A Generic Approach to EM learning for Symbolic-statistical Models

Taisuke Sato

SATO@MI.CS.TITECH.AC.JP

Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, Japan

Abstract

We present a generic approach to EM learn-
ing (i.e. parameter learning by ML estima-
tion for probabilistic models using the EM
algorithm). We write domain-dependent pro-
grams in a symbolic-statistical modeling lan-
guage PRISM to define distributions but ap-
ply a common EM algorithm to them. Differ-
ences in EM learning for each model are sub-
sumed by differences in programs, and hence
we have only to write PRISM programs to
perform EM learning even for new probabilis-
tic models and the rest of task is automat-
ically carried out by the PRISM’s learning
routine.

1. Introduction

Parameter learning by ML (maximum likelihood) es-
timation for probabilistic models is one of the most
basic techniques for machine learning and the EM al-
gorithm (Dempster et al., 1977) has been a primary
tool for ML estimation. So far however, EM learning,
i.e. parameter learning by the EM algorithm has been
carried out domain-dependently. In other words one
has to use different EM algorithms for different appli-
cations or when no EM algorithm is available, he or
she has to invent a new EM algorithm.

In this paper we present a different approach with the
following features. First we use a single EM algorithm
called the gEM (graphical EM) algorithm (Kameya &
Sato, 2000) for every application regardless of whether
it belongs to a known model or not. Second we use
a symbolic-statistical modeling language PRISM! and
write a program to define a parameterized distribution
for each probabilistic model. To learn parameters of
the distribution, we first apply the program to data
Appearing in Proceedings of the 4" Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

'URL = http://sato-www.cs.titech.ac.jp/prism/

and extract a certain AND-OR graph called explana-
tion graph representing the likelihood function, and
then run the gEM algorithm on it. So differences in
distributions are reflected on differences in programs
and do not affect the EM algorithm itself. Put it
differently we do not need to invent a new EM al-
gorithm even for a new model. Third computationally
speaking, a kind of dynamic programming is built-in
in PRISM and our approach can be reasonably com-
petitive.?

We proved in (Sato & Kameya, 2001) that PRISM pro-
grams representing popular symbolic-statistical mod-
els, i.e. singly connected BNs (Bayesian networks),
HMMs (hidden Markov models) and PCFGs (prob-
abilistic context free grammars) have the same time
complexity in EM learning as their specialized coun-
terparts, i.e. EM learning by Pearl’s belief propagation
(Pearl, 1988), the Baum-Welch algorithm (Rabiner &
Juang, 1993) and the Inside-Outside algorithm (Man-
ning & Schiitze, 1999) respectively. In addition in the
case of PCFGs, it is experimentally confirmed that the
gEM algorithm runs faster than the Inside-Outside al-
gorithm by orders of magnitude provided explanation
graphs are given (Sato & Kameya, 2001).

We have tested other known and unknown EM learn-
ing by PRISM programs in addition to these well-
known models to see the strength and weakness of our
approach. The list includes Naive Bayes, linkage anal-
ysis (Lander-Green algorithm (Kruglyak et al., 1996),
Elston-Stewart algorithm (Elston & Stewart, 1971)),
profile HMMs for alignment, generalized LR(k) pars-
ing (Inui et al., 1997), game modeling and most re-
cently left-corner parsing (Manning, 1997) and con-
text free graph grammars (Rozenberg, 1997). What
has become clear from these modeling experiences is
that our approach fits well in the development stage of
new statistical models because we can explore and test
them at higher level without the additional trouble of
implementing EM algorithms from scratch. Also con-
tinuing efforts for efficient implementation of PRISM

2However we do not claim that it is as efficient as EM
learning by a specialized EM algorithm implemented in C.

A Generic Approach to EM learning for Symbolic-statistical Models

(Zhou et al., 2004) made it usable in such a stage.® In
this paper, we show how to perform EM learning, us-
ing PRISM, for a stochastic left-corner parsing model,
and two classes of stochastic context free graph gram-
mars. We remark that there is little or no literature
on EM learning of these probabilistic models.

