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Abstract. We introduce negation to a symbolic-statistical modeling
language PRISM and propose to eliminate negation by program trans-
formation called negation technique which is applicable to probabilistic
logic programs. We also introduce finite PCFGs (probabilistic context
free grammars) as PCFGs with finite constraints as part of generative
modeling of stochastic HPSGs (head-driven phrase structure grammars).
They are a subclass of log-linear models and allow exact computation of
normalizing constants. We apply the negation technique to a PDCG
(probabilistic definite clause grammar) program written in PRISM that
describes a finite PCFG with a height constraint. The resulting program
computes a normalizing constant for the finite PCFG in time linear in
the given height. We also report on an experiment of parameter learn-
ing for a real grammar (ATR grammar) with the height constraint. We
have discovered that the height constraint does not necessarily lead to a
significant decrease in parsing accuracy.

1 Introduction

1.1 Background

Symbolic-statistical modeling is a discipline where symbolic reasoning and statis-
tical inference cooperate to identify the underlying structure of our observations
of interest such as genome sequences, disease pedigrees and documents in a natu-
ral language that consist of structured symbols with various types of uncertainty.
There are several formalisms already developed. HMMs (hidden Markov models)
are a kind of stochastic automata used to identify for instance genes in genome
sequences (and in many other areas) [1]. PCFGs (probabilistic context free gram-
mars) are CFGs such that rule selection in a string derivation is probabilistic
and they are applied to parsing and scene analysis [2, 3]. The most popular one
is BNs (Bayesian networks) that can represent finite distributions of any type
[4]. Recently they were applied to linkage analysis and beat competitors [5].
However, while HMMs, PCFGs and BNs can express uncertainty in terms of
probabilities, they are all at propositional level and their logical power is limited.
They do not have logical variables or quantifiers. There is no explicit treatment
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of negation either. Naturally there have been efforts for upgrading these for-
malisms to the first-order level in various communities including the LP (logic
programming) community, the ILP (inductive logic programming) community
and the BN community among which is PRISM, a symbolic-statistical modeling
language, we have been developing.

PRISM! is a probabilistic extension of Prolog augmented with a built-in EM
learning routine? for statistical inference of parameters embedded in PRISM
programs [7]. It is intended for modeling complex systems governed by rules
and probability. Theoretically PRISM is a probabilistic Turing machine with a
parameter learning mechanism which subsumes HMMs, PCFGs and discrete BNs
in terms of expressive power, probability computation and parameter learning
[8]. But what is genuinely innovative about it is that it opens a way to use
programs as statistical models (programs are statistical models themselves in
PRISM) and frees the user of having to derive a new EM algorithm for parameter
learning for a new statistical model everytime he/she invents it.

Unfortunately the current PRISM lacks negation, which narrows the class of
definable distributions and also causes inconveniences in modeling. To overcome
this limitation, we propose to deal with negation by program transformation.
The point is that we allow negated PRISM programs but eliminate negation by
program transformation, thus recover negation-free PRISM programs.

There are two deterministic algorithms available for negation elimination of
source programs. A general one is FOC (first order compiler), a determinis-
tic program transformation algorithm originally developed for non-probabilistic
logic programs containing universally quantified implications® [9]. It uses con-
tinuation* to compile universally quantified implications into executable form.
FOC is general and can deal with large programs but tends to generate com-
plicated and less efficient programs from the viewpoint of the PRISM’s tabled
search® [10, 11]. In this paper, we alternatively propose to use the negation tech-
nique [12]. It is a deterministic transformation algorithm to synthesize a logic
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2 EM learning here means parameter learning by the EM algorithm which is an it-
erative algorithm for maximum likelihood estimation of parameters associated with
a probabilistic model with hidden variables [6]. Hidden variables are those that are
not directly observable like a disease in contrast to symptoms thereof.

Universally quantified implications are formulas of the form Vz (¢ = ) and negation
is a special case (—¢ is equal to ¢ = false).

Continuation is a data to represent the rest of computation. Usually it is a higher
order object in functional programming but here we just use a first order term
called continuation term, representing the next goal to be executed with the help of
auxiliary clauses.

