A Dynamic Programming Approach to Parameter Learning of
Generative Models with Failure

Taisuke Sato
Yoshitaka Kameya

Tokyo Institute of Technology / CREST

Abstract

We propose to apply dynamic programming
to compute probabilities of failed goals for
EM learning of generative models with failure
described by symbolic-statistical modeling
language PRISM. Programs for failed goals
are synthesized deterministically by program
transformation.

1. Introduction

The recent surge of interest in first-order statistical
learning is motivated by the need of highly expres-
sive language for modeling complex systems (De Raedt
& Kersting, 2003). Logical variables and predicates
in first-order logic together with probabilistic seman-
tics enable us to define distributions over complex re-
lational structures incorporating domain knowledge.
PRISM! is a symbolic-statistical programming lan-
guage designed for this purpose. It is a probabilistic
extension of Prolog with a general EM learning rou-
tine based on formal semantics (Sato & Kameya, 1997;
Sato & Kameya, 2001).

One of the most beneficial features of PRISM to the
user is that parameter learning is for free. Distribu-
tions are defined by programs which consist of defi-
nite clauses and probabilistic built-in atoms. All we
need for ML (maximum likelihood) estimation of pa-
rameters associated with probabilistic built-in atoms
is just writing programs. The rest of the task is taken
care of by the Prolog (tabled) search engine and the
built-in general EM algorithm called gEM (graphi-
cal EM) algorithm (Kameya & Sato, 2000). More-
over thanks to dynamic programming nature of prob-

'URL = http://sato-www.cs.titech.ac.jp/prism/

SATOQMI.CS.TITECH.AC.JP
KAMEYA@MI.CS.TITECH.AC.JP

ability computation by the gEM algorithm, our EM
learning is expected to be efficient. Actually ade-
quately written PRISM programs for singly connected
Bayesian networks, HMMs (hidden Markov models)
and PCFGs (probabilistic context free grammars) are
equivalent, time-complexity wise, to their specialized
counterparts, i.e. EM learning by Pearl’s belief prop-
agation, the Baum-Welch algorithm and the Inside-
Outside algorithm? respectively?.

In PRISM semantics is well-defined for arbitrary pro-
grams. There is no restriction to Datalog programs
or to range-restricted programs which are often im-
posed*. That being said however, we must add that
EM learning is not without restrictions. PRISM ex-
cludes programs that do not satisfy ‘no failure condi-
tion’ which states that computation must not eventu-
ally fail once probabilistic choices are made.

The objective of this paper is to remove this no fail-
ure condition thereby expanding the class of pro-
grammable models by PRISM to a wider class of mod-
els such as log-linear models. We allow programs to fail
for example by conflicting constraints. Correspond-
ingly when a program DB that may fail is given, we
augment it with an auxiliary program that simulates
failed computations caused by DB (sometime this is
not possible though). The augmented program can be
run on PRISM to infer parameters of DB by a new
EM algorithm described in the Appendix.

Log-linear models cover a very wide class of probabilis-
tic models and researchers have been seeking efficient
EM algorithms (Abney, 1997; Riezler, 1998; Johnson

In the case of PCFGs, it is experimentally confirmed
that the gEM algorithm runs faster than the Inside-Outside
algorithm by orders of magnitude (Sato & Kameya, 2001).

*We also tested a variety of EM learning other than
these popular models. The list includes Naive Bayes, link-
age analysis, more sophisticated stochastic CFG grammars
and stochastic graph grammars.

*Programs in which every variable in the head of a
clause occurs in the body. Unit clauses must be ground.

et al., 1999) the latest one of which is the FAM algo-
rithm, a specialized EM algorithm for SLPs (stochastic
logic programs) proposed by Cussens (Cussens, 2001).
He elegantly formulates the EM algorithm in the pres-
ence of failures by regarding observations as those with
the failures truncated. FAM requires, however, to
compute expected occurrences of clauses in the failed
computations for which naive computation would ob-
viously cause combinatorial explosion. Our approach
opens a way to circumvent this problem by PRISM’s
dynamic programming.