In what follows, after reviewing PRISM briefly by a
simple example, we look at each of the above men-
tioned EM learning. The reader is assumed to be
familiar with the EM algorithm (McLachlan & Kr-
ishnan, 1997), logic programming (Doets, 1994) and
stochastic natural language processing (Manning &
Schiitze, 1999).

2. Symbolic-statistical modeling

By symbolic-statistical modeling we mean modeling of
a distribution over structured objects represented by
symbols. Typical symbolic-statistical models are dis-
crete BNs, HMMs and PCFGs where BNs define distri-
butions over symbols, HMMs over strings and PCFGs
over parse trees. They have been developed as different
formalisms and people have to write code for different
EM algorithms. PRISM breaks this order-made ap-
proach (Sato & Kameya, 1997; Sato & Kameya, 2001).
It offers a generic language for describing symbolic-
statistical models together with a unified EM learning
routine. As a programming language it is an augmen-
tation of Prolog by probabilistic built-ins for calculat-
ing and learning probabilities. So the user writes just
Prolog programs using some probabilistic predicates.
However the semantics, distribution semantics (Sato,
1995), is significantly extended compared to the stan-
dard least model semantics for logic programs in which
a program denotes a (o additive) probability measure
over the set of possible Herbrand interpretations. The
current PRISM* is implemented on top of B-Prolog
using its tabling mechanism (Zhou et al., 2004). It
can also deal with negation (failure), though we do
not discuss this new feature in this paper.

We here explain a PRISM program for the sake of
self-containedness. Figure 1 is a simple PRISM pro-
gram modeling the inheritance of ABO blood types.
target (btype,1) says we observe an event repre-
sented by an atom btype(:). values(abo,[a,b,0])
introduces a discrete random variable abo (i.i.d.s)
whose range is {a,b, o} and the corresponding proba-

3For the record in the case of PCFGs, EM learning for a
PCFG of moderate size (860 production rules) using a real
corpus, ATR corpus(Uratani et al., 1994), containing 11000
sentences can now be completed in less than 10 minutes on
a PC with 2MHz CPU.

“URL = http://sato-www.cs.titech.ac.jp/prism/

target (btype,1).
values(abo,[a,b,0]).
:— set_sw(abo,0.3+0.34+0.4).

btype(X):- pg_table(X, [Gf,Gm]) ,gtype(GE,Gm) .
pg_table(X,GT) : -

((X=a;X=b), (GT=[X,0] ;GT=[0,X]; GT=[X,X1)

; X=o0, GT=[o0,0]

; X=ab, (GT=[a,b];GT=[b,a])).
gtype(Gf,Gm) : - msw(abo,Gf) ,msw(abo,Gm) .

Figure 1. ABO-blood type program

bilities are set by set_sw/2 to 0.3, 0.3 and 0.4 respec-
tively on loading the program.

The following clauses can be read just like an ordinary
Prolog program. The only difference from Prolog is
the use of msw/2 predicate in the definition of gtype
clause. In general when a random variable named ‘n’ is
introduced by values(n, [v1,...,v¢]) and its distri-
bution is specified by set_sw/2 as set_sw(n, [p;+---+
pr1) (35, pi = 1), msw(n,Y) probabilistically returns
in Y one of {vy,...,v;} with P(n = v;) = p;. These
probabilities are called parameters. We assume dif-
ferent occurrences of the same random variable name
denote i.i.d.s.

The purpose of this program is to estimate parame-
ters for the distribution of abo genes from observa-
tions given as a list like [btype(a),btype(ab),---].
In view of statistical modeling, btype(-) is an incom-
plete data with abo as a hidden variable. So the EM al-
gorithm applies to this parameter estimation problem.
The unique feature of our approach is the existence
of a search phase that logically reduces an observed
atom to a disjunction of explanations® represented as
an AND-OR graph called explanation graph to which
a common EM algorithm, the graphical EM algorithm,
is applied. The formula below shows the explanation
graph for btype(a).

btype(a) <=>

gtype(a,o) v gtype(o,a) v gtype(a,a)
gtype(a,o) <=> msw(abo,o0) & msw(abo,a)
gtype(o,a) <=> msw(abo,a) & msw(abo,o)
gtype(a,a) <=> msw(abo,a) & msw(abo,a)

As the search phase is carried out using tabling (mem-
oizing), the generated explanation graph generally

% An explanation is a conjunction of msw atoms.