Tabling is a search technique to record calling patterns of goals and their solutions
for later use not to repeat the same search. It can avoid exponential explosion in
the search space by sharing computation paths and brings about the same effect as
dynamic programming in top-down search. Compilation by FOC introduces contin-
uation terms that can be an obstacle to tabled search as they differentiate similar
goals syntactically.
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program that traces failed computation paths of the original program. While the
negation technique is only applicable to the negation of definite clause programs,
synthesized programs do not carry continuation terms and hence are more prefer-
able in view of the tabled search in PRISM. The original negation technique was
intended for non-probabilistic programs but we use here an extended version the
use of which is justified by the distribution semantics [13], the formal semantics
of PRISM programs.

1.2 Generative modeling and failure

Negation significantly expands the applicability of PRISM modeling, far beyond
HMMs and PCFGs. We here detail our statistical motivation behind the in-
troduction of negation. In the following we do not make a distinction between
negation (logical notion) and failure (procedural notion) for brevity as we deal
only with cases where they coincide.

Statistical models defined by PRISM are basically generative. By generative
we mean PRISM programs describe a sequential stochastic process of generating
observations such as one for the left-most derivation of sentences by a PCFG,
where rules are probabilistically chosen to expand non-terminals. The implicit
assumption is that the generation process never fails regardless of whether it is
finite or infinite. Popular probabilistic models such as HMMs, PCFGs and BNs
are considered generative and belong to the failure-free class.

We now allow a generative process to fail. So PRISM programs may fail.
If failure occurs after a probabilistic choice is made, we lose probability mass
placed on the choice and the sum of probabilities of all successful computation
paths will be less than one. Statistically this implies that we have to renormalize
probabilities by computing a normalizing constant P(success) where success
denotes an event of occurrence of successful computation. Also we have to assume
that what is observed is conditional probabilities P(x | success) where z is an
observation. In other words, by introducing failure, we shift to a class of log-
linear models in general® [14]. They are quite flexible but the computational
burden, especially computing a normalizing constant, is sometimes so high as to
make their use prohibitive.

Despite such difficulty, we allow failure in our modeling because it enables us
to use complex constraints for precise modeling. We impose constraints on each
computation path that possibly generates an observation and filter out those
paths that fail to satisfy the constraints. The probability mass is distributed over
the remaining successful paths. The mathematical correctness of this modeling,
i.e. probabilities sum to unity, is guaranteed by renormalizing success probabil-
ities. This approach looks naive but in reality unavoidable when constraints are
too complex for human beings to check their consistency.

In our case, we are aiming to model generative stochastic HPSGs (head-
driven phrase structure grammars) [15] as one of the PRISM targets. Stochastic

® A distribution has the form p(z) = Z~'exp(}_, vifi(x)) where v; is a coefficient,
fi(z) a feature and Z a normalizing constant. HMMs and PCFGs correspond to the
special case where Z = 1.



HPSGs are a class of highly sophisticated unification grammars where lexical
constraints and a few linguistic principles interact to specify a distribution of
sentences. There was an attempt to formalize generative stochastic HPSGs by
Brew [16] but faced with theoretical difficulties due to failure caused by con-
flicting constraints. As a result researchers in the area turned to non-generative
log-linear models and their parameter learning [17-19]. Notwithstanding we, ap-
preciating the simplicity and understandability of generative models, decided
to pursue a generate-and-test approach using failure to generative stochastic
HPSGs. As a concrete step toward this end, we introduce finite PCFGs which
we explain next.

1.3 Finite PCFGs

Finite PCFGs are PCFGs with finite constraints that make them generate only
a finite number of sentences. We for example impose an upper bound of the
height of parse trees as a finite constraint. As long as the tree being derived is
within the limit, we allow free derivation but once a constraint is violated we
force the derivation to fail. Other types of finite constraint are possible such as
the number of rule applications but we use the height constraint as a canonical
one in this paper.

As a result of the height constraint, the number of sentences licensed by a
PCFG becomes finite and we can, at least in theory, exactly compute a nor-
malizing constant P(success). Once this is done, it is possible to statistically
infer parameters associated with the PCFG from data by applying a new EM
algorithm proposed for generative models with failure [11]. The new EM algo-
rithm requires a failure program which simulates failed computations of the finite
PCFG program. We synthesize it by applying the negation technique [12] to a
PDCG (probabilistic definite clause grammar) program describing the PCFG.

Our contributions are as follows. We allow negation of probabilistic logic
programs and propose negation elimination by the negation technique at com-
pile time. We then apply it to a specific case of finite PCFGs which play an
important role in our approach to generative stochastic HPSG modeling and
show that computations concerning finite PCFGs with a height constraint can
be done in polynomial time, not in exponential time. We also show by a learning
experiment that the difference in parsing tasks between a finite PCFG with a
height constraint and the corresponding non-finite PCFG is small.

