphical EM algorithm consists of a procedure learn-gEM and a function

forward-backward. We prepare variables a(u) and B(u) for each u € U, 1 <t <

T, called forward probability and backward probability of node u, respectively.

procedure learn-gEM begin
foreachi € I,v € V; do /* Initialize the parameters: */
Select some GEO)(U) € (0,1) such that)" 950)(1)) =1
for t := 1 to T do P; := forward-backward(Us, E4, I, 0%));
A = Z?:l log Py;
m = 0;
repeat
foreach i,v do on;(v) :=0;
for ¢t := 1 to T do begin
§:= UtbOdy;
foreach i,v do on;(v) := 0;
while s # # do begin /* E-step: x/
Choose some u from s;
if l:(u) = msw(i,-,v) then oni(v) := oni(v) + a(u)B(w);

s:=s— {u};
end;
foreach i, v do on;i(v) := oni(v) + oni(v)/P;;
end;

m:=m+1;
foreach i,v do 6™ (v) := O"i(”)/zv'evi oni (v'); /* M-step */
for t := 1 to T do P; := forward-backward(Us, Ey, l;, (™));
m) . __ T .
A =31 log Pi;
until A — A~V < o /x Terminate if the log-likelihood saturates. */
end.

function forward-backward (U, Ey,l;,0) begin
foreach u € U; do begin
a(u) := undef;, [(u) := undef;
end;
a(ulP) :=1; Bl :=1; s:= childul’?); s := parent(ud°?);
while s # (# do begin /* Calculate forward probabilities for each node: */
Choose some u from s such that V' € parent(u)(alu') # undef);

a(u) = (Zu/ epareni(u) a(u’))p(u, G)a
s := (s U child(u)) — {u};
end;
while s’ # 0 do begin /* Calculate backward probabilities for each node: */
Choose some u from s’ such that Vu' € child(u)(B # undef);
,B(u) = Zu'echild(u) /B(ul)p(ula 9)3
s’ = (s' U child(u)) — {u};
end;
return o(ul); /* Return the likelihood. */
end.

3.3 Learning HMMs

Let us consider again the program in Section 2.3. Fig. 1 illustrates the support
graph of an observed goal hmm([a,b,a]). Each node in the graph is labeled
with msw(-,-,-), hmm([a,b,a]), or O. Given such a support graph (U, Ey, 1),
learn-gEM and forward-backward takes O(|Ey|) of calculations in each repeat
loop. So, letting N be the number of states, and L the length of a string, the
graphical EM algorithm takes O(N?L) of calculations for each parameter up-
dating. As described in [8], Baum-Welch algorithm also takes O(NZL), so it is
concluded that the graphical EM algorithm can simulate Baum-Welch algorithm
via the HMM written as a PRISM program.

hmm([a b, a])
msw (init,null, s0) msw(init, null, sl)
msw (out (s0) ,1,a) msw{out (s1),1,a)
m,l,sl) msw(m
msw (tr(s0),1,s0) msw (tr (sl),1,sl)
msw (out (s0) ,2,b) msw (out (sl1) ,2,b)
mz,sl) msw(m
msw (tr(s0),2,s0) msw (tr (sl), 2, sl)
msw (out (s0) ,3,a) msw {out (sl1),3,a)
Atr(\so)a,sl) msw(m
msw (tr(s0),3,s0) msw (tr (sl), 3, sl)
O

Fig. 1. The support graph with the goal hmm([a,b,a]).

4 Related works

So far, many probabilistic extensions of logic programs have been proposed. We
here mention some of related works briefly (In [11], we have also mentioned other
related works such as [4, 7]). Muggleton’s stochastic logic programs (SLPs) [5]
combine probabilities with first-order logic programs, but no mention is made
about the parameter learning. In Riezler’s probabilistic constraint logic pro-
gramming [12] and Cussens’s loglinear models using SLPs [3], the probability
distribution (a loglinear distribution) is defined on the set 2 of proof trees. It
is of the form Pr(w) = Z7'exp(}_; Aifi(w)) for w € (2, where each f; is the
feature of a proof tree and A; is the parameter. The problem in their framework
is that the adoption of (2 as a sample space could be an obstacle to the logical
or procedural treatment of negation. Besides, the calculation of a normalizing
constant Z is generally intractable, and Riezler proposed no polynomial learning
algorithm for a specialized class of models such as HMMs. In contrast, in PRISM
modeling, we can enjoy efficient learning as shown in this paper, though users
must write programs so that probabilities of all observable ground atoms sum
up to one, which eliminates the needs of normalization. There seems to be a
trade-off between the efficiency of learning and the burden of programming on
the user.

5 Discussion

We have presented a new framework for the modeling language PRISM, in which
efficient parameter learning is achieved for a certain class of symbolic-statistical
models. We showed that, if the objective model can be represented by a PRISM
program satisfying two conditions (the disjointness and the uniqueness condi-
tion), then we can construct the corresponding PRISM* program for which an
efficient learning is possible. A user has only to write programs so that these two
conditions are met. In reality, we can say that they are not too restrictive in the
sense that PRISM programs which represent widely-known symbolic-statistical
models like HMMs, BNs, and PCFGs satisty these conditions.