A Generic Approach to EM learning for Symbolic-statistical Models

shares subgraphs hierarchically, and this hierarchical
structure sharing makes it possible to compute proba-
bilities in a dynamic programming manner.

3. EM Learning for Probabilistic Left
Corner Grammars

3.1. Probabilistic LC grammars

In this section, we deal with EM learning for PLCGs
(probabilistic left-corner grammars). PLCGs construct
parse trees in a bottom-up manner using CFG rules
but with different parameterization from PCFGs. In
a PCFG probabilities P(A — a | A) in top-down rule
selection of A — « given a non-terminal A are taken
as parameters while in a PLCG projection probabili-
ties P(A — Bf | B,@) given a category B of a com-
pleted subtree and a goal category G, for instance are
included in the parameter set for a PLCG. As rule se-
lection is affected by the completed tree B, PLCGs are
expected to be more context sensitive than PCFGs.

Although PCFGs and PLCGs use the same set of CFG
rules, implementing EM learning for PLCGs seems
much harder than PCFGs. In fact although there
is some literature on PLCGs (Manning, 1997; Roark
& Johnson, 1999), parameters there are obtained by
counting using a tree bank, not by EM learning. The
only literature we found that uses EM learning is
(Van Uytsel et al., 2001) which describes a specialized
EM algorithm derived for lexicalized PLCGs.

By contrast we do not need such a derivation. All
one has to do is to write an efficient program while
observing the principle of generative modeling which
states that a model should describe a sequential pro-
cess of generating an observable output and once a
probabilistic choice is made, there must be no failure
in the subsequent process (failure-free condition). This
principle looks rigid but ensures the mathematical cor-
rectness of our statistical model.

3.2. Three operations for PLCG parsing

We encode a PLC grammar as a PRISM program in
Figure 2 which is a probabilistic extension of a non-
probabilistic left-corner parser described in (Manning,
1997). The behavior of this program as a parser ex-
actly follows the non-probabilistic LC parser except
the use of msw/2. It parses a sentence of length NV
in O(N?) time thanks to the tabling (caching) mech-
anism of PRISM.

5Recently we succeeded in relaxing the failure-free con-
dition to explore a wider class of distributions(Sato &
Kameya, 2004).

So let us check how it works as a sentence generator.
The top-goal for this purpose is :-plc(Ws) which, af-
ter invoking g_call/3 and lc_call/4 recursively, re-
turns a list Ws = [wy,...,w,] of terminals as a gram-
matical sentence.

plc(Ws):-
start_symbol(C), g_call([C],Ws,[]).

g_call([],L,L). % shift
g_call([G|R], [Wa|L],L2):-
(terminal(G), G=Wd, L1=L
; \+ terminal(G),
msw(first(G),Wd), lc_call(G,wd,L,L1)),
g_call(R,L1,L2).

lc_call(G,B,L,L2):- % project or attach
msw(1lc(G,B),rule(A, [BIRHS2])),
g_call(RHS2,L,L1),
(G == A, attach_or_project(A,Op),
(Op == attach, L2=L1
; Op == project, lc_call(G,A,L1,L2))
; G \==A, 1lc_call(G,A,L1,L2)).

attach_or_project(A,0p):-
(values(1c(A,A),), msw(attach(A),0p)
; \+ values(lc(A,A),_), Op=attach).

Figure 2. A probabilistic LC parser

g-call(Gs,L1,L2) says a difference list L1-L2 is de-
rived from a list Gs of terminals and nonterminals. The
shift operation in LC parsing is carried out by the sec-
ond g_call clause in such a way that in the generation
process, if G is not a terminal, Wd is probabilistically
chosen by msw(first(G),Wd) from the first set of G.
Once Wd is chosen, L-L1, the rest of sentence, is gen-
erated by calling 1c_call(G,Wd,L,L1).

lc_call(G,B,L,L2) means there is a completed sub-
tree whose category is B, the goal category G and
B stand in the left-corner relation”, and G derives
[BIL]-L2 (see Figure 3). Given G and B in the genera-
tion process, a rule A — [B|RHS2] is probabilistically
chosen by msw(1c(G,B),-) depending on the pair
(G,B). Then g_call(RHS2,L,L1) is called to complete
the derivation of L-L1 from RHS2. We have two cases
then. If G = A and both project operation and attach

"If there is a chain of production rules G — Ao, A1 —
Asas,..., A, = Ba, (n > 1) G and B are said to be in
the left-corner relation.