In what follows, we first give an overview of PRISM [7]. We then review
the negation technique by an example and show how we should modify it to
accommodate probabilistic primitives in PRISM while keeping its semantics.
We then apply the negation technique to finite PCFGs. Finally we report an
experiment of parameter learning with a finite PCFG applied to a real corpus.

Our work lies at the borders of probabilistic semantics, negation, tabling
and statistical natural language processing. Due to space limitation however,
an in-depth treatment of each topic is difficult and our explanations will be
example-based to save space for formal definitions. The formal description of



the semantics of PRISM and the analysis of its statistical learning are detailed
in [8]. Most of the related work concerning first-order probabilistic modeling is
omitted. The reader is referred to [7,20,14,21-24, 8,25-28]. He/she is assumed
to be familiar with basics of statistical language models [2] as well as logic
programming [29].

2 Preliminaries

Hereafter we use logic programs and follow Prolog conventions. A logic program
DB is a set of definite clauses A :- By,...,B, (n > 0) where A is a head
and B; (1 <i < n), an atom, is a subgoal. Unit clauses are those with n = 0
and goal clauses are those without a head. Variables in a clause are assumed
to be universally quantified at the clause head. They are expressed by a string
beginning with an upper case letter such as X1 or just by underscore ‘_’ in case
of anonymous variables. Expressions (clauses, atoms, terms) without variables
are said to be ground.

PRISM is a symbolic-statistical modeling language which is a probabilistic
extension of Prolog such that unit clauses have a parameterized distribution. So
unit clauses are probabilistically true. PRISM has been used to describe (and
perform parameter learning of) a variety of probabilistic models including naive
Bayes classifiers, Bayesian networks, HMMs, PCFGs, probabilistic left corner
parsing models, probabilistic graph grammars, linkage analysis programs etc.
Now we show in this paper that PRISM can also describe finite PCFGs and
learn their parameters. Before proceeding we have a quick review of PRISM for
self-containedness.

A PRISM program DB’ is the union of a set of definite clauses and a
set of ground atoms F' = {msw;,mswo,...}. Each msw = msw(id,v) represents
a probabilistic choice v by a trial of random switch id. A value declaration
value(id, [v1,...,v;]) attached to DB’ specifies that v is one of vq,...,vy.
(The Herbrand interpretations of) F' has a parameterized probability measure
Piew (basic distribution)”. PRISM has a formal semantics called distribution se-
mantics in light of which DB’ denotes a probability measure extending Py, over
the set of possible Herbrand interpretations of the program. The execution of
a PRISM program is just an SLD derivation except that a PRISM primitive
msw (id,V) returns a probabilistically chosen value v for V. Because PRISM se-
mantics is a generalization of the standard logic programming semantics, in an
extreme case of assigning probabilities 0 or 1 to msw atoms, PRISM is reduced
to Prolog.

We write a PRISM program to define a distribution such as the distribu-
tion of sentences. Statistical inference of parameters associated with the basic
distribution Py is carried out by special EM algorithms developed for PRISM
programs. The gEM (graphical EM) algorithm incorporates the idea of dynamic

" We interchangeably use a probability measure and a probability distribution for
the sake of familiarity. Ppey is a direct product of infinitely many Bernoulli trials of
finitely many types specified by the user.



programming and is applicable to non-failing PRISM programs [30]. Also there
is an enhanced version [11] which amalgamates the gEM algorithm and the FAM
algorithm [24] to efficiently deal with PRISM programs that may fail.

Here is an example of PRISM program reproduced from [11]. This program
simulates a sequence of Bernoulli trials and gives a distribution over ground
atoms of the form ber(n,l) such that [ is a list of outcomes of n coin tosses.

target (ber,2) .
values(coin, [heads,tails]).
:— set_sw(coin,0.6+0.4).

ber (N, [R|Y]):-

N>0,
msw(coin,R), 7 probabilistic choice
N1 is N-1,
ber(N1,Y). % recursion
ber(0,[1).