Our contributions are as follows. We present a new
EM algorithm which amalgamates the gEM algorithm
and the FAM algorithm to perform ML estimation in a
dynamic programming manner even in the presence of
failed computations. An auxiliary PRISM program re-
quired by the new EM algorithm that simulates failed
computations of the original program DB is synthe-
sized from DB by deterministic program transforma-
tion. To our knowledge, this is the first attempt of pro-
gram transformation in the logical-statistical setting.
Also we present a novel class of constrained HMMs
described by PRISM programs.

Our approach to probability computation is exact
computation. We do not use sampling or other types
of approximations. We take this approach because
we believe that the dramatic increase of computation
power nowadays makes exact computation more and
more feasible and attractive as a means for fast prob-
ability computation. Also we would like to emphasize
that our approach to modeling is generative. We de-
scribe a probabilistic model as a process that generates
observable output like stochastic derivation of strings
by PCFGs. Generative models are generally easy to
understand and sampling is straightforward, but not
necessarily outperform non-generative ones when we
have poor knowledge of the generative mechanism of
observations.

In the following, after providing preliminaries for logic
programming and PRISM, we look at a motivating ex-
ample in Section 3, and describe our compilation ap-
proach to failure in Section 4. We present the new EM
algorithm in Section 5. Section 6 contains a modeling
example of constrained HMM. Section 7 is the conclu-
sion. The reader is assumed to be familiar with basics
of logic programming (Sterling & Shapiro, 1986) and
the EM algorithm (McLachlan & Krishnan, 1997).

2. Preliminaries

A logic program DB is a set of definite clause C
of the form H :- By,...,B, (n > 0) where H

(head) and B; (1 < i < n) (goal) are atoms. Ev-
ery variable in C' is universally quantified at the
front of C'. Clauses in DB are called program
clauses. Hereafter we follow Prolog conventions and
use strings beginning with upper case letters as
variables®. So program clause ancestor(X,Z) :-
parent(X,Y), ancestor(Y,Z) is read for example
that for all X, Y and Z if X is a parent of Y and Y is an
ancestor of Z, then X is an ancestor of Z. C' is called a
unit clause when n = 0. A clause or a term is said to
be ground when no variable appears. The Herbrand
universe (resp. the Herbrand base) of DB is the set of
all ground terms (resp. ground atoms) whose function
symbols (resp. function symbols and predicate sym-
bols) occur in DB. A Herbrand interpretation is an
assignment of truth values to each ground atom in the
Herbrand base.

Computation by DB is nothing but search for a refu-
tation of DB augmented with a query :- G such that
DB+ G6 where 6 is an answer substitution (variable
bindings) for variables in G. Search is done by an SLD
interpreter (SLD refutation procedure) which nonde-
terministically reduces a goal in a query to subgoals
by a program clause. Define a set of ground atoms
I = {A | DB + A, Aground atom}. We identify I
with a Herbrand interpretation Mpg such that A € T
if-and-only if Mpp = A. Then it is well-known that
Mpg is a model of DB, i.e. satisfies every clause in
DB and Mpg is the smallest as a set among Herbrand
models of DB. Mpg is defined to be the denotation
of DB as a program (least model semantics) (Doets,
1994).

PRISM generalizes this least model semantics proba-
bilistically. A PRISM program DB’ is the union of
a set of definite clauses R and a set of ground atoms
F representing probabilistic choices. DB’ can be in-
finite. We give a probability measure Pr (basic dis-
tribution®) over the set of Herbrand interpretations of
F and extends Pr to a probability measure Ppg: over
the set of Herbrand interpretations of DB’ using R by
way of least model semantics. We define Ppg: as the
denotation of DB’ (distribution semantics) which re-
gards ground atoms as binary random variables (Sato
& Kameya, 2001). This extension is always possible
for whatever P, but practical consideration restricts
Pg to a (-n infinite) product of multinomial distribu-
tions.

Since distribution semantics is a generalization of least

¢ (0

®In Prolog, *,” (resp. ‘;’) stands for conjunction (resp.
disjunction) and ‘=" denotes unification.