A Generic Approach to EM learning for Symbolic-statistical Models

operation are possible, we probabilistically choose one
of them by msw(attach(4),-). Otherwise only attach
operation is possible. Else G # A and only project op-
eration is possible. So we call 1c_call(G,A,L1,L2).

G goal category

L2

Figure 3. 1c_call(G,B,L,L2) in LC parsing

By inspection, we know that the generation process
started by :-plc(Ws) never fails and probabilistic
choices are exclusively made by msw/2. Hence we may
conclude according to (Sato & Kameya, 2001) that EM
learning performed by the program is mathematically
correct®.

3.3. EM learning with ATR corpus

We conducted an experiment of EM learning with a
real corpus, ATR corpus which is a Japanese corpus
containing more than 11000 parses (Uratani et al.,
1994). The backbone CFG grammar consists of 860
rules. Prior to the experiment, we specialized (un-
folded) the program in Figure 2 by CFG rules for speed
up. The specialization yielded about 2800 clauses such
as

g_call(adv, [Wd|L],L2):-
msw(first(adv),Wd),lc_call(Wd,adv,L,L2).

We also obtained 21000 values declarations for msw
atoms. In the experiment, a PC having 3.4Ghz CPU
and 2GB memory was used with a PRISM program
containing these clauses and declarations. The parsing
phase finished in 64 seconds and in the subsequent EM
learning phase, the gEM algorithm converged after 367
iterations®, taking 66 minutes as total learning time.

8 Actually we need another condition “if there is no loss
of probability mass to infinite generation process,” which
we assume to hold for simplicity here.

9The convergence is judged if an increase in the log-
likelihood is less than 10 *.

It is hard to say whether our approach is unreasonably
slow or not, because (Van Uytsel et al., 2001) which is
the only literature available to us on similar EM learn-
ing, does not mention the total learning time for the
EM learning of a PLCG and hence comparison is dif-
ficult to make. Also we expect a new implementation
of PRISM underway will speed up learning further.
Putting learning time aside however, one thing seems
clear: this experiment shows that our generic approach
works even in the relatively unexplored field, i.e. EM
learning of PLCGs, straightforwardly without much
difficulty.

4. EM Learning for Probabilistic
Context Free Graph Grammars

In this section, we tackle the problem of parameter
learning of PCFGGs (probabilistic context free graph
grammars), an important yet almost unknown area.
CFGGs (context free graph grammars) are a natu-
ral generalization of CFGs. They define a set of
graphs by repeatedly replacing subgraphs using pro-
duction rules whose right-hand side is a graph, not a
string. PCFGGs are CFGGs with probabilities associ-
ated with production rules just like PCFGs. They de-
fine distributions over the set of producible graphs. We
here focus on two classes of CFGGs and their proba-
bilistic versions. One is HRGs (hyper edge replacement
grammars) which replace edges and the other is NL-
CGs (node label controlled grammars) which replace
nodes (Rozenberg, 1997).

As graphs are much richer structure than strings and
abundantly used to describe control diagrams, chemi-
cal compounds, gene networks, WWW and so on, de-
veloping a method of parameter learning for PCFGGs
would contribute greatly to the statistical analysis of
complex structure represented by graphs. However in
reality there is almost no literature on parameter learn-
ing of PCFGGs except (Oates et al., 2003) in which
the authors state that “To the best of our knowledge,
our paper is the first to present a formally sound algo-
rithm for computing maximum likelihood parameter
estimates for a large class of HR grammars.”

In the following we show that PRISM enables us to
learn parameters not only for PHRGs (probabilistic
HR grammars) like (Oates et al., 2003) but for an un-
tried class, PNLCGs (probabilistic NLC grammars)'®
as well.

