Generative Modeling with Failure in PRISM

Taisuke Sato, Yoshitaka Kameya
Tokyo Institute of Technology / CREST, JST
2-12-10okayama Meguro-ku Tokyo Japan 152-8552

Neng-Fa Zhou
CUNY Brooklyn College
2900 Bedford Avenue, Brooklyn, NY 11210-2889

Abstract gets. Nevertheless EM learnihig possible by the gEM algo-

) ) ) ) rithm for a program as long as it satisfies certain conditions.
PRISMis a logic-based Turing-complete symbolic-  Consequently there is no or little barrier to the EM learning
statistical modeling language with a built-in pa- of new statistical models. PRISM thus offers a new and ideal
rameter learning routine. In this paper,we enhance  tool to develop complex models that require both logical and
the modeling power of PRISM by allowing gen- statistical knowledge.
eral PRISM programs to fail in the generation pro- PRISM is primarily designed fogenerative modeling

cess of observable events. Introducing failure ex- \where a program models a process of generating observ-
tends the class of definable distributions but needs  gpje events as a chain of probabilistic choices. In early ver-

a generalization of the semantics of PRISM pro-  gjons of PRISM, programs are assumed toféikure-free
grams. We propose a three valued probabilistic se-  \yhich means that a process never faitsice a probabilis-
mantics and show how failure enables us to pur- ¢ choice is made and thus the probabilities of observable
sue constraint-based modeling of complex statisti-  eyents sum to unity. Although typical statistical models
cal phenomena. such as Bayesian networks, HMMs (hidden Markov models)

and PCFGs satisfy this condition, it makes constraint-based
1 Introducti modeling, a widely used flexible methodology, impossible in
ntroduction which wrong solutions are filtered out by not satisfycmn-

Modeling complex phenomena in the real world such as natstraints®

ural language understanding is a challenging task and PRISM The elimination of the failure-free condition was attempted
is a symbolic-statistical modeling language proposed for thain [Sato and Kameya, 20D4ut rather limited to the failure
purpose[Sato and Kameya, 19871t is a relational proba- of definite clause programs. In this paper we propose to allow
bilistic language for defining distributions over structured ob-general programg a super class of definite clause programs,
jects with arbitrary complexity. Parameters in the defined disto fail. Although the introduction of general programs signif-
tribution (probability measure) are estimated efficiently fromicantly increases the flexibility of PRISM modeling and ex-
data using dynamic programming by a generic EM algo-pands the class of definable distributions, it comes with costs.
rithm?® called thegEM (graphical EM) algorithm For ex-  First as the probabilities of observable events do not sum to
ample parameter estimation for PCFGs (probabilistic contextinity, we have to deal wittog-linear model& [Abney, 1997;
free grammars) by PRISM is carried out with the same timeCussens, 20Q1which require intractable computation of a
complexity as the Inside-outside algorithm, a well-known EMnormalizing constant. We do not go into the detail of this
algorithm for PCFG$Sato and Kameya, 2001 problem here though.

The modeling power of PRISM comes from the fact that Second we are faced with a semantic problem. Compared
the user can use arbitrary definite clause programs to defirfe definite clause programs where the least model semantics
distributions. There is no restriction on programs such a$s unanimously accepted, there is no agreed-upon semantics
range-restrictedne$®r finite domain. Hence theoretically

speaking, there is no limit on the complexity of modeling tar- . Here and henceforth EM learning is used a synonym of ML

estimation by the EM algorithm.

The EM algorithm is a class of statistical inference algorithms A process fails if it does not lead to any observable output.
for ML (maximum likelihood) estimation which alternates expecta- S5Constraints are relations on variables such as equality, disequal-
tion and maximization steps until convergence. ity and greater-than.

