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1 Introduction

This paper! purports to present the first order compiler, a completely determin-
istic algorithm for logic program synthesis. It has been developed in an attempt
to reinforce logic programming by adding as goals negations, or more generally
universally quantified implications in a way that is logically sound and practically
meaningful. Using this expressive power made available by the compiler, one can
write programs at higher level, closer to his/her intention.

An input to the first order compiler is a first order program, i.e. a finite set
of clauses whose body may have universally quantified implicational goals as well
as atomic goals. If the compilation successfully terminates, the output will be a
definite clause program runnable on Prolog [7], which is guaranteed to be partially
correct wrt the input program. Unfortunately, it can happen that the compilation
terminates with failure due to the lack of logical power. In any case however, we
can see the result of compilation in finite amount of time.

Thus, one can write a goal such as
VY(p(X,Y) — ¢(Y, 2))

and run it when the compilation is successful. It roughly means; for all Y such
that p(X,Y), do ¢(Y, Z). So it works as a sort of for-all construct. However, it
should be emphasized that the goal is not a mere for-all construct but a declarative
for-all construct, implemented with logical rigor, offering flexible programming on
the basis of logical variables. For example, in the above goal, the values of X and
Z need not be determined prior to execution. In other words, we can get answer
substitutions [18] for X and Z making the goal true.

As compilation goes, the first order compiler scans each clause in a source pro-
gram. When it detects a universally quantified implicational goal, it does not
immediately tackle it. Instead, it chooses a more general pattern, a formula called
a universal continuation form [22,23)], and then tries to synthesize a definite clause
program for the latter by unfold/fold deduction®. The required program is obtained
by specialization.

Since the compiler is designed, for the sake of efficiency and termination, to
only perform very limited type of logical deductions such as unfold/fold deduction
and the introduction of new predicates defined by universal continuation forms,
it immediately aborts the compilation when a formula appears which fits none
of its deduction patterns. Despite the possibility of compilation failure however,
because those universally quantified implicational goals that seem meaningful as

1A Japanese version of this paper has also been submitted for publication to J apan Society for
Software Science and Technology.

?Unfold/fold deduction means unfold/fold transformation by means of logical deduction
[3,5,8,10,11,30]. Unfolding means one step symbolic execution, the replacement of a procedure
call ( atom ) by a procedure body ( complex formula ). Folding is the opposite operation.
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programming constructs are actually compilable, according to our experiences, it
may make sense to allow them as new programming constructs and to regard the
augmented language as a logic programming language built on top of Prolog such
that programs are compiled by the first order compiler.

In the rest of this section, we would like to mention related works, though not
necessarily exhaustively.

Unfold/fold transformation (3] in logic programming seems to have first appeared
in a deductive framework in [5] in which Clark and Sickel showed that it is pos-
sible to eliminate quantifiers by folding to obtain definite clauses from first order
formulae. Later on, the idea has been intensively studied by many researchers
[8,10,11,30] and is now one of the standard methods for logic program synthesis.

The technique of unfold/fold transformation was transferred to logic program-
ming, especially with interest focused on the least model semantics [18], and formu-
lated as meaning preserving transformation systems for logic programs [14,27,28].
Sato and Tamaki showed that they are usable for logic program synthesis when
combined with the Negation Technique [2,20]. In [13] however, Kanamori and
Horiuchi showed a more direct method. They proposed a meaning preserving
unfold/fold transformation system designed for logic program synthesis from (
restricted type of ) first order formulae.

All the approaches mentioned so far are nondeterministic, or involving large
search spaces, and hence it is hard to adopt them as “compilation techniques”
of first order formulae. Efforts also have been paid for discovering deterministic
methods for logic program synthesis. The simplest one would be the method
proposed by Lloyd and Topor [19] which is based on the repetitive use of the
negation-as-failure inference rule [6,18]. The rule allows one to infer ~p when the
inference of p failed. Unfortunately, for the final result to be logically sound, —p
must be ground, i.e. including no free variables. Therefore, as long as we pursue
logical correctness, no variable bindings can be obtained from negative goals by
the negation-as-failure approach.

The first order compiler [21,22,23] we shall present in this paper has many in
common with those methods mentioned above. It, however, fundamentally differs
from them in that the synthesis process is completely deterministic and automated.
It also differs from the negation-as-failure approach in that it enables one to obtain
correct answer substitutions [18] from negative goals. In addition, since the result
of compilation is faithful to the procedural reading ( which is compatible with
Prolog execution order, see Section 2 ), it is not hard to anticipate how the compiled
program runs. These features of our compiler make first order programs usable
for actual programming. Partial correctness, namely, that the computed goal is a
logical consequence of the completion [6] of the source program, is guaranteed [22]
( see Theorem 5.1 ).

A similar method based on unfold/fold deduction is recently proposed by
Dayantis [8], in which mechanization is achieved by choosing a specific class of
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programs. It corresponds, in our framework, to the synthesis of a definite clause
programs for a goal VX;,..., X,,(A — B) such that the A’s predicate is defined
by a certain class of ( almost ) definite clause programs and B is any relation.

In Section 2, we formally define first order programs and give a procedural
interpretation to them. In Section 3, a detailed compilation example is presented.
The synthesis algorithm is described in Section 4 and its correctness in Section
5. Section 6 is the conclusion. The reader is assumed to be familiar with logic
programming and unfold/fold transformation [3,7,11,18,26,27].