®In this paper, we interchangeably use probability mea-
sure and probability distribution for the sake of familiarity.

model semantics, PRISM programs subsume logic pro-
grams. It also allows us to use arbitrary logic pro-
grams, arbitrary programming constructs like if-then,
composition and recursion to define distributions and
discrete stochastic processes. More importantly from
a viewpoint of statistical learning, an EM algorithm is
derived from this semantics for ML estimation of pa-
rameters specifying the multinomial distributions in
Pr. The derived EM algorithm was general but too
naive for real use. So we refined it to the gEM algo-
rithm by incorporating the idea of dynamic program-
ming (Kameya & Sato, 2000). The input of gEM
is finite acyclic AND-OR, graphs called ezplanation
(support) graphs which encode statistical dependency
among probabilistic atoms. An explanation graph for
a goal G w.r.t. program DB’ is obtained from tabled
search for all refutations for :- G w.r.t. DB’ by the
SLD interpreter. Tabled search keeps the record of
search in a table to prevent redundant search. PRISM
adopts linear tabling as a tabling strategy (Zhou &
Sato, 2003).

Here is an example of PRISM program. It de-
fines a distribution over ground atoms of the form
bernoulli(n,l) such that [is a list of outcomes of
n coin tosses.

target (bernoulli,?2).
values(coin, [heads,tails]).
:- set_sw(coin,0.6+0.4).

bernoulli(N, [R|Y]):-
N>O0,
msw(coin,R),
N1 is N-1,
bernoulli(N1,Y). % recursion
bernoulli(0,[]1).

% probabilistic choice

Figure 1. An example of PRISM program

Here target (bernoulli,?2) is a declaration specify-
ing the distribution of bernoulli/2 atoms as a mod-
eling target”. values(coin, [heads,tails]) declares
a discrete random variable named coin whose range
is {heads,tails} which is implemented by atoms
msw(coin,v) where v is either heads or tails®.

:- set_sw(coin,0.6+0.4) is a directive on loading
this program. It sets parameters of msw(coin,"), i.e.

"p/n means that a predicate ‘p’ has ‘n’ arguments. We
call an atom A p atom if the predicate symbol of A is p.

®msw atoms are most basic primitives in PRISM to make
a probabilistic choice. They form constituents of the basic
distribution and their probabilities are called parameters.

the probability of msw(coin,heads) to 0.6 and that of
msw(coin,tails) to 0.4, respectively®.

The next two clauses about bernoulli/2 should be
self-explanatory. They behave just like Prolog clauses
except that R works as a random variable such that
P(R = heads) = 0.6 and P(R = tails) = 0.4. The
query :- bernoulli(3,L) will return for instance L
—[heads,heads,tails].

3. Loss of probability mass

PRISM programs fail just as Prolog programs do. Fail-
ure affects distributions and parameter learning, which
can be seen by the following program.

target (test,1).
values(sw(0), [a,b,c]).
values(sw(1),[a,b,c]).

:— set_sw(sw0,0.5+0.340.2).
:- set_sw(swl1,0.5+0.3+0.2).

test(A):-
msw(sw(0),A),
msw(sw(1),B),

A=B. % A=B may fail

Figure 2. PRISM program causing failure

This program defines a distribution over bernoulli/2.
It uses two probabilistic switches sw(0) and sw(1)
to randomly choose one of {a,b,c}. They are i.i.d.s
and represented by msw atoms whose parameters
are set as P(msw(sw(0),a)) = P(msw(sw(l),a)) =
0.5, P(msw(sw(0),b)) = P(msw(sw(1),b)) = 0.3 and
P(msw(sw(0),c)) = P(msw(sw(1),c)) = 0.2, respec-
tively.

Suppose we call : - test (X) for sampling with X being
variable. The clause head test(A) is unified and the
leftmost goal msw(sw(0),A) is executed by randomly
choosing A’s value from {a,b, c} according to probabil-
ities set by set_sw/2 directives. Suppose a is chosen.
Next the second goal msw(sw(1),B) is executed sim-
ilarly but independently. So it probabilistically hap-
pens that the sampled value of B is b. If this happens,
the third goal A=B, the unification of A and B, fails and
so does :- test(X), which means we have no output,
no observation despite sampling; we lost probability
mass placed on msw(sw(0) ,a) and msw(sw(0),b).

9Parameters are inferred from observed goals consisting
of bernoulli/2 atoms by the gEM algorithm using learn
command of PRISM.