2The recent refinement of PRISM implementat(@ou et al., A general programis a set ofgeneral clausegnon-Horn
2004 has made it possible to complete the parameter estimation faglauses) which may contain negation in their body.
a PCFG containing 860 rules from 10,000 sentences in less than 10 8A distribution has the formp(z) = Z7! exp(d_, vifi(x))
minutes on a PC. wherey; is a coefficient,f;(z) a feature andZ a normalizing con-

SVariables appearing in the clause head must also appear in thstant. In our settingZ is the sum of probabilities of all observable
clause body. In particular unit clauses must be ground. events.



for general program$much less probabilistic semantics. But
without such semantics, mathematically coherent modeling
would be hardly possible. We fill the need by generalizing a
distribution semantigshe existing semantics fqositive(=
definite clause) PRISM prograrfSato, 1995to a new three-
valued semantics. It considers a ground atom as a rando )
variable taking on true, false and undefined, and defines g]er(N,[R|Y]).-

distribution over the three-valued Herbrand interpretations of >0, . I .
a given general PRISM program. msw(coin,R), % probabilistic choice

rget(ber,2). % observable event
values(coin,[heads,tails]). % outcomes
- set_sw(coin,0.6+0.4). % parameters

There remains one thing to solve however. To perform El is N-1, 0 .
EM learning of a general PRISM program that may fail, e oro []e)r(Nl,Y). % recursion

need a ‘failure program’ which positively describes how fail-
ure occurs in the original program. We show that the fail-
ure program can be synthesized mechanically by eliminat-

ing negation using FOC (first-order compiler). FOC is a de-

terministic program transformation algorithm that compiles Figure 1: Bernoulli program
negatecEI goals intc!; executable form with disunification con-
straints|Sato, 1988 Once a failure program is obtained, or . . .
more generally negation is eliminatgd,gefficient EM learning When this program is loaded, the parameters of the switch

is possible by an appropriate modification to the gEM algo-tchot,jtn c;]cstsgtlbysse'(c),‘slw: %?1?9 rzr(;?gbtlrl:% é) fr};ecjij(%asslf)foé?(:cn&i on
rithm. Our contributions are summarized as follows. ails 15 U4

_ T ~ in PRISM, namelysampling executigrprobability calcula-
e A new three-valued semantics for probabilistic logic tion, andlearning In sampling execution, this program is
programs with negation. executed like in Prolog except that the builtsiiw(coin, R)

e A new approach to parameter learning of such program8inds probabilisticallyk to heads or tails. Probabilities
through automated elimination of negation by FOC. ~ are calculated by using therob/2 built-in. For example,
. ) ) the query?- G = ber(2, heads, tails]), prob(G,P) calcu-
_Inthe remainder of this paper we discuss each of the toptes the probabilitp of havingtails after havingheads.
ics after reviewing PRISM briefly. Because our subject in-parameters are learned by using the builtéarn/1 which
tersects a variety of areas from logic programming, statisticsakes a list of sample data as teacher data.
program synthesis, to relational modeling, we are unable to
give a detailed and formal description due to the space limita T .
tion. Necessarily the description is mostly based on example§ Three-valued distribution semantics
and proofs are omitted. The reader is assumed to be famiB.1 Two-valued distribution semantics
iar with logic programmindDoets, 199%and EM learning

[McLachlan and Krishnan, 19970ur notation follows Pro- . S oo oo negation in the program. For such posi-

log conventions. So we use for conjunction and ;* for ive PRISM programs, a formal semantics caltkstribution

e . . . . |
disjunction. Variables begin with an upper case letter .anésemanticsis proposed Sato, 199bthat defines ar-additive
variables in clause heads are implicitly universally quam'f'edprobability measuré over t,he set of possible Herbrand in-

. terpretations from which a distribution of each predicate is
2 PRISM modeling derived. In the sequel ‘interpretation’ always means an Her-
Informally PRISM is Prolog augmented with probabilistic brand interpretation.
built-ins and a parameter learning routine based on the ggM The distribution semantics is a probabilistic generalization
algorithm (the reader is referred Bato and Kameya, 2001  of the standard least model semantics for definite clause pro-
for a formal description of PRISM). The essence of PRISMgrams. A positive PRISM program is written B8 = RUF’,
modeling is to write a logic program containing random whereR is a set of definite clauses afta set of grounehsw
switches represented by the built-in predicate(¢, v) where  atoms to which @asic distributionF,, is given. Sampling
t, the name of a switch and a result of random choice are execution ofDB w.r.t. a top-goal is considered as a partial ex-
ground terms® The sample space fdrviewed as a ran- ploration of the least mod&I(R U F’) whereF" is a set of
dom variable is declared by the predicatglues/2. The truemsw atoms$? sampled fromP,g,. In this semantics, each
probability of each outcome of a switch, i.e. thatmsfs(¢, v) ground atom is a binary random variable takingtdtrue) or
being true, is called @arameter Parameters can be set by f (false). As there are a countably infinite number of ground
the set_sw/2 predicate or learned from sample data. Theatoms, we can use an infinite number of random variables in
following PRISM program, which simulates a sequence ofa program. This fact, for example, makes it possible to model
Bernoulli trials, defines a distribution of ground atoms of thePCFGs faithfully.
form ber(n, ) wherel is a list of outcomes of, coin tosses. —(F7————