Fig. 1. Bernoulli program

We use target (ber,2) to declare that we are interested in the distribution of
ber/2 atoms®. To define a Bernoulli trial we declare values (coin, [heads,tails])
which introduces a discrete binary random variable named coin whose range is
{heads, tails} in the disguise of exclusively true atoms msw(coin,v) where

v is either heads or tails. In PRISM a program is executed like Prolog, i.e.
in a top-down left-to-right manner in the sampling mode (there are two other
execution modes) and a call to msw(coin,R) returns a sampled value in R. msw
atoms are primitives to make a probabilistic choice and their probabilities are
called parameters.

:— set_sw(coin,0.6+0.4) is a directive on loading this program. It sets
parameters of msw(coin,-), i.e. the probability of msw(coin,heads) to 0.6 and
that of msw(coin,tails) to 0.4, respectively. Next two clauses about ber/2
should be self-explanatory. Clauses behave just like Prolog clauses except that R
works as a random variable such that P(R = heads) = 0.6 and P(R = tails) =
0.4. The query :- ber(3,L) will return for instance L. = [heads,heads,tails].

® p/n means that a predicate p has n arguments. We call an atom A p atom if the
predicate symbol of A is p.



3 Finite PDCG program and the success probability

We here closely examine a PRISM program defining a finite PCFG. The PRISM
program in Figure 2 is a probabilistic DCG (definite clause grammar) program
written as a meta interpreter.

pdcg(L) :-
start_symbol(A), max_height(N), pdcg2(A,L,N).

pdcg2(A, [A],N):-
N>=0, terminal(A).
pdcg2(A,L,N):-
N>=0, \+terminal(A), msw(A,RHS), N1 is N-1, pdcg3(RHS,L,N1).

pdecg3([1,01,.).
pdcg3([X|R],L3,N):-
pdcg2(X,L1,N), pdcg3(R,L2,N), app(L1,L2,L3).

app([]1,4,4).
app([AIB],C,[AID]):- app(B,C,D).

Fig. 2. A PDCG program with a height constraint

This program succinctly specifies a finite PCFG with a height constraint and sim-
ulates the leftmost derivation of sentences. CFG rules are supplied in the form of
PRISM’s value declarations. We for example declare value (np, [[n], [s,np]l])
to say that np has tworulesnp -> nandnp -> s np?. max_height (N) says that
the height of a parse tree must be at most N. msw(A,RHS) represents a proba-
bilistic choice in the derivation. When msw(A,RHS) is executed with A = np, one
of [n] or [s,np] is probabilistically chosen as RHS. start_symbol (A) returns in
A a start symbol such as ‘s’ corresponding to the category of sentence.

The counter N holds the allowed height of the parse trees and is decremented
by one whenever a production rule is applied. When N becomes less than 0, the
derivation fails. So the program never generates a sentence whose height is more
than N asserted by max_height (N).

EM Learning from observed sentences of parameters associated with this
finite PCFG is performed by a new EM algorithm for generative models with

9 We also accept left recursive rules such as s -> s s. An infinite loop caused by
them in top-down parsing is detected and properly handled by the PRISM’s tabling
mechanism.



failure proposed in [11]. Unlike the Inside-Outside algorithm'® however, it needs
a program that traces failed computation paths of the PDCG program, which
is a challenging task. As an intermediate step, we derive a program specialized
to computing the success probability. We transform the PDCG program to the
success program shown in Figure 3 by dropping the arguments holding a partial
sentence as a list.

success:— % success:- pdcg(_).
start_symbol(A),
max_height (N),
success2(A,N).

success2(A,N):-
N>=0,
( terminal(A)
; \+terminal(A),
msw(A,RHS),
N1 is N-1,
success3(RHS,N1) ).

success3([],_).

success3([A|R],N):-
success2(A,N),
success3(R,N).

Fig. 3. success program

This program is obtained by applying unfold/fold transformation to success:-
pdcg(L) [33]. In the transformation we used a special property (law) of the
append predicate such that VL1,L23L3app(L1,L2,L3) holds for lists L1, L2 and
L3. The correctness of unfold/fold transformation, i.e. the source program and
the transformed program define the same probability measure, is proved from the
fact that the distribution semantics is an extension of the least model semantics.
We here present a sketch of the proof.