Because failed computation yields no output, our ob-
servations should be interpreted as results of success-
ful computations in our model. Consequently when we
apply ML estimation to our observations, what must
be maximized are conditional probabilities such as

P(test(a) | I test(X)) = P(test(a))/P(IX test(X)).

P(IX test(X)) is the sum of probabilities of all suc-
cessful computations for : - test (X) which is less than
one'?. In other words the current gEM algorithm is in-
applicable as it merely maximizes unconditional prob-
abilities of observations such as P(test(a)).

Instead of the gEM algorithm however, we can use the
FAM algorithm (Cussens, 2001) to infer parameters.
Unfortunately it requires to compute unnormalized ex-
pected occurrence Egas1[n(A)]M of msw atoms A in all
failed computations, which raises a question of how,
generally, to capture all failed computations of a given
program DB. We answer this question by synthesizing
another program DB*2i! that can simulate failed com-
putations of DB. Since failed computations of DB are
exactly successful computations of DB E¢,;1[n(A)]
is computed from DBf31 efficiently by PRISM’s dy-
namic programming. We next discuss how to obtain
l)[gfail-

4. Simulating failed computation

4.1. Negation elimination in non-probabilistic
case by First-Order Compiler

We propose to synthesize DBl by FOC (first-
order compiler) (Sato, 1989). FOC is a determinis-
tic program transformation algorithm that can com-
pile negation, or more generally universally quanti-
fied implications'? in a source program into an of
executable logic program. Given a query :- q(X)
and a logic program DB computing q/1, FOC elim-
inates negation automatically from DB U { failure
:- not(exist([X],q(X))) }. The resulting program
DB*21 faithfully simulates failed computations caused

Y P(3x test(X))

= P(test(a)) + P(test(b)) + P(test(c))
P(msw(sw(0),a)) x P(msu(su(1),a))
+ P(msw(sw(0),b)) x P(msu(sw(1),b))
+ P(msw(sw(0), c)) x P(msu(sw(1),c))
0.38<1

p(A) is the number of occurrences of A. Ega1[n(A)]
is not a conditional expectation : E¢aini[n(A)] = E[p(A) |
fail]P(fail) where fail denotes an occurrence of failure.

2Formulas of the form Vz(F — G). Negation —F is a
special case because —F is equivalent to F' — false.

by query :- q(X) given to DB.

Figure 3 is an example of negation elimination by
FOC. As can be seen, ‘not’ in the source program is

*%% source program

all_non_zero(L):- not(zero(L)).

% list L has no O
zero(L) :- mem(X,L),X=0. % some X in L is 0
mem (X, [X|Y]).

mem(X, [H|Y]) :-mem(X,Y) .
% compiled program **x

all_non_zero(L):- closure_zero0O(L,f0).
closure_zeroO(L,C):-

closure_memO (L,f1(C)).
closure_memO([],_).
closure_memO([X|B],C):-

cont (X,C),closure_memO(B,C).
cont (X,f1(_)):- \+X=0.

Figure 3. Compilation example by FOC

compiled away and all_non_zero(L) in the compiled
program computes not (zero(L)) by definite clauses.
The disunification \+X=0 succeeds if-and-only-if the
unification of X and 0 fails (negation-as-failure). The
compiled program traces failed computations of the
source program!3. The (partial) correctness of FOC
compilation is guaranteed by

Theorem 1 (Sato, 1989) Suppose S, a source pro-
gram is a set of clauses whose body include universally
quantified implications, is compiled into S’ by FOC.
Then, iff(S)* F A (resp.—A) if S'" = A (resp.—A)
where A is a ground atom.

This theorem roughly says that any computed result
by the compiled program S’ is a logical consequence
of the source program S.

4.2. Probabilistic case

FOC was developed for non-probabilistic logic pro-
grams. Even when a program contains msw atoms and
hence probabilistic however, compilation is possible.

13closure mem0([1,_) for example simulates the unifica-
tion failure of mem(X,L) in case of L=[] with mem(-, [-]-1),
the head of a mem clause.

1iff(S) is the union of S and some additional formu-
las reflecting Prolog’s top-down proof procedure (Doets,
1994).