The Bernoulli program in Figure 1 is said to pesitivebe-

H\Wwe use ‘distribution’ and ‘probability measure’ interchangeably
®We can see a variety of semantic$Apt and Bol, 1994; Fitting,  for the sake of familiarity. In this paper the measurability of related
2004. functions are assumed without proofs.

Pnsw is an acronym of ‘multi-ary random switch’. 12An atom whose predicate symbolisw is called amsw atom.



3.2 Negation and a new three-valued semantics

The moment negation is introduced, we are faced with nume

ous problems concerning semantics and computdigpt
and Bol, 1994; Fitting, 2042 The biggest problem on the

probabilistic extension of Fitting’s three-valued semantics for

;general logic programs. Itis also a generalization of the two-

valued counter pa®Ppp defined in[Sato and Kameya, 2001
with a slight complicatiort?

semantic side is the lack of the canonical semantics: there ex- . .

ist many competing semantics for general programs. The pri Failure and log-linear models

mary computational problem is that whatever semantics wélaving established a probability measuitg,p in Section 3,

may adopt, it is not computable in general. we can now talk about various probabilities such as failure
We adopt Fitting’s three-valued semantics and extend iprobability on a firm mathematical basis. We show here how

to a three-valued probabilistic semantics follow{igato and  failure in generative modeling leads to log-linear models.

Kameya, 200}l Fitting’s three-valued semantics is a fixed P . . .

point semantics similar to the least model semantics for pos?-1  Coin flipping with an equality constraint

itive programs but goals causing infinite computation areSuppose we have two biased coisin(a) and coin(b).

not considered false but considered undefined. It is simpleAlso suppose we repeatedly flip them and record the outcome

compared to other semantics such as stable model semantiesly when both coins agree on their outcome, i.e. both heads

[Gelfond and Lifshcitz, 1988and well-founded semantics or both tails’®> The task is to estimate probabilities of each

[Van Gelderet al, 1991. Also it has an advantage that it coin showing heads or tails from a list of records such as

always gives a unique denotation to any general program.
Assume that our languagkhas countably many predicate

[agree(heads), agree(tails),...|.
We generatively model this experiment by a PRISM pro-

and function symbols for each arity. Especially it contains thegram R, Shown below wher@sw(coin(a), A) instanti-

predicate symbahsw/2. A general PRISM progranbB =

atesA to heads or tails with probabilities specified else-

R U F is the union of a seR of general clauses and a set where. Assuming Prolog executioagree/1 describes the

F of groundmsw atoms such that nesw atom appears as a
head inR. msw atoms are implicitly introduced byalues/2
declarations in the program as their ground instantiations.
We associate a probability measurk,, over the set of
two-valued interpretations far as follows. Lett be a switch
name,Q; = {v1,...,v;} be a sample space fordeclared
by values(t, [v1,...,vg]), andps, .. ., py are the parameters

satisfying Zlepi = 1. Let u; be a probability measure
defined over), such thatu;(v;) = p; (1 < i < k). We
define an infinite product measuf&_, of u;s overQ), . =
[L.csn Q¢ WhereSN is the set of all switch names. Note
that A € €, is considered a function such thet) € ©,.