We then presented a graph-based EM algorithm (the graphical EM algo-
rithm) which runs on a graphical data structure (a support graph) of a PRISM
program for each observation. We have roughly shown that, for a given PRISM
program, the EM algorithm for the (automatically-constructed) PRISM* pro-
gram and the graphical EM, given appropriate support graphs, yield the same
estimate. This justifies to use the graphical EM instead of the old learning al-
gorithm for PRISM programs used so far, which is general but computationally
inefficient. We also showed that, if appropriate support graphs are given for an
HMM, the graphical EM only requires the same computational complexity as
Baum-Welch algorithm. This implies that the graphical EM is a generalization of
Baum-Welch. Similarly, it is straightforward to show the algorithm which finds
the most likely minimal support set (or the most likely explanation) for an ob-
servation. The algorithm, omitted due to the space limitation, can be considered
as a generalization of Viterbi algorithm [1, 8], also developed for HMMs.

There remains a lot to be done for our new framework. Generating such a
support graph is still a problem, so we are currently planning to adopt search

techniques such as tabulation. We also need to study of the computational re-
lationship between the graphical EM and other specialized EM algorithms, e.g.,
Inside-Outside algorithm [1] for PCFGs.

References

1. Charniak, E., Statistical Language Learning, The MIT Press, 1993.

2. Clark, K., Negation as failure, In Gallaire, H., and Minker, J. (eds), Logic and
Databases, pp.293-322, Plenum Press, 1978.

3. Cussens, J., Loglinear models for first-order probabilistic reasoning, Proc. of the
15th Conf. on Uncertainty in Artificial Intelligence, 1999.

4. Koller, D., and Pfeffer A., Learning probabilities for noisy first-order rules. Proc. of
the 15th Intl. Joint Conf. on Artificial Intelligence, pp.1316-1321, 1997.

5. Muggleton, S., Stochastic logic programs, L. De Raedt (ed.) Advances in Inductive
Logic Programming, 10S Press, pp.254-264, 1996.

6. Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, Morgan Kaufmann, 1988.

7. Poole, D., Probabilistic Horn abduction and Bayesian networks, Artificial Intells-
gence, Vol.64, pp.81-129, 1993.

8. Rabiner, L. R., A tutorial on hidden Markov models and selected applications in
speech recognition, Proc. of the IEEFE, Vol.77, No.2, 1989.

9. Sato, T., A statistical learning method for logic programs with distribution seman-
tics, Proc. of the 12th Intl. Conf. of Logic Programmaing, pp.715-729, 1995.

10. Sato, T\, and Kameya, Y., PRISM: a symbolic-statistical modeling language, Proc.
of the 15th Intl. Joint Conf. on Artificial Intelligence, pp.1330-1335, 1997.

11. Sato, T., Modeling scientific theories as PRISM programs, ECAI-98 Workshop on
Machine Discovery, pp.37-45, 1998.

12. Riezler, S., Probabilistic constraint logic programming, Arbeitsberichte des SFB
340 Bericht Nr. 117, Universitat Tibingen. 1997.

13. Tanner, M., Tools for Staiistical Inference (2nd ed.), Springer-Verlag, 1993.

A Derivation of learn-PRISM and learn-PRISM*

A.1 learn-PRISM

To derive learn-PRISM, we transform @ function. We hereafter consider 0log 0 =
0, and abbreviate Ppp(Xpp==,...) as Ppp(x,...) and Ppp(G:=1|0) as P;.

QOnew,0) =3 ,_, & >, Ppp(w,G:=1]0)log Ppp(z, G+ =1|0ncw)
=Y B Losevpp(Go) 2o Ppp(S=1,8"=0,Sest=2,G:=1|6) -
log Ppp(S=1,5" =0, Srest =2, Gt =1|0new)
=3, P% Do, Pr(S=1,Sest =2|0)log Pr(S=1, Srest =2|0new).

In addition, under the condition of P, for each S € ¢¥pp(G:) (1 <t <T), S
and S,.s: are independent of each other. So, we have

Q(Gnew,a) = Zt %t Zs PF(S=1|0) :
{log PF(S=i|0new) + Zz PF(Srest=Z|9) log PF(Srest =Z|0new)} (6)

Let |Spest X z|, be the count of equations msw(i,-,v) = 1 which occurs in

Srest = 2. Then, similarly to Eq. 2, Pp(Srest = 2|0new) = Hi,v 0;(1))|Srestéz|“
holds. Substituting this and Eq. 2 into Eq. 6, the content of {-} in Eq. 6 becomes:

Sicrmey, Tin(S)10g Bl (W) + 32, Pr(Srest =210) Y icp oevs |Srest = 2l log 6}(v)

= Zi,v (O’—;,v(S) + Zz PF(STESt =Z|9)|Srest é Zlv) log 9;(1)) (7)
Let Si;;;t denote a set of msw(i,-,v)s included in S,est (Spest will be divided to

the disjoint sets 522, (i € I,v € V;)), and let z;, denote the realization of ghv

rest rest”
Then, from the fact that if i # ¢’ or v # v then |S;.}; = zy /|, = 0, and that