2 Preliminaries

We first list several conventions valid throughout this paper. Variables are strings
with an upper case letter at their heads. Other strings represent predicate, func-
tional, and logical constants. f is a propositional constant denoting falsity and
always fails as a goal. Likewise t denotes truth, always succeeding as a goal. We
assume that “=" represents syntactic identity. Unless otherwise stated, E, F stand
for syntactic variables for first order formulae, p, ¢ for predicate symbols and z,y
for distinct variable sequences. So when ¢ = Xi,..., X, (0 < n), Vz denotes the
quantification VX, ..., X,. It is also our convention that A, B stand for atoms, u

for a term and s, ¢ for term sequences ( all possibly suffixed ). We stipulate that
F «— F and E — F with E empty denote F.

Sequences and multi-sets are often deliberately confused when the distinction
does not matter. Thus, s = uy,...,u, denotes a multi-set {u,,.. ., Un} as well.
The length ( cardinality ) of s is denoted by |s|. We use (s,t), or s,t for the
concatenation of s and ¢, and occasionally A, B for the conjunction AAB. When
8§ =81,...,85, t =11,...,%, and each s;,%;(1 <7, 7 <n) is an individual term, s = ¢
abbreviates (s1 = #1) A ... A (s, = t,) and s # t abbreviates (s = t — f). In case
of |s| = |t| =0, s = t denotes t, s # t f respectively.

Let E be an arbitrary expression ( term, formula, sequence whatsoever ). Then
Fuvar(E) denotes the set of free variables occurring in E. Hence, z € Fvar(E)
expresses that every variable in z is free in E. Fuvar(E,, E,) denotes the set
Fvar(Ey) U Fvar(E,). Finally S; \ S; stands for set subtraction as usual.

2.1 First order program

A first order program is a finite set of first order clauses. A first order clause is a
first order formula of the form

A« F

where A is an atom ( atomic formula ) and F is empty or a formula in which
any universally quantified subformula is of the form Vy(F; — F3) such that y C
Fvar(F}). In addition, for simplicity, we stipulate that neither “=” nor t occurs

in the clause and further that f is only allowed to occur in the body. Note that
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Vz(Fy — F) includes implication Fy — F3 and negation -F; = (F; — f) as
special cases. If the head A contains a predicate p, the clause is said to be a clause
about p.

A basic program is a finite set of definite clauses and eztended clauses. An
extended clause is a first order clause whose body has the form Vy(By — Bj)
where both B, and B, are atoms and y C Fvar(B;) holds.

From here on, we confine our attention to basic programs and the compilation
algorithm will be presented for this class. This does not mean any loss of generality.
For, by introducing as many predicates as necessary ( definitional extension ), we
can always transform any first order program to a basic one while preserving the
logical meaning of the original program as axioms [19].

The output of the first order compiler is a definite clause program that may
include goals of the form Vy(s # t). At first sight, they seem to pose serious
problems with their execution, but for the reasons explained below, problems are
avoidable.

Firstly, suppose as usual that our domain of discourse is the H, erbrand universe
( the set of all ground terms generated from the function symbols occurring in a
program ). Vy(s # t) then represents a recursive relation ( unification failure )
wrt its free variables over the universe and hence it becomes possible to compute
the same relation by some definite clause program. Thus, as long as we choose
Herbrand model semantics (term model semantics), we can obtain a completely
positive program.

Secondly, there is a sound and efficient implementation for Vy(s # t) using
negation-as-failure; we can, in Prolog [7], implement it as \+(s = t)? since its
success, i.e. the unification failure of s and ¢ is equivalent to Vu(s # t) where
v = Fvar(s,t) and the latter implies the truth of Vy(s # t) regardless of whatever
instantiation is made by the subsequent computation to variables in v \ y.

Moreover, this implementation can be complete. That is, if \+(s = t) fails
and if an extra condition Fwar(s,t) C y is satisfled also, we can conclude that
Jy(s = t), i.e. =Vy(s # t) is a true sentence, and hence remains true through the
rest of computation.

Thus, though the negation-as-failure inference is not logically sound in general,
\+(s = t) is an exception. It is a logically sound implementation for Vy(s # t)
that works even when \+(s = t) contains variables at the time of ezecution. It is
also complete if Fvar(s,t) C y is guaranteed to hold at the time of execution.

In summary, the compiled program can be run on Prolog and we have no need,
as far as successful computation is concerned, to check whether \+(s = t) is ground
or not at run time in order to guarantee the correctness of the final answer to a
top level query ( see Theorem 5.1 ).

Of course, it is possible to have another implementation for Vy(s # t) based

3\+p is the Prolog notation for negation-as-failure. \+p succeeds if p fails and fails if p succeeds.
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on more elaborated mechanisms such as “diff” and “freeze” [9]. But we do not go
into the detail of such implementation matter.

2.2 Procedural interpretation

So we allow a goal of the form, say,
WY(p(X,Y) — ¢(Y, 2))

in our first order programs. Next task is to make it clear how the ( compiled ) goal
runs. Let us try to explain it in terms of the Prolog interpreter. For simplicity,
we assume that p(X,Y’) and ¢(Y, Z) are defined by some definite clause program.
We denote the execution of a goal p by ?-p.