Suppose for example that we are asked to compile an
implication (msw(s,t) — ¢) into an executable for-
mula where s and ¢ are terms and ¢ is some formula.
Although msw is a probabilistic predicate, distribution
semantics tells us to treat it as a normal predicate
in compilation defined by some sampled atom, say
msw(s,v). We therefore compile the above formula
into (msw(s,W), (W\==t; (W=t,¢))) where W is a new
variable!®. We can prove the correctness of this compi-
lation under the condition that the compiled program
terminates for any ground query regardless of sampling
of msw atoms.

5. gEM for failure

5.1. Problem revisited

Suppose we write a PRISM program DB, to define
a distribution of a target predicate q/1 which may
fail'®. Let q(s1),...,q(s7) be a random sample of
length T. As pointed out in Section 3, if there is
a loss of probability mass to failure, ML estimation
should maximize L(8) = [[,_, P(a(s:) | 3Xq(X)) =
HtT:1 P(q(st))/P(3Xq(X)) where 6 collectively repre-
sents parameters to be estimated.

L(@) can be maximized by the FAM algorithm
(Cussens, 2001). It additionally computes in
the E step, compared with non-failure case, T x
Efai1[n(A)]/P(IX q(X)) under the current € where
Efai1[n(A)] is the unnormalized expected occurrence
of msw atom A in all failed computations for :-
q(X) wr.t. DB;. However the exact computation of
Efai1[n(A)] as well as that of P(IX q(X)) is usually in-
tractable if not impossible because of combinatorial
explosion of computation paths. We solve this prob-
lem by using a combination of program transformation
and dynamic programming

5.2. Augmentation with a compiled program
for ‘failure’

We extend PRISM’s dynamic programming approach
to the computation of Efa;1[n(A)] by synthesizing a
negation-free PRISM program using FOC that simu-
lates the failed computations for :- q(X).

Add a clause failure :- not(exist([X],q(X))) to
DBy and let the augmented program be DBy. We re-
move negation from DB4 by FOC as described in Sec-

5This is a simplified compilation assuming that
msw(s,-) atom is declared, i.e., the program includes a dec-
laration of the form value(s’,-) such that s is an instance
of s'.

6We use a unary predicate for explanatory purpose.

fail

tion 4 to obtain ﬁf‘ﬂ. Eq is a normal PRISM
program without negation and dynamic programming
is applicable to compute P(failure) and Egyec[n(A4)],
the unnormalized expected occurrence of msw atom A
in tfllelsuccessful computations for :- failure w.r.t.

DB,

We henceforth assume that DB4 and ﬁzall terminate
with success or failure for query :- q(X) regardless
of sampled values of msw atoms (terminating condi-
tion)!7.

We also assume that in a failed SLD derivation for :-
q(X) w.r.t. DBy and in a successful derivation for :-

failure w.r.t. ﬁzail, a goal has multiple callees only
when it is an msw atom?5.

Then we can prove with one more assumption not
mentioned here that Egai1[n(A4)] = Egucc[n(A)] (de-
tails omitted). Also we have P(IXq(X) | 0) +
P(failure | @) = 1 for any 8. So we can
replace Ega.i1[n(A)]/P(IXq(X)) in the E step by
Esucc[n(A)]/(1 — P(failure)), which is computable

from Eﬁ“l alone, just by treating ‘failure’ as
a user-defined atom. We accordingly modify the
gEM algorithm so that it additionally computes
Esucc[n(A)]/(1 — P(failure)) for every msw atom A

in the E step.

5.3. New gEM algorithm

The modified new gEM algorithm is shown in the Ap-
pendix. Assuming appropriate conditions, it can per-
form EM learning in the presence of failure efficiently
by dynamic programming. Modifications to the gEM
algorithm are underlined. A brief explanation is in or-
der (see (Sato & Kameya, 2001) for details of the gEM
algorithm).

There DB is, as in the previous subsection, the
original program DB augmented with compiled clauses
for ‘failure’ to simulate failed computations for the
target predicate.

g = Go,Gq,...,G7 is a list of observations
Gy, ...,Gr with special goal Gy = failure. Each G;
(0 <t <T) generates by tabled search an hierarchical
graph called an explanation graph which is represented
as an ordered list ¥ pp(rf) = {{,...,7k,}. Bach 7}
(1 < k < Ky) is a disjunction of S ; (1 < j < my)

70r equivalently an SLD tree for :-q(X) w.r.t. ﬁfﬁ“
is finite regardless of sampled values of msw atoms.