. rest
distinct S;.%, (¢ € I,v € V;) are independent of each other, the following holds:

Zz PF(Srest=Z|9)|Srest = Z|v = Zzi N PF(S:;,;t=Zi,v|0)|S:;Z;t = Ziﬂ’l”'

The right-hand side can be considered as the expectation of the count of switch
¢ taking v, in which switch ¢ is sampled for v;(.S) times under the parameter

8;, so it equals 7;(S)8;(v). That is, 3, Pr(Srest = 2|0)|Srest = 2|v = 7i(S)8:(v)
holds. Here we get the following inequality:

Qbnew,0) = Y1y 7 s Pe(5=110) 32, , (0(5) +26(S)i(v)) log #1(v)
=3 (S0 A s Pr=11)(000(5) +1(S)8:(0))) og bi(v)

ON, (v,
=Y icrvey, ONi(v,0)logbi(v) < 37, ONi(v,6)log Z—éNo)(”)

v eV

Sie B Sseuppian Pr(S = 110){ei0(S) + %()8:(v)}.
AR OES

where ON;(v,8) ef

Replacing 8 and 8,,.,, by 8™ and 8(™*1) | respectively, the update
ON;(0,00M)/ 3 ey ONi(1,60m) yields QO™ 60m) > Q(B™, o™, so
this update of 8 realizes MLE of the PRISM program. Here it is obvious that
learn-PRISM realizes the above procedure. O

A.2 learn-PRISM*

Similarly to the derivation of learn-PRISM, we proceed to transform Q* function.
Due to the space limitation, we abbreviate S,.s as S, and note that Py« (Gy=
1|6) = Ppp(G:=118) (= P,).
Q" (Onew,)
= A, Pone (Ehp=2,Gr=1|6)log Pon+ (Ehp =2, Gt =1|0new)
=3 Y sewppao P (8=1,5"=0,5*=0,5,=0,5:=1,G,=1/6) -
log Pos+(S=1,5"=0,5=0,5,=0,5: =1, Gt =1|0new)
=3 &Y Pre(S=1,87=0,8"=0,8,=0,5;=1]¢) -
log Pr«(S=1,87=0,5"=0,5,=0,5; =1|0new)
=3 Y sevppicn Pr(S=1|0)log Pr(S=1|0new). (8)

Note that the right-hand side of Eq. 8 equals to that of Eq. 6 with a term
>, Pr(Srest =2 | 0)log Pr(Srest = 2|0new) = 0. As described in the previous sec-
tion, this term results in ;(.5)8;(v), so the obtained algorithm, learn-PRISM*,
is just learn-PRISM with ~,(.5)68,(v) = 0. o

B Equivalence of learn-PRISM* and learn-gEM

In this section, we present an outline of the proof of equivalence of learn-PRISM*
and learn-gEM. We first consider the support graph (Uy, E;, ;) for the goal G;.
After executing forward-backward(Uy, Ey, 1y, 6), the followings hold for u € Uy:

1 if u= ufoi}
a(u) = { P(u,6) if u € child(ul®?))
(Z‘l\'eﬂf (w) FF (n =i|9))p(u,9) otherwise,
1 if u=uf° or u € parent(ul?)
K= {5 PrCe=il) chermi,)
a(u)B(u) =3,y uen Pr(n' =16), (11)

where H(Ui’Et)(u) ef IT(Ue:B) (4P), and H,SUt’Et)(u) ef IUHE) (y, ybot).
The proof is done by induction on the structure of (Uy, Ey, ;).

Then, the return value of forward-backward(Uy, Ey, 11, 6) is equal to the likeli-
hood Ppp(Gt=1|0), because, from definition of support graphs and a{u) above,

b 3 b
(™) = (£, e upoty Pr(r' =116)) plal”,)
=1

= ZWEH Pr(x'=1]0) = ZseipDB(Gt) Pp(S=116) = Ppp(G:=1/9).
To show that learn-PRISM and learn-gEM starting from the same initial param-
eters 6(9) yields the same estimate, it is enough to show that, just before param-
—t
eter updating, the value of ON,(v) in learn-PRISM and on.(v) in learn-gEM are
equal for 1 <t<T,iel,veV,.
o~nf(v) = Z a(u)B(u) (from while loop of learn-gEM.)
wEUy by (w)=msw (i, ,v)

= > > Pe(r'=ilg)

wEUy by (w)=msw (i, ,v) 7€l,uer

- 3 Pr(x'=il) = > > Pe(a'=il9)

weUyg,ly(w)=msw (i, ,v),rcducr m€l i (u)=msw (i, ,v),ucr
=3 Pe(x'=il) 3 1= Y Pr(S=116)0:.(S) = ON(v).
el Lo(u)y=nsw (i, ,v) wer . seypp(Gy)
)

This article was processed using the I&TEX macro package with LLNCS style