First let us note that the above formula is equivalent to =3Y (p(X, Y )A—¢(Y, Z))
and is partially implemented in Prolog by \+(p(X,Y"), \+¢(Y, Z)) using negation-
as-failure. Though this implementation works well when both X and Z are in-
stantiated to ground terms at the time of execution, it won’t help at all if we want
to get those variables instantiated through the execution of this goal. The control
flow in this implementation, however, forms a basis for the following procedural
interpretation, where instantiations to the free variables X and Z are taken into
account.

[step 1] Get the next value ¢t of ¥ by ?-p(X,Y). Then check ¢ and
abort the whole computation unless every variable in ¢t occurs
in the current value of X. Else,

[step 2] Do ?-¢(t,Z)

[step 3] Go-to [step 1] by backtracking with the values of X and Z
preserved.

The check at [step 1] is inserted to assure the logical soundness of our interpretation?.
Note that we preserve at [step 3] the variable bindings for X and Z created so
far despite backtracking upon the completion of ?-¢(t,Z). Even if ?-p(X,Y) fails
somewhere at [step 1], the value of X will be preserved. Thus, X and Z will be
monotonously instantiated every time the loop is tried. By contrast, we unbind YV’
upon each backtracking at [step 3]°.

As this example suggests, the computation ( supposed to be realized by the
compiled program ) is understandable in terms of the Prolog interpreter, hence, if
one is familiar with Prolog, (s)he might not find it difficult to use the above goal,
or more generally universally quantified implications as programming constructs.

“Consider the case where p and ¢ have respectively p(X,Y) and ¢(0, Z) as their defining clauses.
Without the check, our interpretation would let the goal VY (p(X,Y) — ¢(Y, Z)) succeed, which is
equivalent to VY (Y = 0), a sentence that is false in general.

3The difference is due to the fact that X and Z are free whereas Y is universally quantified in
the goal.
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The procedural interpretation of the general case should be understood by
regarding the execution of the antecedent and the consequent of the implication
as recursive calls to the interpreter being defined. We omit the details.

2.3 Universal continuation form

Here, we would like to briefly comment on universal continuation. It is an adapta-
tion of the continuation concept elementary in functional programming to the con-
text of logic programming and forms the background of our compilation method.

Suppose that we have a functional program realizing function f(X). Then it
is always possible to mechanically convert the program to one realizing function

f" such that
f(X,C) = C(f(X)).

C is a X term representing the rest of computation when f(X) has been computed.
Programming style based on the use of continuation is called continuation passing
style computation. It greatly facilitates implementation of complicated control
structures such as coroutine.

An ezistential continuation form [24,29] shown below corresponds to the above
equation and characterizes the direct counter part in logic programming of the
continuation concept. '

P'(X,C) « Y (p(X,Y) A cont,(Y,C)).

Here the correspondence between p(X,Y) and f(X) =Y is assumed. C is a usual
first order term representing the rest of computation and cont,(Y, C) is a substitute
for functional application. It represents continuation passing style computation
taking nondeterminacy into account. The use of existential continuation in logic
programming was initiated by Ueda when he considered “all-solution” programs
[29]. Applications are described in [24,29)].

On the other hand, in logic programming, we have yet another type of continu-
ation called universal continuation. It is characterized by a universal continuation
form [21,22,23]:

p(X,C) o VY (p(X,Y) — cont,(Y,C))

This form says that the continuation C is to be computed, unlike the existential
continuation form, for every successful computation of p(X,Y). In other words,
we are regarding the SLD tree [18] for p(X,Y’) in the universal continuation form
as an AND-tree, contrary to the ordinary view.

3 Compilation example

We explain, using a tiny example, how the first order compiler works.
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3.1 An example of compiled program

Suppose that one wants to say that every member of list L is either 1 or 2. The
following program seems a reasonable answer.

onetwo(L) « VY (mem(Y,L) - Y =1VY =2) (3.1)
mem(Y,[Y|Z]) (3.2)
mem(Y, [U|V]) « mem(Y,V) (3.3)

Our procedural interpretation predicts that in the compiled program, L will
be decomposed recursively by clause (3.2) and (3.3) while the variables in L are
instantiated by Y = 1VY = 2. By compilation, the following clauses are generated
to compute one_two(L).

onetwo(L) «— mem'(L, fo) (3.4)
mem/(L,C) « VY, Z(L # [Y|Z]) (3.5)
mem/([Y|Z], C) « contpen(Y,C) Amem/(Z, f1(C)) (3.6)
contpmen(Y,fo) =Y =1VY =2 (3.7)
contpem(Y, f1(C)) — contpen(Y,C) (3.8)

Since definite clauses remain intact by compilation, the compiled program S,
consists of {(3.2), (3.3), (3.4), (3.5), (8.6), (3.7), (3.8) }. Some remarks are in
order.

By inspection, we can see not only is S; as it is usable for ground L for checking
whether it is a list containing only 1 and 2, but also is usable for non-ground L.
For example, if a query 7-one_two([A4, B]) is given to the Prolog interpreter, it will
return [A, B] = [1,1],[1,2],[2,1],]2,2] in this order. Secondly, note that if L is
assured to be or declared as a list, VY, Z(L # [Y|Z]) equals L = []. In this case

we obtain a completely positive program that works even for ?-one_two(L).