Let Qr be the set of interpretations fdf. We define a
mappingy : Q... — Qp such thatp(\)(A) = true if
A = msu(t,v) and A\(t) = v for somemsw(t,v). Oth-
erwise p(\)(A) = false. Finally we defineR,s, as the
probability measure oveRr induced byy. By construc-
tion it holds for the sample spacg,...,v;} for ¢ that
Pasw(msu(t,v:)) = Ple({X | A1) = vi, A € 2.} = pi
and Pypgy (msw(t, v;),msw(t, v;)) = 0if ¢ # j.

A three-valued interpretation fof is a mapping which
maps a ground atom ig to t (true), f (false) oru (unde-
fined):® We denote by2;, the set of three-valued interpre-
tations for£. Let DB = R U F be a general PRISM pro-
gram. Forv € Qp, we denote byMj3(v) the least fixed
point of the Fitting’s three-valued direct mappidg [Fit-
ting, 2003 applied to the general prografh= RUF, where
F,={A|v E A A€ F}. We consideM3(v) as a three-
valued interpretation fo€ where atoms not appearing P8
receiveu. ThenM;(-) is a mapping fronf2 to Q3. M3(+)
induces ar-additive probability measurB; pg overQs,.. We
definePs;pgp as the denotation aDB in our new three-valued
probabilistic semantics (denotational semanticB)pg is a

13The evaluation rule concerningobeys Kleene’s strong three
valued logic. Thatis;u = u,vVu=uVov =uif v = foru;
otherwiseu Vv =t if v = t.

process of flipping two coins that fails if their outcomes
disagree. success means there is some output whereas
failure means there is no output. We denoteBy,,..(-)

the defined distribution.

failure :- not(success).
success :- agree( ).
agree(A):- % flip two coins and output

msw(coin(a),A), % the result only when
msw(coin(b),B), % both outcomes agree
A=B. % (equality constraint).

Figure 2: A general PRISM prograf,g;c.

We say a logic program iserminating if an arbitrary
ground atom has a finite SLDNF tr¢Boets, 1993 Since
Pagree = Ragree U F' is terminating for an arbitrary sét’ of
msw atoms, no atom in the least model defined by the Fitting’s

Pagre. OPErator receives (u implies an infinite computa-
tion). Consequently,gree (success) + Pagree(failure) =
1 holds for any parameter settingméw atoms. On the other
hand if some ground atom receivesu in our semantics, we
may not be able to computB;ps(A) due to infinite com-
putation. We therefore focus on terminating programs in the
following so that no ground atom receivesind Psps(A) is
computable for every ground atorm

14Suppose thaDB is a definite PRISM program and let be a
ground atom. We hav&pp(A = t) = Pspp(A = t) but not
necessarilypg (A = £) = Pspg(A = £). The reason is that when
A causes only an infinite loop, it is false in the least model semantics
whereas it is undefined in Fitting’s three-valued semantics.

5This model is a very simplified model of linguistic constraints
such as agreement in gender and nunibéney, 1997.



4.2 ML estimation for failure models 0

- 0% source program
When we attempt ML estimation from observed dataeven(O).
such as|agree(heads), agree(tails),...|, we must re- even(s(X)):- not(even(X)).
call that our observation is conditioned Gfuccess be-
cause we cannot observe failure. Therefore the distribug,
tion to be used is a log-linear Mod&l,.. (- | success) (=
Pigree(-)/ Pagree (success)) in which the normalizing con-
stantP,gree (success) is not necessarily unity.

Generally speaking ML estimation of parameters for log-
linear models is computationally intractable. On the other
hand if they are defined by generative processes with failure
like Pgree(-|success) in our example, a simpler estima- . ) o
tion algorithm called the FAM algorithm is knowiCussens, Figure 3: Compilation oéven program
2001. Itis an EM algorithm regarding the number of occur-
rences of failure as a hidden variable. Recently, it is foundyrobabilistic however, compilation is still possible. Suppose
with failure and the gEM’s dynamic programming approach
and an amalgamated algorithm called thEM algorithmis Vy (msw(s, t[y]) — o[y])
proposed as a generic algorithm for EM learning of generajnto an executable formula whereand¢ are terms and
tive models with failurdSato and Kameya, 20Dt however  js some formula such thatand ¢ possibly containy. Al-
requires a positive program that describes how failure occurgyoyghnsw /2 is a probabilistic predicate, our (three-valued)
in the model. We next explain such a failure program can bgjjstrihution semantics allows us to treat it as if it were a non-
automatically synthesized by FOC (first-order compiler). - probabilistic predicate defined by some single ground atom,

o . saymsw(s, t'). We therefore modify FOC so that it compiés
5 FOC for probabilistic logic programs the above formula into