Let Rgsuccess be the clauses in Figure 3. Theoretically the success program
DBgyccess is the union of Rgyccess and the set of probabilistic ground atoms F =
{mswy,mswa, ...} with a basic distribution P,s,. To prove that the transformation

19 The Inside-Outside algorithm is a standard EM algorithm for PCFGs [31]. Tt takes
O(n®) time for each iteration where n is a sentence length. Compared to the gEM
(graphical EM) algorithm employed by PRISM however, it is experimentally con-
firmed that it runs much slower, sometimes hundred times slower than the gEM
algorithm depending on grammars [32].



preserves the distribution semantics, it is enough to prove that for any true atoms
F' = {msw},msw),...}(C F) sampled from Py, the transformation preserves
the least model of RU F’. However this is apparent because our transformation
is unfold/fold transformation (using a ‘law’ about the append predicate) that
preserves the least model semantics.

Since the computation by the query :- success w.r.t. the success program
faithfully traces all successful paths generated by :- pdcg(_) and vice versa,
we have

>_ssentence P(¢) = P(pdcg(_)) = P(success).

Note that the success program runs in time linear in the maximum height N
thanks to the PRISM’s tabling mechanism [10] as is shown in Figure 7 (left).
The graph is plotted using the ATR grammar, a CFG grammar for the ATR cor-
pus'! [34]. In the probability computation, we employed a uniform distribution,
i.e. every rule is chosen with the same probability for each nonterminal. The
success program is further transformed to derive a special program necessary
for maximum likelihood estimation.

4 Negation technique

In order to perform EM learning of parameters associated with the PDCG pro-
gram in the previous section, we have to know not only the probability of deriva-
tion failure, but have to know how production rules are used in the failed deriva-
tion [11]. To obtain such information is not a trivial task. We have to record
each occurrence of msw atoms in every computation path regardless of whether
it leads to success or not, which, naively done, would take exponential time.
Fortunately we can suppress the exponential explosion by sharing partial
computation paths even for failed computations. As far as successful compu-
tations are concerned, it has been proved to be possible by the tabled search
mechanism of PRISM [8]. Hence we have only to synthesize an ordinary PRISM
program whose successful computation corresponds to the failed computation of
the original program and apply the tabled search to the synthesized program. We
here employ the negation technique [12] to synthesize such a negated program.
We give a short synthesis example in Figure 4 in place of the formal description.
We negate a familiar logic program mem/2 program by the negation tech-
nique. The source program is placed on the top layer in Figure 4. First we take
the iff form of the source program (middle layer). The iff form is a canonical
representation of the source program and exists([V,W], [X,YI=[V,[VIW]])
is a Prolog representation of IV,W([X,Y]=[V, [VIW]]). We then negate both
sides of the iff form. The left hand side mem(X,Y) is negated to not (mem(X,Y)).
On the right hand side, the first disjunct exists([V,W], [X,Y]=[V,[VIW]])

1 The ATR corpus is a collection of 10,995 Japanese conversational sentences and
their parses. The ATR grammar is a manually developed CFG grammar for the
ATR corpus. It contains 861 CFG rules.



mem(V, [VIW]).
mem(V, [UIW]) :- mem(V,W).

mem(X,Y) :-
( exists([V,W], [X,Y]=[V,[VIW]])
; exists([V,U,W], [X,Y]=[V,[U|W]], mem(V,W)) )

not_mem(X,Y) :-
\+([X,Y]=[V,[V|wW]l]),
C \+([X,Y]=[v, [Ulwl])
; [X,Y1=[V, [UIW]],not_mem(V,W) ).

Fig. 4. Negation example

is negated to all([V,W],not ([X,Y]=[V,[VIW]]1)), a Prolog term representing
vV, W= (X, YI=Lv, [VIWID).

Likewise the second disjunct exists ([V,U,W], ([X,Y]=[V, [UIW]] ,mem(V,W)))
is negated to all([V,U,W], ([X,Y]=[V,[UIW]] = not(mem(V,W)))). This is
further transformed to all1 ([V,U,W] ,not ([X,Y]1=[V, [U|W]]) ; exists([V,U,W],
([X,Y1=[V, [UIW]],not (mem(V,W)))) by using the property of ‘=" predicate
such that VX(Y = ¢[X] = ¢) & VX(Y # t[X]) V IX(Y = ¢[X] A =¢) holds for
any ¢ in the Herbrand universe'2. Finally we replace not (mem(-,-)) with a new
predicate not_mem(-,-) and not(s = t) with \+(s = t) to be executable. The
bottom program computes exactly the complement of mem relation defined by
the top layer mem program.

Let DB be the source program and DB the negated program. A logic pro-
gram is said to be terminating if an SLD derivation using a fair selection rule for
:—A w.r.t. the program terminates successfully or finitely fails for every ground
atom A. A relation ¢(z) is said to be complementary to r(x) if g(z) Vr(z) is true
for every = and there is no z such that ¢(z) A r(x).