The compiled program S. includes new predicate symbols mem/’, cont., and
new function symbols fo, fi, not existent in the source program. They are all
introduced by the first order compiler. We call mem’ a closure predicate and
contmem a continuation predicate according to their roles. fo and fi are examples
of continuation functions. They are introduced corresponding to textual positions
in the source program. fy corresponds to the mem(Y, L), the antecedent of the
body of clause (3.1) and f; to mem(Y, V), the body of clause (3.3). They work as
return addresses.

The variable C conveys continuation, hence called a continuation variable. It
is always bound to a continuation term, i.e. one whose functor is a continuation
function symbol. In this example, the term will be of the form fi(... fi(fo)...),
representing a stack such that f; is pushed down when the mem’ clause (3.6) is
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called and fo or f; is popped up when the cont,.,, clause (3.7) or clause (3.8) is
called respectively.
3.2 Compilation as deduction

The compiled program S, is a logical consequence of the following formulae ( ax-
ioms ) together with certain equality axioms characterizing the Herbrand universe

of S.
onetwo(L) & VY (mem(Y,L) - Y =1VY = 2) (3.9)

mem(Y,L) « 3Z(L = [Y|Z]) v3IU,V(L = [U|V]Amem(Y,V)) (3.10)

contpen(Y,fo) » Y =1VY =2 (3.11)
coNtimen (Y, f1(C)) & contmen(Y,C) (3.12)
mem'(L,C) & VY (mem(Y,L) — contpen(Y,C)) (3.13)

Clause (3.9) and (3.10) are respectively the iff definitions [6,18] of one_two and
mem clauses in the source program S. Clause (3.11), (3.12) are auxiliary clauses
to compute continuation. Clause (3.13) is an example of universal continuation
forms. Formally, it is a universal continuation form for mem under mode pattern
mem(—, +) ( see Section 4 ). These formulae are automatically generated by the
compiler from the source program.

We are going to demonstrate, in detail, how to derive {(3.4),...,(3.8)} from
{(3.9),...,(3.13)} by unfold/fold deduction. We first compile the extended clause
(3.9). By folding (Y =1VY = 2) of clause (3.9) into contmem(Y, fo) using clause
(3.11), we get

onetwo(L) « VY (mem(Y, L) — contpen(Y, fo))-
Then using clause (3.13), this is further folded into
one_two(L) & mem'(L, fo)

from which clause (3.4) results. We next move to the compilation of clause (3.13).

After unfolding it at mem(Y, L)*using clause (3.10), and using a valid proposi-
tional schema ( a formula pattern whose instantiation is always true ): (AVB —C)

o ((A->C)AN(B—C)), we have
mem/(L,C) « VY (IZ(L = [Y|Z]) = contpem(Y,C)) A
VY (U, V(L = [U|V]Amem(Y,V)) = contpen(Y, C)).

Then, by appealing to the schemata: (AAB — C) « (A — (B — C)) and
VY (3IXF, — F) « VY, X(F, = F3;) and by folding cont,,..,(Y, C) into cont,,..(Y, f1(C))

using clause (3.12), this formula is transformed to
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mem/(L,C) & VY, Z(L =[Y|Z] — contpen(Y,C)) A
YU, V(L = [U|V] = YY(mem(Y,V) — contpen(Y, f1(C))

and then to

mem/(L,C) & VY, Z(L = [Y|Z] — contmen(Y,C)) A
YU, V(L = [U|V] = mem/(V, f1(C)))

by folding the underlined formula ( with a suitable matching ) using clause (3.13).

Finally, recalling that for any terms s,t and formula F,
VX],...,Xm(S =t—)F) HVXl,...,Xm(S #t)VHXl,...,Xm(S =t/\F)

holds over the Herbrand universe provided that {Xi,...,X,,} C Fwvar(t) and
{X1,...,Xn} N Fvar(s) = ¢, we reach

mem'(L,C) & {VY,Z(L #[Y|Z])Vv3IY,Z(L = [Y|Z] A contmem(Y,C)) } A
IVU.V(L # [UIV])V 30, V(L = [U]V] A mem'(V, £1(C)))).

By distributing A and by cleaning up with variable renaming, it is not hard
to see that clause (3.5) and (3.6) are derivable from this formula. Other compiled
clauses, (3.7) and (3.8), are apparently derivable from clause (3.11) and (3.12).
The first order compiler automatically carries out all such deductions.

4 Compilation algorithm

In this section, we describe the compilation algorithm of the first order compiler.
Before proceeding to the description of the algorithm, we add some notations and
terminology.

4.1 Mode pattern

An atom of the form p(ey,...,er) where e; (1<i<k) is either + or — is called a
mode pattern for p [23]. Let m = p(e;,...,ex) be a mode pattern. Consider an
atom p(uy,...,ux). We call u; (1<i<k) an input argument if e; is +, or otherwise
an output argument, of p(uy,...,ux) under w. Let (s1,...,3,) ( resp. (t1,...,%,)
) (m+n =k ) be an order preserved subsequence of (uj,...,us), consisting of
the input ( resp. output ) arguments under n. The sequence (s1,...,5,) ( resp.
(t1,...,t,) ) is called the input ( resp. output ) sequence of p(uy,...,us) under .
In what follows, we adopt labeled atoms such as

pler, ..., ex)
p(s,t)

to express that there is some atom, for instance p(uy,...,ux), whose input ( resp.
output ) sequence under m = p(ey,...,ex) is s ( resp. t ). We call it the I/O form
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of p(uy, . ..,ux) under 7. AnI/O form can substitute the original atom. But since
it is quite cumbersome to always write such labeled atoms, we shall omit mode
patterns when 7 is understood from the context.