!8This assumption implies that computation proceeds
deterministically as far as non-probabilistic predicates are
concerned.

such that 52 ; is a conjunction of msw atoms and prob-
abilistic atoms called table atoms.

——5fail

learn-gEM(DB ,G') per-
forms EM > calling two subroutines,
get-inside-probs(mfall, G') to compute inside
probabilities and get-expectations(ﬁf“l,g’) to
compute outside probabilities. Four arrays are used to
store data, P[t, 7] for the inside probability Ppg(7 | 6),
Q[t, 7] for outside probability of 7 w.r.t. G, Rl[t, T, §]
for Ppp(S | @) and finally n[t,i,v] for the expected
occurrence of msw(i,v) in a refutation for :- G

w.r.t. DB.

The main routine
learning

Learning terminates when an increase of the log-
likelihood of conditional probabilities is less than a
given threshold e. The time complexity in one iter-
ation and the space complexity of the new gEM al-
gorithm are linear in the size of the total size of the
explanation graphs.

6. A learning example: constrained
HMM

Here we give a learning example of generative model
with failure. The example is small so that the reader
can have an overview of our approach at a glance!®.
We introduce a class of HMM models with equality
and disequality constraints (inequality constraints are
treated similarly). For simplicity we describe an HMM
model with a single constraint such that the first out-
put alphabet and the last output alphabet must be
identical. This model has five parameters. It seems
difficult to express it succinctly by a PCFG with such
a small number of parameters.

Figure 4. Two state HMM with constraint

Suppose here is a HMM which has two states {so, s1}
and at so one of {a,b,c} is emitted and at s; one of
{b, ¢, d} is emitted, probabilistically. We place one con-
straint stated as above on this model.

A program DBy, in Figure 5 specifies our model pro-
cedurally. It includes a failure clause saying that we

19We have applied our framework to PCFGs and found
that EM learning is possible in polynomial time (and space)
complexity in some cases. We also have conducted a learn-
ing experiment with a PCFG using a real corpus of mod-
erate size, which will be reported elsewhere.

failure:- % there is no output

not (exist ([X],hmm(X))).
string_length(5). % output length is 5
hmm(Cs) : -

string_length(N),

msw(obs(s0),C1), % sO is an initial state

N1 is N-1, % Cl is a 1st alphabet
Cs=[C1|Rest], % keep C1 till end
hmm(N1,s0,Rest,C1).

hmm(N,State, [C|Cs],C1) :-
N>1,

msw(obs (State),C),
(State == s0, msw(tr(State),NextS)
; State == s1, NextS = s1),
N1 is N-1,
hmm(N1,NextS,Cs,C1).
hmm (N,State, [C1],C1) :-
N==1, 7% the last alphabet must be C1
msw(obs (State),C1).

Figure 5. A constrained HMM program DBumm

have no output string in spite of probabilistic choices
made by msw(obs(:),-) (for alphabet emission) and
msw (tr(-),-) (for state transition).

The subsequent clauses about hmm/1 and hmm/4 de-
scribe how state transition and alphabet emission at
each state are made. For :- hmm(Cs), we proba-
bilistically choose an initial alphabet C1 by executing
msw(obs(s0) ,C1) and enter into recursion by hmm/4
until the length of a generated string reaches the spec-
ified number, 5 in this case.

DBpym is not runnable directly due to ‘not’ in the
failure clause. We remove it by FOC and obtain a
PRISM program ﬁi?;rln We show part of it in Fig-
ure 6 concerning the computation of failure where
‘==’ (resp. ‘\==") is a built-in predicate for strict
equality (resp. strict disequality).

By inspection, we know that the search terminates
at most in 5 steps. We also notice that the com-
piled program is tail recursive on closure hmm0/4. So
all refutation search for :- failure w.r.t ﬁf:;rln by
tabled search generates an explanation graph with trel-
lis structure to which dynamic programming is effec-
tively applicable. The time complexity of probability
computations (that of one iteration in EM learning) by
DB, is O(m? % n) where m is the number of states
and n the length of input string, contrary to the ex-
ponential order caused by the naive non-dynamic pro-

gramming approach. Also O(m? x n) is equal to the

target (failure,0).

values (tr(s0), [s0,s1]).

values (obs(s0),[a,b,c]).
values(obs(sl), [b,c,d]).