0There is no literature on EM learning of PNLCGs as
far as we know.

A Generic Approach to EM learning for Symbolic-statistical Models

4.1. Probabilistic HR grammars

In this subsection, we attempt EM learning of PHRGs
using PRISM.

4.1.1. HYPER GRAPHS

We first introduce terminology, mostly following
(Rozenberg, 1997). A hyper graph H is a triple
(V,E,X) where V is a finite set of nodes, E a finite
set of hyper edges and X a sequence of nodes in V
called external nodes. The type of H is defined to be
the length of X and denoted as type(#).

A hyper edge is an ordered pair (Cat, AN) such that
Cat is a label of the hyper edge and AN is a sequence
of pair-wise distinct (this is our simplifying assump-
tion) nodes in V called attachment nodes. The la-
bel can be null. The length of AN is denoted by
type(Cat). In Figure 4, the left graph represents a
hyper edge (S, (2, 5,4)) whereas the right graph repre-
sents (S, (1, 2)) respectively. In drawing graphs, a label
is boxed and an underlined number i marks an edge
connected to the i-th attachment node in AN. When
the length of AN is 2, we omit underlined numbers and
instead use an arrow assuming the source node of the
arrow is the first attachment node and the sink node
is the second one.

2
O\L
5024 S Oo— s —O
5 1 2
4 0"

Figure 4. Hyper edges

An HRG (hyper edge replacement grammar) is a
quadruple (N, T, P, S) where N, a set of labels called
nonterminals and T, a set of labels called terminals
are disjoint. P is a set of rules and S a start symbol.

A rule is an ordered pair (Cat, HG) where Cat is a non-
terminal which is a label of a hyper edge HE whereas
HG is a hyper graph such that type(Cat) = type(HG).
So the attachment nodes AN in HE and the external
nodes X’ in HG have the same length. We understand
that the i-th attachment node of AN corresponds to
the i-th external node of X’. Using this correspon-
dence, we replace (an isomorphic copy of) the hyper
edge HE in a host graph H by HG as follows. First
after matching HE against some hyper edge in H, we
remove the matched edge and add HG. Second we glue
each external node of X’ of HG to the corresponding
attachment node of AN in H (hyper edge replacement).
A start graph is a hyper graph such that nodes are
all external nodes and it contains a single hyper edge

whose label is S, the start symbol.

01
s> &6——0
1 2
02
s © S S
1 3 2
03 S
s ©]
1 s 2

Figure 5. PHRG Gp,»

A PHRG (probabilistic hyper edge replacement gram-
mar) is an HRG such that rules for the same label
are assigned probabilities (parameters) which sum to
unity. Just like PCFGs, we start from the start graph
and repeat one step derivation, i.e. hyper edge replace-
ment using a probabilistically chosen rule until a ter-
minal graph, i.e. a hyper graph TG in which all labels
are terminals, is generated. TG is a member of the set
of graphs specified by the PHRG, and its probability
is computed as the product of probabilities associated
with rules used in its derivation. This way a PHRG
defines a distribution over the set of terminal graphs.
A PHRG in Figure 5 is based on an HRG borrowed
from (Rozenberg, 1997). Each rule has a parameter
0; (i =1,2,3). There black circles are external nodes.
Figure 6 below illustrates a derivation process from the
start graph in the upper-left corner.

Figure 6. A derivation sequence using Gp,

4.1.2. EM LEARNING OF PHRGS

We conducted EM learning of G,.. The first step is to
write a PRISM program for Gy, that causes no failure,
following the principle of generative modeling (Sato
& Kameya, 2001). So we wrote a program DBy, in
Figure 7 that generatively defines a distribution over
terminal graphs specified by Gp,.. We encoded a hy-
per graph as a list (set) of hyper edges represented

A Generic Approach to EM learning for Symbolic-statistical Models

by atoms of the form edge(Cat,AN). The three rules
in Figure 5 are straightforwardly encoded as a value
declaration below. For example, the second line of the
declaration encodes the second rule of Gp,..

values(s, [
[[1,2],[], [edge([1,[1,2]1)11,
[[1,2],[3],[edge(s,[1,3]),edge(s,[3,2]1)1],