An atom p(Z,...,Z) is called a most general atom for p if Z1,...,Zy are
mutually distinct variables. Let p(z,y) be the I/O form under some mode pattern
7 of a most general atom for p. It is called a most general I/O form for p under
.

4.2 Algorithm

The first order compiler is composed of three procedures, a main procedure PRO GRAM-
COMPILE and two sub-procedures, GET-MODE-PATTERN and GOAL-
COMPILE. GOAL-COMPILE is the only procedure that may fail. So we
stipulate that PROGRAM-COMPILE fails in the compilation if the failure of
GOAL-COMPILE occurs. Recall that a basic program is the union of definite
clauses and extended clauses.

PROGRAM-COMPILE

Input: a basic program S
Output: a definite clause program S, or a report of “failure”

[STEP 1] Initialization

Split S into the set of definite clauses £ and the set of extended clauses X..
Put II = ¢ ( II stores mode patterns ). Set up an empty queue I ( T stores
intermediate results of compilation ). Further put £, = X3 ( X, stores compiled
definite clauses ).

[STEP 2] Until £, becomes empty, repeat the following.
Remove an extended clause from Z.. Let it be 4 « Vy1(p(uq,...,un) — B).

Generating mode pattern:

First by applying procedure GET-MODE-PATTERN to Yy (p(u1y .-y Un) —
B), get the mode pattern 7 for p in Vyi(p(u1,. .., u,) — B). Add 7 to IL.

Generating closure clause and continuation clause:

Next, let p(z,y) be a most general I/O form for p under 7. z,y are sequences
of new variables. Prepare, uniquely to m, new predicate symbols p’ ( of arity
|z| + 1) and cont,, ( of arity |y| +1 ). p'is called the closure predicate and cont,
the continuation predicate corresponding to m, respectively. We call the following

clause
™

P(z,C) = Vy( plz,y) — conty(y,C))
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a universal continuation form for p under 7. C is a new variable called a continu-
ation variable. Construct a universal continuation form for p under 7 and enqueue
it into I'.

In the following, for convenience, we call a clause a closure clause ( resp. con-
tinuation clouse ) if the head contains a closure predicate ( resp. continuation
predicate ).

Let p(s,t) be the I/O form of p(uy,...,u,) under . y; C Fvar(t) holds from
the definition of procedure GET-MODE-PATTERN. Construct a continuation

clause
cont,(y, f(w)) « Vyi(y =t — B).

where w = (Fvar(t) UFvar(B)) \ y1 and f is a new function symbol of arity |w]
called a continuation function symbol. We assume w is alphabetically sorted. En-
queue it into I'.

Generating definite clause:

Finally construct the following definite clause

A —p'(s, f(w))

and add it to X..
[STEP 3] Until I" becomes empty, repeat the following,.
Dequeue a formula from I'. Let it be F.

(Case 1) E is a closure clause ( universal continuation form )

p'(z,C) «— Vy( p(z,y) — conty(y,C)).

Let p(s1,t1) < E1,...,p(Snytn) +— E, be an enumeration of clauses about p in
the source program S ( 0 < n, each head is in an I/O form under = ). If n = 0,
add a unit clause p/(z,C) to 2.. Else suppose n > 0. First for each 7 (1<i<n),
put

Z; = FUGT’(p(Sz',,t@') A El)
v; = Fuar(s;)
w; = z \ V;.

Construct the formula ( F; may be empty ) below

Vw;(E; — cont,(t;, C))
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and apply sub-procedure GOAL-COMPILE to it. Let the result be G; (1 <i<n).
Now construct the following formula

p'(z,C) « {Vui(z # 81) V Fvi(z = 51 A Gy)}A
{Vuy(z # 82) V Fva(z = s9 A Go) }A

{Vop(z # sp) V Jup(z = s, A Gp)}
and convert the right hand side into a disjunctive form. Let it be
p(z,C) « Rv,...,VF,.

Add to I, each p'(z,C) « F; (1<j<m).

(Case 2) E is a continuation clause

cont,(y, f(w)) « Yy (y =t = F).

y; C Fvar(t) holds. F is either an atom or a universally quantified implication.
If F is an atom, put G = F. Else, apply sub-procedure GOAL-COMPILE to F
to get the result G. Generate two clauses

conty(y, f(w)) « Yy (y # t) and
conty(y, f(w)) —y=1AG.

Add them to X..

[STEP 4] Remove 3 symbol from X, ( with variable renaming if necessary ).
Apply, optionally, to &, simplifications such as

o the execution of goals of the form s = ¢,

e the reduction of goals of the form Vy(s # t) to t in case of s and ¢ being not
unifiable or to a simpler form using sort information®,

e logical simplification concerning t and f,

e removing clauses containing a failed goal such as f

that can improve computational behavior. As for the detailed treatment of equal-
ity and inequality, see [15,16]. Return &, as the compiled program S..