:- set_sw(obs(s0),0.2+0.4+0.4).
:- set_sw(obs(s1),0.4+0.4+0.2).
:- set_sw(tr(s0),0.7+0.3).

failure:- closure_hmmO(f0).
closure_hmmO(A) : -
closure_string_lengthO(£2(A)).
closure_string_lengthO(A) :- cont(5,A).
cont(A,f2(B)):-
msw(obs(s0),C),
D is A-1,
closure_hmmO(D,s0,C,B).
closure_hmmO(A,B,C,D):-
(A>1, msw(obs(B),_),
(B\==s0
; B==s0, msw(tr(B),E), F is A-1,
closure_hmmO(F,E,C,D)),
(B\==s1
; B ==s1, G is A-1,
closure_hmm0O(G,s1,C,D))
; A=<1),
(A\==1 ; A ==1, msw(obs(B),H), \+H=C).

Figure 6. The compiled program @i:tn (part)

space complexity as it is the size of the explanation
graphs for the failed and successful computations.

We computed P(failure) with parameters set by
set_sw in DB, .- and obtained the following value2’.

7- prob(failure).

The probability of failure is: 0.66628

We also conducted a learning experiment with ﬁ}fl:;
using the new gEM algorithm in the Appendix. In
each trial we randomly sampled 10,000 data by run-
ning hmm/1 with the original parameters indicated
in Figure 6 and then let ﬁﬁ‘;}n learn parameters
from the generated data by using the new gEM al-
gorithm with randomized initial values. We show in
Figure 7 averages (with standard deviations) of param-
eters learned from 10 trials (threshold is 10=*). For
comparison, we add the averages of learned parame-
ters by the gEM algorithm under the same condition.

20prob(G) is a PRISM built-in to compute the probabil-
ity of a goal G.

msw name learned parameter (ave. of 10 trials)

obs (s0) a b c

original 0.2 0.4 0.4
new gEM {/0.196(9.0 x 107%)[0.409(1.2 x 107%){0.394(6.8 x 10™%)
gEM |[0.142(1.9 x 107%)|0.437(4.7 x 107*)[0.421(5.5 x 10™*%)

obs(s1) b c d

original 0.4 0.4 0.2
new gEM {/0.390(1.6 x 107%)|0.396(2.7 x 107){0.214(1.7 x 10~ %)
gEM 0.444(7.8 x 10~ *)]0.435(5.8 x 107%)|0.120(6.0 x 10~ %)

tr(s0) s0 sl

original 0.7 0.3
new gEM ||0.688(2.1 x 1073)|0.312(2.1 x 10~3)
gEM 0.713(1.2 x 1072)|0.286(1.2 x 107%)

Figure 7. Learned parameters

This table reads for instance P(msw(obs(s0),a)) =
0.196 with standard deviation 9.0 x 10~* is obtained
by the new gEM algorithm. We see that the new gEM
algorithm infers better parameters than the gEM al-
gorithm.

7. Conclusion

We have proposed a new EM algorithm applicable to
generative models with failure described by PRISM
programs. It is an amalgamation of two EM algo-
rithms, one the gEM algorithm which is based on
dynamic programming (Kameya & Sato, 2000; Sato
& Kameya, 2001) and the other the FAM algorithm
which considers failure in refutation search for SLPs
(Cussens, 2001).

To realize this amalgamation, we also proposed to ap-
ply FOC (first-order compiler) (Sato, 1989) to PRISM
programs containing ‘not,’ logical negation, to synthe-
size a program which is able to simulate failed compu-
tations by the original program.

We also explained how universally quantified logical
formula with probabilistic built-ins are deterministi-
cally transformed to executable codes in PRISM while
preserving distribution semantics.

References

Abney, S. (1997). Stochastic attribute-value gram-
mars. Computational Linguistics, 23, 597-618.

Cussens, J. (2001). Parameter estimation in stochastic
logic programs. Machine Learning, 44, 245-271.