[[1,2],01, [edge(s,[1,2]),edge(s,[1,21)1] 1).

phrg(edge(Cat,AN) ,L) :-

get_max_node (AN,Max) ,

phrg(edge(Cat,AN) ,Max,L,[1,_).

phrg(edge(Cat,AN) ,Max,L1,L3,Max3) : -

(values(Cat,_), % replacement possible
msw(Cat,RHS), % choose a rule
glue_rhs (RHS,AN,HG),
phrg2(HG,Max2,L1,L3,Max3)

; \+ values(Cat,_), % no replacement

L1 = [edge(Cat,AN) |L3],
Max3 is Max).
phrg2([edge(Cat,AN) |X],Max,L1,L3,Max3) : -
phrg(edge(Cat,AN) ,Max,L1,L2,Max2),
phrg2(X,Max2,L2,L3,Max3).
phrg2([]1,Max,L1,L1,Max).

Figure 7. PRISM program DBy, for G, (part)

This program works similarly to a PRISM pro-
gram for a PCFG. :-phrg(edge(s,[1,2]1),L)
for example, probabilistically generates a ter-
minal graph from edge(s,[1,2]), and returns
it in L. The primary computation is done by
phrg(edge(Cat,AN) ,Max,L1,L3,Max3). When called
with a ground edge(Cat,AN), L1 which stores the
current hyper graph and Max, the current maximum
number of nodes, it adds to L1 a new terminal
graph derived from edge(Cat,AN) and returns the
enlarged terminal graph as a difference list L1-L3
together with Max3, the renewed maximum node
number. glue rhs(RHS,AN,HG) carries out hyper
edge replacement using the right-hand side of a rule
and AN, the list of attachment nodes in the graph
being constructed. It returns a terminal graph HG to
be added to L1.

Using D Bjp,,., we randomly generated a sample of size
100 using parameters set to (61,62,63) = (0.6,0.2,0.2).
To cut down on processing time, the size of gener-
ated graphs was restricted to 15. To perform param-
eter estimation, we used a very naive parser written
in PRISM which resembles DBy, and extracted ex-

61) b3

Original 0.6 0.2 0.2
Ave. 0.65082 | 0.18220 | 0.16697
o 0.01949 | 0.01672 | 0.01692

Figure 8. Learned parameters for Gy,

planation graphs from the sampled graphs, on which
the gEM algorithm was run to estimate parameters'®.
We repeated this experiment 20 times and took aver-
ages of estimated parameters. The table in Figure 8
summarizes results where o is a standard deviation.
Looking at these figures, it might be safely said that
parameters are reasonably estimated though how the
size restriction on generated graphs affected estimation
is unclear.

We conducted EM learning of PHRGs for other prob-
abilistic models as well. They include an HMM, a
PCFG, a probabilistic context sensitive grammar and
so on, and in all cases we could successfully estimate
parameters.

4.2. Probabilistic NLC grammars

Finally we attempt EM learning of probabilistic NLC
(node label controlled) grammars. Due to the lack of
space, we have to skip details and programs.

Suppose we have NT, a set of nonterminal node la-
bels, and T, a set of terminal node labels. NT and T
are disjoint. As convention we use upper case letters
for labels in NT and lower case letters for those in T'.
Next an NLC rule is a replacement rule X — R : C
where X is a nonterminal node label, R is an undi-
rected graph called replacing graph such that nodes
are labeled by NT UT. In the following, we add a
simplifying assumption that labels in R are distinct
from one another. So R can be represented by a set of
pairs of labels. C' denotes a set of connection instruc-
tions (a, 8) where @ and 3 are from NT UT. Let us
take an example to get the idea of node replacement
using C.

A= {(a,4)} : {(a,a), (a, A)}

This rule replaces a node n labeled A in a host graph
H with a new graph in three steps. First we remove
n and every edge incidental to n from H. We use
H~ to refer to the remaining graph. Second we add
(a copy of) the replacing graph R = {(a, A)} to H .
Here (a, A) is an edge connecting a node labeled a and

1vWe did not attempt to develop a sophisticated parser,

as our primary purpose is not efficient parsing but the ver-
ification of the possibility of EM learning.