GET-MODE-PATTERN

Input: a formula Vy(A — E) where A is an atom.
Output: a mode pattern 7 for the predicate contained in A

6 An example is the replacement of VY, Z(L # [Y|Z]) with L = [] in case L is known to be a list.
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Let the input be Vy(p(uy,...,u,) = E). Make a mode pattern = = p(ey,. .., €n)
for p by putting e; = — if u; includes a variable quantified by Vy, else put e; = -+
for each : (1 <i<n). Return =.

GOAL-COMPILE

Input: a formula Vy(E — F)
Output: an atom or a formula 32(A A B) V C where A, B and C are atoms.

(Case 1) E is empty.
In this case F' is an atom. If |y| = 0, then return F, else fail.

(Case 2) FE is an atom.
(Case 2-1) Eisf. Return t.
(Case 2-2) E is an atom other than f.
In this case F' is either an atom or a universally quantified implication. Write
E as q(u1,...,um). Get the mode pattern m for ¢ by applying procedure GET-
MODE-PATTERN to Vy(q(u1,...,un) — F). Add 7 to II and enqueue into T
a universal continuation form for ¢ under 7 only if 7 was not stored in II before.
Let ¢', cont, be respectively the closure predicate and the continuation pred-
icate corresponding to 7. Also let ¢(s,t) be the I/O form of g(ui,...,u,) under
7. y € Fvar(t) holds. Construct a continuation clause

conty(y1,9(w)) — Vy(y; =t — F)

where y, is a sequence of new distinct variables whose length is [t|, w = (Fvar(t)U
Fvar(F))\ y and and ¢ is a new continuation function symbol of arity |w|. We
assume that w is alphabetically sorted. Enqueue the clause into I Return

q'(s, g(w))-

(Case 3) E is a conjunction.

In this case F'is an atom. Write the input as Vy((BA E’) — F) where B is an
atom and transform it into Vy;(B — Vy,(E’ — F')) where y; = y N Fvar(B) and
Y2 = ¥y \ y1. Apply procedure GOAL-COMPILE to the transformed goal and

return the result.

(Case 4) F is none of the above.
The input formula is written as Yy(Vz(B — C) — F) where B,C and F are
all atoms. If |y| > 0, fail. If |y| = 0, transform it into
F2(BA(C —f))VF

and put G = (C — f). Apply procedure GOAL-COMPILE to G to get the
result C'. Return 32(BAC')V F.
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4.3 Compilation failure

Compilation failure occurs’” when the compiler is required to deal with a formula
of the form VyA with |y| > 0 for A atom ( see (Case 1) of GOAL-COMPILE

) or Vy(A V B) with |y| > 0 ( see (Case 4) of GOAL-COMPILE ).

The following is a typical example in the former case®

r(X,2) =« VY (p(X,Y) — ¢(Y, Z))
p(X,Y)
q(0,2)

in which, procedurally speaking, even after the success of p(X,Y ) in VY (p(X,Y) —
q(Y,Z)), the output argument Y still remains unbound to the input argument X
so that the consequent part, the goal to be proved next, becomes VY ¢(Y, Z).

In fact, the compilation of this program proceeds as follows. First, in PROGRAM-
COMPILE, p'(X,C) « VY (p(X,Y) — cont,(Y,C)) is introduced in [STEP 2]
as the universal continuation form for p under p(+,—). Then at (Case 1) in
[STEP 3], a call to GOAL-COMPILE with VY cont, (Y, C) occurs, ending with
the immediate failure at (Case 1) of GOAL-COMPILE.

Though it is possible to formally characterize the class of compilable programs,
such a characterization would have essentially the same complexity and structure
as the compilation algorithm itself, and thus would be of little interest.

5 Correctness

5.1 Termination

First of all, we would like to show that the compilation algorithm always termi-
nates. Note that GET-MODE-PATTERN and GOAL-COMPILE always
terminate. So the only possibility of non-termination lurks in an infinite process-
ing of queue I’ in [STEP 3] in PROGRAM-COMPILE. As easily seen from
the algorithm, I' must be dequeued infinitely many times for non-termination to
occur.

However, firstly because duplication is checked with II at (Case 2-2) in
GOAL-COMPILE by examining mode patterns so that the universal contin-
uation forms enqueued into I' are all different ( modulo closure/continuation pred-
icates symbols and variable names ), and secondly because there are only finitely
many universal continuation forms ( ditto ) ( a program has only finitely many
predicates ), it is impossible to dequeue I' infinitely.

7Universal formulas can define relations not in the class of recursively enumerable relations
[26] whereas the compiled program can only define recursively enumerable ones. Hence, it is not
unnatural that the compiler fails for some first order programs.

8This program was once referred to implicitly when we talked about procedural interpretation.
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5.2 Partial correctness

We state in this section a logical relation between an input program S and the
compiled program S,. Before describing it, we prepare notations. Let S be a set of
first order clauses and p a predicate appearing in S. Also let p(si) — E;(1<i<m)
be an enumeration of the clauses about p in S and v; (1<i<m) be an enumeration
of free variables in the i-th clause. We use p(z) for a most general atom for -

Define p* as follows. If m = 0, put p* = p(z) < f. Else put p* = p(z) &
Ju(z =1 AE)V ...V Jup(z = s A Ey). p* is called the iff definition of pin S
[6,18]. All free variables in p* are implicitly universally quantified in front of p*.
Put $* = {p*| p is a predicate appearing in S.}. S* is the set of all iff definitions
of predicates in S.