Theorem 1. [12] Suppose DB€ is terminating. Relations over the Herbrand uni-
verse defined by DB¢ through its least model are complementary to those defined
by DB.

Proof: The least model of DB defines relations over the Herbrand universe for
an interpretation of each predicate ¢(z). They satisfy the if-and-only-if definition
q(z) & W]z]. Hence the complementary relations satisfy the negated if-and-only-
if definition —¢(z) & —Wx]. Since operations on —~W][z] used in the negation
technique are substitution of equals for equals in the Herbrand universe, these
complementary relations satisfy iff(DB¢), i.e. the collection of the if-and-only-if

2 The reason is that for the given Y, the equation Y = ¢[X] determines at most one X
occurring in ¢.



definition for each predicate, thereby giving a fixed point of iff(DB) which must
coincide with the least model of DB because iff(DB¢) is terminating, and hence
has only one fixed point of the immediate consequence operator. Q.E.D.

5 Negating ‘success’ program

We apply an extended negation technique to the success program in Figure 3
and obtain the PRISM program for failure shown in Figure 5 after simplifica-
tions. We extend the original negation technique in two points. First noticing that
Yy(q(z,y) = 1) is equivalent to Yy —q(z,y)VIy(q(x, y) A) provided there exists
at most one y satisfying q(z, y) for given z, we use this equivalence to rewrite the
program in the negation process. The use of this equivalence does not invalidate
the proof of Theorem 1 as long as the definition of ¢(z, y) remains intact. Second
we apply the negation technique to programs containing msw atoms which are a
basic probabilistic primitive in PRISM. ~(3RHS(msw(A, RHS) A1))) is transformed
to VRHS(msw(A, RHS) = —)), and further transformed to I RHS(msw(A, RHS)A—1)).
This transformation is justified by the PRISM’s distribution semantics accord-
ing to which msw(A,RHS) should be treated as a normal user-defined predicated
defined by a single ground atom. So we may assume in the transformation there
exists at most one RHS for a given A. We also use the fact that during the com-

putation of :- failure, when msw(A,RHS) is called with A ground, it never
fails.
failure: - % failure:- not(success).

start_symbol(A),
max_height (N),
failure2(A,N).

failure2(A,N):- % failure2(A,N):- not(success2(A,N)).
N>=0,
\+terminal (4),
msw(A,RHS),
N1 is N-1,
failure3 (RHS,N1).
failure2(_,N) :- N<O.

failure3([A|R],N):-
( failure2(A,N)
; success2(A,N), failure3(R,N) ).

Fig. 5. failure program



The failure program in Figure 5 is terminating. We prove using Theorem 1
and the definition of the formal semantics of PRISM programs that the proba-
bility of failure is exactly 1 — P(success)!3.

Proposition 1. P(success) + P(failure) = 1.

Proof: Suppose F' = {msw},msw),...} is an arbitrary set of msw atoms. Let
DBgyccess (resp. DBsaiture) be a program consisting of F' and the clauses in
Figure 3 (resp. the clauses in Figure 5) respectively. Since DBgtaiiure 1S termi-
nating, it follows from Theorem 1 that relations defined by DBgyccess and those
by DBsailure are complementary, in particular success and failure are com-
plementary. As F' is arbitrary, it follows from the definition of the distribution
semantics [8] that 1 = P(success V failure) = P(success) + P(failure).
Q.E.D.

To confirm Proposition 1, we let each program compute the success probability
and the failure probability respectively, using a real grammar, the ATR grammar.
We use a uniform distribution for rule selection probabilities for this test. The
maximum height is set to 20. As the snapshot in Figure 6 testifies, probabilities
for success and failure exactly sum to one'?.

?- prob(success,Ps) ,prob(failure,Pf),X is Ps+Pf.
X=1.0

Pf = 0.295491045124576

Ps = 0.704508954875424

Fig. 6. Probabilities sum to one

The failure program runs in time linear in the maximum height N though we
do not prove it (see Figure 7). We thus have reached an efficient PRISM program
for computing failure required by EM learning.