A Generic Approach to EM learning for Symbolic-statistical Models

a node labeled A. Finally according to a connection
instruction (a,a) in the right component of the rule,
we connect every node labeled a in H~ to the node
labeled a in the added R. Likewise we process (a, A)
by connecting every node labeled a in H~ to every
node labeled A4 in R.

An NLC grammar is a tuple (NT,T, P, S) where NT
is a set of nonterminal node labels, T' a set of termi-
nal node labels, P a set of NLC rules and S a start
graph (we assume a single symbol here). By associat-
ing probabilities with rules as usual, we can define a
PNLCG (probabilistic NLC grammar). Figure 9 is an
example of probabilistic NLC grammar G,..

A = {(a’ A)} {(aa a): (aa A)} : O
A = {(@B)} : {(a,a),(a,B)} : 6,
A - {a} {(a,a)} 1 s
B = {(a,4)} {(a,a),(a,)} : 64
B — {(a’B)} {(aaa)a(aaB)} © 05
B — {a} {(a,a)} b¢

Figure 9. Gnic

Figure 10 depicts a derivation of a terminal graph
which has no nonterminals. Nonterminal labels are
boxed while terminal labels are put in a circle. In this
case the probability of the derived graph is calculated
as 01020463.

0, 0,
Al mp (A—aA| mp (2>—a—B

Oy
-> e‘e

Figure 10. A derivation sequence by Gnic

We conducted EM learninng of G,.. We first
wrote a PRISM program DB, not shown here
which faithfully simulates a derivation process of G-
After setting parameters to (61,62,03,04,05,06) =
(0.2,0.2,0.6,0.6,0.2,0.2), we randomly generated 1000
samples by DB,;. with A being a start symbol.
We also prepared a simple (naive) parser written in
PRISM by slightly modifying DB, and let it run on
the sampled graphs to learn parameters by the gEM
algorithm. the gEM algorithm stopped after 63 iter-
ations (threshold is 10™*). The estimated parameters
are shown in Table 11. They appear to be close to the

01) b3
Original 0.2 0.2 0.6
Estimate | 0.22134 | 0.21907 | 0.5595

04 b5 bs
Original 0.6 0.2 0.2
Estimate | 0.60468 | 0.15049 | 0.24481

Figure 11. Learned parameters for G,

original values'?2.

5. Discussion and related work

We have proposed a generic approach to EM learn-
ing for symbolic-statistical models based on a logic-
based probabilistic language PRISM (Sato & Kameya,
1997). It saves us the trouble of deriving a special-
ized EM algorithm for each application. We have only
to write, obeying the principle of generative model-
ing (Sato & Kameya, 2001), a PRISM program tuned
for each probabilistic model to define a desired distri-
bution. Then parameters are automatically estimated
from data by a built-in EM algorithm.

We have demonstrated effectiveness of our approach by
tackling problems in relatively unknown areas, i.e. EM
learning for a probabilistic LC parser, one for a proba-
bilistic HR graph grammar and one for a probabilistic
NLC graph grammar, where very few or no literature
is available. We developed appropriate PRISM pro-
grams and EM learning was successfully done in every
case using them, which seems to imply that PRISM is
an appropriate tool for rapid prototyping of new prob-
abilistic models.

Recently there are many proposals for probabilistic
language for probabilistic models. IBAL (Pfeffer,
2001) for example is a probabilistic functional lan-
guage which can define distributions and perform pa-
rameter estimation. It also can deal with decision
theoretic programs. Dyna (Eisner et al., 2004) is a
programming language designed mainly for statistical
natural language processing. It is based on equations
and dynamic programming. For other proposals re-
lated to statistical relational learning, (De Raedt &
Kersting, 2003) provides a comprehensive survey.

References

De Raedt, L., & Kersting, K. (2003). Probabilistic
logic learning. ACM-SIGKDD Ezxplorations, special

12We could not repeat this experiment due to a shortage
of time.

A Generic Approach to EM learning for Symbolic-statistical Models

issue on Multi-Relational Data Mining, 5, 31-48.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the
EM algorithm. Royal Statistical Society, B39, 1-38.