Let K be a set of function symbols. Define E,(K) and E,(K) as
Bu(K) = {f(a) = f(4) = = = yIf € K} U{f(2) # g)If # g, f,0 € K}
E((K) = E,(K)U{X # u| u is a term made up of K, X € Fvar(u)}

All variables in F,,(K) and E,(K) are implicitly universally quantified. Finally,
put comp(S) = $* U E,(K) where K is the set of function symbols appearing in
S.

By S.7-A, we mean that a ground query A is given to a top-down interpreter
such as Prolog. We consider the goal Vy(s # t) as one that succceds if s and ¢
are not unifiable and fails otherwise. It is important to note that neither s nor ¢
is required to be ground at the time of execution. This treatment is sound ( and
complete if Fvar(s,t) Cy holds ) as pointed out in Section 2.

When S.7-A fails, we say that the failure is safe if every failed goal of the form
" Vy(s # t) satisfies Fvar(s,t) C y at the time of execution.

Theorem 5.1 Let S be a basic program containing at least one non-constant func-
tion symbol, S, the result of the successful compilation, A a ground atom in the
language of S. We have

comp(S) F A if  5.7-A succeeds.
comp(S) F -4 if S.7-A fails and the failure is safe.

This theorem [22] guarantees the partial correctness of the compiled program
Sc wrt the source program S°. Apparently, if comp(S) is consistent [25] and S.7-4
terminates either with success or with safe failure for any ground atomic goal A,
we can replace “if” in Theorem 5.1 with “if and only if”, which means the total
correctness of the compiled program.

%It is also easy to see when an answer substitution # is returned for a non-ground query A, we
have S; 7-B for any query B which is a ground instance of A4.
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5.3 Proof of partial correctness

Since the proof of the above theorem is rather long [22], we only outline it. Suppose
that a basic program S is successfully compiled into S, and Uy, the set of function
symbols appearing in S, includes at least one non-constant function symbol. Let
Cy, Clsr, and Cont respectively be the set of continuation function symbols, the
set of closure clauses ( = universal continuation forms ) and the set of continuation
clauses introduced during the compilation.

The proof has three steps (I), (II) and (III) shown below ( A is an arbitrary
ground atom in the language of S ).

(I) STUEL(CHUEUs)F A if S.7-A succeeds.
S*UE,(Cy)UE,(Us) F A if S.7T-A fails safely.
(I1) comp(S) U Clsr* U Cont* U E,(Cy) F 57U E(C;)U E(Uy)
IIT) comp(S)F A iff comp(S)U Clsr* U Cont*U E,(Cy) - A
f

(I) is proved similarly to [6]. (IT) is equivalent to what the first order compiler
does in a successful compilation. (III) is the point. For (IILI), we prove that
comp($) UCLsr* UCont” UE,(Cy) is a conservative extension [26] of comp(S). To
do so, it suffices to show that we can always extend a model M of comp(.S) over a
domain D to that of comp(S)U Clsr= U Cont* U E,(Cy) over the same domain by
adding to M an interpretation over D of function symbols in Cy satisfying E,,(Cy)
and that of continuation predicates and closure predicates satisfying Cont” and
Clsr* respectively.

5.4 Conservative extension

Let M be a model of comp(S) and D its domain. By assumption, Uy includes
at least one non-constant function symbol, say g. So comp(S) includes infinitely
many equations of the form X # g(ui, ..., u,) where X € Fvar(g(us,...,uy)). As
a result, D must be infinite. On the other hand, since E.(Cy) only requires that
continuation functions are one-to-one and their ranges are disjoint, we can always
find the required functions by dividing D 1into appropriately many disjoint subsets
each of which has the same cardinality as D. Add to M such an interpretation
for C; satisfying E(Cy) and let M’ be the extended interpretation. M’ satisfies
comp(S) and E,(Cy).

As for finding an interpretation satisfying Cont™, we do as follows. For the
sake of simplicity, we assume that there is the only one continuation predicate in
Cont* ( generalization 1s easy ). Then the only formula included in Cont* has the
following form

conty(z) « ®[...cont,. . .J(2).

& is a formula made up of continuation predicates ( = cont, in this case ), con-
tinuation functions in Cf, functions in Uy, predicates in S and no others ( except

“w_» )
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Since every symbol in ¢ is already interpreted by M’ except cont,, we can
regard the above formula as an equation for cont,. However, since cont, occurs
only positively [13] in ® by construction, it is easy to see that there exists an
interpretation for cont, over D satisfying cont,(z) « ®[...cont,...](z). By adding
that interpretation to M’, we can extend M’ to the interpretation M” satisfying
comp(S), E,(Cy) and Cont*.

Finally consider Clsr*. It is now just a set of definitions of closure predicates
over D) because all symbols other than closure predicates are already interpreted
by M". Therefore, by adding to M" those interpretation for closure predicates
defined by Clsr*, we extend M" to the interpretation M over D. Clearly, we

have
M" = comp(S) U Clsr* U Cont™ U E,(Cj).

So we are done.