De Raedt, L., & Kersting, K. (2003). Probabilistic
logic learning. ACM-SIGKDD Ezplorations, special
1ssue on Multi-Relational Data Mining, 5, 31-48.

Doets, K. (1994). From logic to logic programming.
The MIT Press.

Johnson, M., Geman, S., Canon, S., Chi, Z., & Rie-
zler, S. (1999). Estimators for stochastic unification-
based grammars. Proceedings of the 37th Annual

Meeting of the Association for Computational Lin-
guistics (ACL’99) (pp- 535-541).

Kameya, Y., & Sato, T. (2000). Efficient EM learning
for parameterized logic programs. Proceedings of the
1st Conference on Computational Logic (CL2000)
(pp- 269-294). Springer.

McLachlan, G. J., & Krishnan, T. (1997). The EM
algorithm and extensions. Wiley Interscience.

Riezler, S. (1998). Probabilistic constraint logic
programming. Doctoral dissertation, Universitéit
Tibingen.

Sato, T. (1989). First order compiler: A determin-
istic logic program synthesis algorithm. Journal of
Symbolic Computation, 8, 605—627.

Sato, T., & Kameya, Y. (1997). PRISM: a language
for symbolic-statistical modeling. Proceedings of the
15th International Joint Conference on Artificial In-
telligence (IJCAI’97) (pp. 1330-1335).

Sato, T., & Kameya, Y. (2001). Parameter learning
of logic programs for symbolic-statistical modeling.
Journal of Artificial Intelligence Research, 15, 391—
454.

Sterling, L., & Shapiro, E. (1986). The art of prolog.
The MIT Press.

Zhou, N.-F., & Sato, T. (2003). Efficient Fixpoint
Computation in Linear Tabling. Proceedings of the
Fifth ACM-SIGPLAN International Conference on

Principles and Practice of Declarative Programming
(PPDP2003) (pp. 275-283).

Appendix: gEM for failure

The followings are the procedures of the new graphical
EM algorithm for failure.

——fail

1: procedure learn-gEM(DB ,G')

2: begin

3: Select some @ as initial parameters;

4: get-inside-probs (ﬁfall, Gg';

5. A0 =T In(P[t, G,/ (1 - PJ0,Go)));
6: repeat)

T get-expectations (ﬁfall, Gg';

8: foreach ¢ € I,v € V; do

9: nli,v] :=T xn[0,i,v]/(1 — P[0, Go])

+ 0 nlt i, 0]/ Plt, Gel;

10: foreach ¢ € I,v € V; do

11: Oy = n[i,v]/zv,ew.n[i,v'];
12: get-inside-probs (ﬁfall, Gg';
13: m:=m+1;

14: A= ST I (P, G/ (1= P[0,Go)));
15: until \(™) — \(m—1) < ¢

16: end.
1: procedure get-inside-probs(ﬁfail, g’
2: begin
3: fort:=0toT do begin
4: Let 4 = Gy;
5: for k := K; downto 0 do begin
6: Plt,7}] :=0;
7: foreach S € ZZDB (T,f) do begin
8: Let §:{A1,A2,...,A‘§‘};
9: R[t,T]g,g] =1
10: for [:=1 to |§| do
11: if A; =msw(i,-,v) then
12: Rlt,7t, 8] %= 0;,
13: else R[t, 7}, S]x= Plt, Ay;
14: Plt,mH] += R[t, %, 5]
15: end /* foreach S */
16: end /* for k */
17: end /* for t */
18: end.

———fail

1: procedure get-expectations(DB ,G')
2: begin

3 for t :== 0 to T do begin

4 foreach i € I,v € V; do 1[t,i,v] := 0;
5: Let 78 = Gy; Qt, 7] := 1.0;
6 for k:=1to K; do Qlt,7}] :=0;
7 for k£ := 0 to K; do

8 foreach Se JDB (t}) do begin
9

Let S = {Al,AQ, e ,A‘g‘},
10: for [:=1 to |§| do
11: if Ay = msw(i,-,v) then
12: nt,i,v] += Q[t,] - Rt, 7}, 5]
13: else
14: Qlt, Al += Qlt, rt]-R[t,7t, S]/P[t, Al
15: end /* foreach § >k/
16: end /* for ¢ */

17: end.