5.1 Compiling universally quantified implications msw(s, W), (\+ (W= t);W = t, )
FOC (first-order compiler) is a logic program synthesis al-
gorithm which deterministically compiles negation, or more
generally® universally quantified implications of the form
Yy (p(z,y) — q(y,z)) into definite clauses with disequal-
ity (disunification) constraints such aslz(s = t[z]) [Sato,
1989. Since what FOC does is deductive unfold/fold trans-
formation, the compiled code is a logical consequence of the

source program. More precisely we can prove friBato, failure:- closure_success0(f0)
1989 : _ .

closure_successO(A):-closure_agree0(A).
Theorem 1 LetS be a source program consisting of clauses closure_agree0( ):-
whose bodies include universally quantified implications.  msw(coin(a),A),
SupposeS is successfully compiled int8’ by FOC andS’ msw(coin(b),B),
is terminating. Then for a ground atorh, \+A=B.
comgS) - A (resp.—A) iff comp(S’) - A (resp.—A).Y’

Figure 3 is a small example of negation elimination by
FOC. As can be seempét’ in the source program is com-
piled away and a new function symhig and a new predicate Figure 4: The compiled program f@i.,... (part)
symbolclosure_even0/2 are introduced during the compi-
lation process. They are introduced to handle so called corBecause this program is terminating for any sampied
tinuation. Usually the compilation adds disunification con-atoms, it exactly COMPULERs ogree (failure).
straints but in the current case, they are replaced by a normal |n what follows we show two examples of gener-
unification using sort information = 0V 3y (z = s(y)) de-  ative modeling with failure.  They are available at
clared for FOC (not included in the source program). SinCenttp : //sato — www.cs.titech.ac.jp/prism/.
the compiled program is terminating, Theorem 1 applies.

5.2  Modifying FOC for msw 6 Dieting professor

FOC was originally developed for non-probabilistic logic In this section, we present a new type of HMMs: HMMs with

programs. When programs contaisw atoms and hence constraints which may fail if transition paths or emitted sym-

TR bols do not satisfy given constraints. Here is an example.
—-A = (A — false)

Ycomp(S) denotes the union of and some additional formulas ®we here assume thatis instantiated to some switch name at
reflecting Prolog’s top-down proof proceddi@oets, 1994 execution time.

compiled program

even(0).

even(s(A)):- closure_evenO(A,f0).
closure_even0(s(A), ):- even(A).

whereW is a new variable.We can prove this compilation
preserves our three-valued semantics when the compiled pro-
gram is terminating using Theorem 1 (proof omittedhig-

ure 4 shows the compiled code produced by the modified
FOC forfailure in the Rag.. program in Figure 2.




Suppose there is a professor who takes lunch at one d§EM algorithm. Table 1 shows averages of 50 experiments
two restaurantsr'0’ and ‘r1’ everyday and probabilistically where numbers should be read that for example, the prob-
changes the restaurant he visits. As he is on a diet, he tries &bility of msw(tr(r0),r0) is originally 0.7 and the average
satisfy a constraint that the total calories for lunch in a weelof estimated ones i8.697. Estimated parameters look close
are less than 4000 calories. He probabilistically orders pizzanough to the original ones.

(900) or sandwich (400) ato, and hamburger (500) or sand-

wich (500) atr1 (numbers are calories). He records what he sw name original value average estimation

has eaten in a week liKg, s, s, p,h, s,h] and preserves the tr(r0) r0(0.7) r1(0.3)| r0(0.697) r1(0.303)
record if and only if he has succeeded in satisfying the con- tr(rl) rl(0.7) r0(0.3)| r1(0.701) r0 (0.299)
straint. We have a list of the preserved records and we wishlunch(rO) || p(0.4) s (0.6) | p(0.399) s(0.601)
to estimate his behavioral probabilities from it. lunch(rl) || h(0.5) s(0.5) | h(0.499) s(0.501)

Table 1: EM learning

of our approach is that the probability 6&ilure is com-
puted in a dynamic programming manner with no additional

p.s h,s cost just like ordinary HMMs thanks to the tabling mecha-
nism of PRISM[Zhouet al, 2004.