When all function symbols in S are constants, we need an additional condition
on S for Theorem 5.1 to hold. A goal is said to be primitive if it is an atom or a
formula of the form Vy(B, — B;) where B; and B, are atoms. If the body of a
clause is a conjunction of primitive goals and if every free variable in the clause
occurs somewhere in an atomic goal in the body, it is said to be allowed [4]. An
allowed program is one such that every clause is allowed!®.

Let S be an allowed program. Suppose that by introducing as many predicate
as necessary, we have converted S to a basic program S’ ( definitional extension
[26] ) and S’ is compiled into S,. Then Theorem 5.1 holds for S and S. as well
[22].

6 Conclusion

The first order compiler enables one to write declarative and succinct logic pro-
grams by allowing ( restricted ) first order formulae as goals. Although it is just
one of many approaches to the problem of logic program synthesis from first order
formulae, it is logically sound and completely automatic, but yet appears to be
able to generate usable programs.

We have experimentally implemented the first order compiler using DEC-10
Prolog [7]. It accepts any first order programs and can compile ( some of ) built-in
predicates of DEC-10 Prolog such as =, is, length etc according to their seman-
tics. The size of the source program is about 1500 lines. To help the reader
understand first order programs, we show a couple of sample programs’.

%An allowed program is similar to a basic program but differs in that the clause body can
include atomic goals and implicational goals at the same time.

“In our implementation, a universally quantified formula VX ...VZ (£) is written as
all([X,...,Z],E). Similarly an existentially quantified formula dX ...3Z(F) is written as
exist([X,...,2],E). “~” and “—” are respectively represented by “:~ ” and “->”. Yy(s # t)
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Example 1:

fib(L):- L=[0,11],
all([FO0,F1,F2,A,B],
(append(A, [FO,F1,F2IB],L) -> F2 is FO+F1)).

append([]1,Y,Y).
append ([HIX],Y,[HIZ]):- append(X,Y,Z).

This program defines fibonacci series. For example, given a query 7- £ib([F0,F1,F2,F3.
the program no doubt terminates with the answer F0=0, F1=1, F2=1 and F3=2. This
behavior, however, is apparently dependent on the order of the append clauses:

with the order reversed, the program would try to determine the values of the
elements in L from the tail, causing an error in the is primitive. Thus the pro-
grammer is required of some knowledge of the procedural interpretation just as in

the case of Prolog. The next example is a little more complicated.

Example 2:

split(Atom,S,D):-
name (Atom,L),
append ([DIL], [D],L2),
all([X,Y,Z,wWdl,
(append (X, [DIY],L2),
append(Wd, [DIZ],Y),
\+Wd=[],
all([U], (mem(U,Wd)->\+U=D))
-> exist([N], (name(N,Wd),mem(N,S))) )),
list(S).

This program splits Atom, an atom such as well foundedness, into a list S of
words like [well,foundedness] by deleting the specified delimiter D (=95, the
ASCII code for the under score “_” ) from the atom. append and mem are defined
previously. name is a built-in predicate and 1ist defines list terms. However,
in practice, it would be better to finish split clause with a cut (!) in order to
suppress extraneous answers such as § = [well,foundedness, ] obtainable by
backtracking.

The last example concerns negation. The problem of negation in logic pro-
gramming [1,2,6,12,17,20] has long been discussed mostly in relation to SLDNF
resolution, SLD resolution combined with the negation-as-failure inference rule
[1,4,6,12,17]. For the sake of the logical soundness of SLDNF resolution, it is usual
to add such condition ( ground condition ) that negative goals must be ground

is implemented as \+(s = ¢). For other notations, we follow DEC-10 Prolog.
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when they are resolved upon. Consequently, as long as we use SLDNF resolution
as a computation mechanism for negative goals, we need a special care, when we
write programs, in order to strictly observe the ground condition. Otherwise, we
may have unsound answer substitutions [18]. In addition, we never be able to get
variable binding through negative goals. '

In this respect, the first order compiler offers another option. It is free of
the defects inherent in SLDNF resolution; we have no need for “ground check”
mentioned above. If a compiled program returns an answer substitution, it is
always correct ( Theorem 5.1 ). Moreover, variable binding is obtainable from
negative goals.

Consider, for instance, the following “even” program. The second clause has

only a negative goal, thereby making it difficult to apply SLDNF resolution for
non-ground inputs.

Example 3:

even(0).
even(s(X)):- not(even(X)).

Herenot (even(X)) is a synonym of even(X) ->f. During compilation, even'(X,C) «
(even(X) — conteyen(C)) is introduced as the universal continuation form for even
under even(+) and

even(0)
even(s(X)) « even/(X, f1)
conteyen(f1) — f
even'(X,C) «
{X #0V (X =0A conteyen(C))IA
{VY(X # 5(Y)) VIV (X = s(Y) A [even(Y) V contepen(C)))}

are generated as intermediate clauses. They are finally transformed to

even(0).
even(s(X)):- even’ (X,f1).
even’ (s(X),C):- even(X).

after simplification at [STEP 4] of PROGRAM-COMPILE under the assump-
tion that the domain is natural number'?.

This is a completely positive program that works for non-ground inputs such
as 7-even(X). Moreover, the source program has consistent completion and the
synthesized program terminates for any ground input. So by Theorem 5.1, we
know that it exactly computes the ground atoms provable from the completion of
the source program.

12In reality, a weaker assumption, VX(X = 0V 3IY(X = 5(Y)), is enough.
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