Doets, K. (1994). From logic to logic programming.
The MIT Press.

Eisner, J., Goldlust, E., & Smith, N. (2004). Dyna:
A declarative language for implementing dynamic
programs. Proceedings of the 42nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL’04), Companion Volume (pp. 218-221).

Elston, R., & Stewart, J. (1971). A general model
for the genetic analysis of pedigree data. Human
Heredity, 21, 523-542.

Inui, K., Sornlertlamvanich, V., Tanaka, H., & Toku-
naga, T. (1997). A new probabilistic LR language
model for statistical parsingTechnical Report TR97-
0004 Dept. of CS). Tokyo Institute of Technology.

Kameya, Y., & Sato, T. (2000). Efficient EM learning
for parameterized logic programs. Proceedings of the
1st Conference on Computational Logic (CL2000)
(pp. 269-294). Springer.

Kruglyak, L., Daly, M., Reeve-Daly, M., & Lander,
E. (1996). Parametric and nonparametric linkage
analysis: A unified multipoint approach. American
Journal of Human Genetics, 58, 1347-1363.

Manning, C. (1997). Probabilistic parsing using left
corner language models. Proceedings of the Fifth
International Conference on Parsing Technologies
(IWPT-97) (pp. 147-158). MIT Press.

Manning, C. D., & Schiitze, H. (1999). Foundations
of statistical natural language processing. The MIT
Press.

McLachlan, G. J., & Krishnan, T. (1997). The EM
algorithm and extensions. Wiley Interscience.

Oates, T., Doshi, S., & Huang, F. (2003). Estimat-
ing maximum likelihood parameters for stochastic
context-free graph grammars. Proceedigs of the 13th
International Conference on Inductive Logic Pro-
gramming (ILP 2003) (pp. 281-298).

Pearl, J. (1988). Probabilistic reasoning in intelligent
systems. Morgan Kaufmann.

Pfeffer, A. (2001). IBAL: A probabilistic rational pro-
gramming language. Proceedings of the 17th Inter-
national Conference on Artificial Intelligence (IJ-
CAI'01) (pp. 733-740).

Rabiner, L. R., & Juang, B. (1993). Foundations of
speech recognition. Prentice-Hall.

Roark, B., & Johnson, M. (1999). Efficient probabilis-
tic top-down and left-corner parsing. Proceedings
of the 37th Annual Meeting of the Association for
Computational Linguistics (pp. 421-428).

Rozenberg, G. (Ed.). (1997). Handbook of graph gram-
mars and computing by graph transformations, vol-
ume 1: Foundations. World Scientific.

Sato, T. (1995). A statistical learning method for logic
programs with distribution semantics. Proceedings
of the 12th International Conference on Logic Pro-
gramming (ICLP’95) (pp. 715-729).

Sato, T., & Kameya, Y. (1997). PRISM: a language
for symbolic-statistical modeling. Proceedings of the
15th International Joint Conference on Artificial In-
telligence (IJCAI’97) (pp. 1330-1335).

Sato, T., & Kameya, Y. (2001). Parameter learning
of logic programs for symbolic-statistical modeling.
Journal of Artificial Intelligence Research, 15, 391—
454.

Sato, T., & Kameya, Y. (2004). A dynamic program-
ming approach to parameter learning of generative
models with failure. Proceedings of ICML 2004
workshop on Learning Statistical Models from Re-
lational Data (SRL2004).

Uratani, N., Takezawa, T., Matsuo, H., & Morita,
C. (1994). ATR integrated speech and language
databaseTechnical Report TR-IT-0056). ATR, Inter-
preting Telecommunications Research Laboratories.
In Japanese.

Van Uytsel, D., Van Compernolle, D., & Wambacq, P.
(2001). Maximum-likelihood training of the PLCG-
based language model. Proceedings of the IEEFE
Automatic Speech Recognition and Understanding
Workshop 2001 (ASRU’01).

Zhou, N.-F., Shen, Y., & Sato, T. (2004). Semi-naive
Evaluation in Linear Tabling . Proceedings of the
Sixth ACM-SIGPLAN International Conference on
Principles and Practice of Declarative Programming
(PPDP2004) (pp. 90-97).