° We would like to emphasize that the computational strength

Figure 5: An HMM model for probabilistic choice of lunch
7 Tic-tac-toe game

The behavior of the dieting professor is modeled by a conThjs example models the tic-tac-toe game by using negation
strained HMM described above and coded as a PRISM proynq recursion. The purpose of this example is to illustrate
gram below where failing to satisfy the calorie constraint on:gpg jearning through negative goals’, which has never been
the seventh day causes failure thereby producing no output.attempted before to our knowledge. In tic-tac-toe, the ‘0’
player has to place three ‘0’s in a row, horizontally, vertically,
or diagonally on the board of a 9 by 9 board before the oppo-
nent, the ‘x’ player, does so with ‘x’. The program in Figure 7
models the game. The basic idea of modeling is expressed by
the following clause:

failure:- not(success).
success:- hmmf(L,r0,0,7).

hmmf(L,R,C,N):- N>0,

msw(tr(R),R2), msw(lunch(R),D), win(X):- your_opponent(X,Y),not(win(Y))

( R == 10, % pizza:900, sandwich:400 which states that unless your opponent wins, you
(D =p C2is C+900 win (or draw). In Figure 7, * designates an
; D =5, C2is C+400 )

; == rl, % hanburger:400, sandwich:500
(D =h, C2is C+400 failure :- not(success).
; D =135, C2is C+500 ) ), success -

L=[D|L2], N2 is N-1, Ini_Board = [[***.[***L.[* .

hmmf(L2,R2,C2,N2). tic_tac_toe(o,Ini_Board).

hmmf([],_,C,0):- C < 4000.

tic_tac_toe(Turn,Board):-

select_move(Turn,Board,Move),

next_board(Turn,Board,Move,N_Board,S),

( S \== continue

; S == continue,
opposite_turn(Turn,N_Turn),
opponent_turn(N_Turn,N_Board) ).

opponent_turn(N_Turn,N_Board):-

not(tic_tac_toe(N_Turn,N_Board)).

Figure 6: Constrained HMM for the dieting professor

We verified the correctness of our modeling empirically by
checking if the sum of probabilities eficcess andfailure
becomes unity. We used the ‘original value’ given in Table 1
as checking parameters.

?- prob(success,Ps),prob(failure,Pf),

X is Ps+Pf.
X =10
Pf = 0.348592596784 i - Tic-tac-
Ps = 0.651407403216 Figure 7: Tic-tac-toe model

After checking that the sum is unity, we repeated learnempty cell. The intended meaning afuccess is
ing experiments. In an experiment we generated 500 samplés’ wins or ‘0’ draws, SO success fails if ‘X’ wins.
by the program with the same parameter values used in theéelect move(Turn, Board,Move) probabilistically selects
checking, and then let the program estimate them using thand returns the next moveéldve), given Turn andBoard,



after which next_board(Turn,Board, Move, N _Board, S) [Cussens, 20Q1J. Cussens. Parameter estimation in stochas-
judges the next boardN(Board) and returns one of the tic logic programs. Machine Learning 44(3):245-271,
outcomesd_win,draw,x_win, continue) throughS. When Sept. 2001.

compiled by FOC, this program yields a terminating Pro-IDoets, 1994 K. Doets. From Logic to Logic Programming
gram, and hence the probabilitiessaifccess andfailure The MIT Press, 1994,

are correctly computed by the compiled progrém. o . o i )
Negative recursion in logic programs causes well-knowrlF1tting, 2002 M. Fitting. Fixpoint Semantics for Logic Pro-

difficulties from the semantics to the implementation even in 9ramming, A Survery. Theoretical Computer Science

the non-probabilistic case. Nevertheless, this example shows 278(1-2):25-51, 2002.

that the combination of the three-valued probabilistic semanfGelfond and Lifshcitz, 19§8M. Gelfond and V. Lifshcitz.

tics and compilation by FOC of general PRISM programs The stable model semantics for logic programming. pages

offers a promising approach to dealing with negation in the 1070-1080, 1988.

probabilistic context. [McLachlan and Krishnan, 1997G. J. McLachlan and
T. Krishnan. The EM Algorithm and Extension3Viley
8 Related work and conclusion Interscience, 1997.