6 Learning example: the ATR grammar

To gauge the effect of the height constraint in finite PCFGs, we conducted a
small learning experiment with real data, the ATR corpus and the ATR grammar
[34]. In the experiment, as a training corpus and a test corpus, we first randomly
picked up 2,500 and 1,000 sentences from the original corpus, respectively. For
the maximum height N, the sentences which have only parse trees higher than
N are excluded from the training and test corporal®. For each test sentence,

13 The generalization of Proposition 1 for negated programs which are terminating is
easy.

4 prob/2 is a PRISM built-in to compute the probability of a given atom under the
current parameter values.

15 The sizes of the training and test corpus are as follows:
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Fig. 7. Time for computing P(success) (left) and P(failure) (right) for the ATR
grammar

we compared the height of the Viterbi parse, i.e. most likely parse based on the
pure PCFG (whose parameters are learned by the Inside-Outside algorithm) and
that based on the finite PCFG using a learning algorithm for finite PCFGs is
described in [11].

The results are shown in Table 1. In the headers, hy (resp. h2) indicates the
height of the Viterbi parse based on the pure PCFG (resp. the finite PCFG).
The column headed by ‘h; > ho’ shows the percentages of test sentences which
hold h; > hs, and so on. Table 1 shows that the finite PCFG model prefers
shorter parse trees compared to the pure PCFG, hence we may say that we can
add a height preference for parses by finite PCFGs, which is not easily realizable
solely by pure PCFGs.

Table 1. Comparison on the height on Viterbi parses.

N|hi > ha|h1 < halh1 = h»
151 11.2% | 2.1% | 86.7%
18| 14.2% | 1.8% | 84.0%
20| 6.5% 3.6% | 89.9%

height N|#training|#test
15 2,252 | 913
18 2,465 | 990
20 2,492 | 996




Furthermore we evaluate the parsing accuracy with the finite PCFG based
on the traditional criteria'® [2]. The measured accuracy is given in Table 2. As
the size of learning corpus is not large enough compared to the grammar size,
we cannot make a definite comment on the performance differences between the
pure PCFG and and the finite PCFG. However we may say that the parameters
learned only from the parse trees with finite size does not necessarily lead to a
significant decrease in parsing accuracy.

Table 2. Parsing accuracy with the pure PCFG and the finite PCFG.

LT BT 0-CB

N | Pure Finite | Pure Finite | Pure Finite
15 | 73.9% 73.7% | 75.1% 75.3% | 85.2% 84.2%
18 | 73.4% 72.5% | 75.2% T74.5% | 85.6% 83.5%
20 | 73.6% T73.2% | 75.8% 75.2% | 86.2% 85.3%

7 Conclusion

We have introduced negation to a symbolic-statistical modeling language PRISM
and proposed to synthesize positive PRISM programs from negated ones by
using the negation technique. The synthesized programs are used for PRISM to
perform statistical parameter learning of generative models with failure.

The negation technique in this paper is more general than the original one
presented in [12]. It allows us to use clauses that have internal variables'” as long
as they are uniquely determined by the (left-to-right) execution of the body!®.
We have shown in Section 5 that the synthesized PRISM program can exactly
compute the probabilities of complementary relations, in particular the failure
probability.

We also introduced finite PCFGs as PCFGs with finite constraints as part of
generative modeling of stochastic HPSGs. They are a subclass of log-linear mod-
els and allow exact computation of normalizing constants. We have applied the
negation technique to a PDCG program written in PRISM that describes a finite

'6 The criterion LT (labeled tree) is the ratio of test sentences in which the Viterbi parse
completely matches the answer, i.e. the parse annotated by human. BT (bracketed
tree) is the ratio of test sentences in which the Viterbi parse matches the answer
ignoring nonterminal labels in non-leaf nodes. 0-CB (zero crossing brackets) is the
ratio of test sentences in which the Viterbi parse does not conflict in bracketing with
the answer.

'7 Internal variables are those occurring only in a clause body.

18 For example the negation technique is applicable to a clause such as p(X):-
length(X,Y),q(X,Y) where Y is the length of a list X.



PCFG with a height constraint. The resulting program can compute a normal-
izing constant for the finite PCFG in time linear in the given height. Although
we have shown only one example of finite PCFG, we have tested two other types
of finite PCFG and found that their normalizing constants are computable in
polynomial time.

Finally we conducted an EM learning experiment using the ATR, corpus and
the ATR grammar with a height constraint. We discovered that the height con-
straint does not heavily affect the performance of parsing tasks. Such comparison
of finite and non-finite grammars is unprecedented in statistical natural language
processing to our knowledge, though to what extent this result is generalized re-
mains a future research topic.
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