, . , [Ngo and Haddawy, 1997L. Ngo and P. Haddawy. Answer-
We only discuss related work combining negation and proba- i queries from context-sensitive probabilistic knowledge

bility in the framework of logic programming due to the space  p3sesTheoretical Computer Scienck71:147-177, 1997.
limitation and other work related to stochastic logic program- . . .

ing, Bayesian networks and Markov random field is omit-[Poole, 1997 D. Poole. The independent choice logic for
ted. The most relevant one seems the formalism proposed Modeling multiple agents under uncertaingytificial In-

by Ngo and HaddawyNgo and Haddawy, 1997 In their telligence 94(1-2):7-56, 1997.

approach negation is allowed in a program but restricted t¢Sato and Kameya, 1997T. Sato and Y. Kameya. PRISM:
non-probabilistic goals. Semantics is defined locally in rela- a language for symbolic-statistical modeling.Rroceed-
tion to a given problem. So no global semantics such as a ings of the 15th International Joint Conference on Artifi-
probability measure over the set of possible Herbrand inter- cial Intelligence (IJCAI'97) pages 1330-1335, 1997.
pretations is given. The problem of parameter leaming is NOfga1q and kKameya, 20p1T. Sato and Y. Kameya. Parameter
discussed either. Poole allows negation in his ICL (indepen- learning of Iogic,programs for symbolic-statistical model-

dent choice logic) programs and probabilities can be com- . P ; 201_
puted through negative goalBoole, 1997, Stable model 21594 %%lérlnal of Artificial Intelligence Researcii5:391

semantics is adopted as global semantics but the problem of
learning is left open. [Sato and Kameya, 2OD4T . Sato and Y. Kameya. A dy-

In this paper we first tackled the problem of defining Namic programming approach to parameter learning of
declarative semantics for probabilistic general logic programs 9€nerative models with failure. IProceedings of ICML
that contain negative goals, and have proposed a new three- 2004 workshop on Learning Statistical Models from Rela-
valued semantics which is unconditionally definable for any tional Data (SRL2004)2004.
programs unlike other approaches. We then tackled the sefSato, 1989 T. Sato. First order compiler: A deterministic
ond problem, namely parameter learning. We have shown logic program synthesis algorithmJournal of Symbolic
how parameter learning is made possible by negation elim- Computation8:605-627, 1989.
ination through the modified FOC (first-order compiler) that g
preserves the new semantics. As a result, constraints that mgy programs with distribution semantics. Proceedings of
cause failure can now be ut!llz_ed as building blocks of EVeN  the 12th International Conference on Logic Programming
more complex symbolic-statistical models such as generative (ICLP'95), pages 715-729, 1995
HPSG models which is to be reported elsewhere. ' ' '

ato, 1995 T. Sato. A statistical learning method for logic

[Van Geldert al,, 1991 A. Van Gelder, K.A. Ross, and J.S.
Schlipf. The well-founded semantics for general logic pro-

References grams.The journal of ACM (JACM)38(3):620—650, 1991.
[Abney, 1997 S. Abney. Stochastic attribute-value gram- [Zhouetal, 2004 Neng-Fa Zhou, Y. Shen, and T. Sato.
mars.Computational Linguistic23(4):597—618, 1997. Semi-naive Evaluation in Linear Tabling . Proceed-

_ ings of the Sixth ACM-SIGPLAN International Conference
[Apt and Bol, 1994 K.R. Aptand R.N. Bol. Logic program- on Principles and Practice of Declarative Programming

ming and negation: A surveylournal of Logic Program- (PPDP2004) pages 90-97, 2004.
ming, 19/20:9-71, 1994.

19As this program merely simulates moves until ‘0’ wins or draws
without recording them, it is not usable to train parameters from the
recorded moves of a game. We therefore wrote another program that
can generate a list of moves through negative goals and conducted
an EM learning experiment and confirmed its success.



