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Abstract 

 

In recent years RNA-sequencing (RNA-seq) has emerged as a powerful technology for transcriptome 

profiling. For a given gene, the number of mapped reads is not only dependent on its expression level 

and gene length, but also the sequencing depth. To normalize these dependencies, RPKM (Reads Per 

Kilobase of transcript per Million reads mapped) and TPM (Transcripts Per Million) are used to measure 

gene or transcript expression levels. A common misconception is that RPKM and TPM values are already 

normalized, and thus should be comparable across samples or RNA-seq projects. However, RPKM and 

TPM represent the relative abundance of a transcript among a population of sequenced transcripts, and 

therefore depend on the composition of the RNA population in a sample. Quite often, it is reasonable to 

assume that total RNA concentration and distributions is very close across compared samples. 

Nevertheless, the sequenced RNA repertoires may differ significantly under different experimental 

conditions and/or across sequencing protocols; thus, the proportion of gene expression is not directly 

comparable in such cases. In this review, we illustrate typical scenarios in which RPKM and TPM are 

misused, unintentionally, and hope to raise scientists’ awareness of this issue when comparing them 

across samples or different sequencing protocols.   
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Introduction 

In recent years, RNA-seq has emerged as a powerful technology for transcriptome profiling (Mortazavi 

et al. 2008; Zhao et al. 2014; Zhao et al. 2015). In 2008, Mortazavi et al. used RNA-seq to quantify 

transcript prevalence for the first time (Mortazavi et al. 2008). RNA-seq avoids some of the technical 

limitations of microarrays, including varying probe performance, cross-hybridization, nonspecific 

hybridization, and dynamic range issues. RNA-seq can also detect low abundance transcripts, novel 

transcripts, alternative splice forms of transcripts, genetic variants and gene fusions (Zhao et al. 2014; 

Zhang et al. 2018). Because RNA-seq does not rely on a pre-designed complementary sequence 

detection probe, it is not limited to the interrogation of selected probes on an array and can also be 

applied to species for which the whole reference genome is not yet assembled. Thus, RNA-seq delivers 

both less biased and previously unknown information about the transcriptome.  

 

In a standard RNA-seq experiment, RNAs from different sources (blood, tissue, cell lines) are purified, 

typically enriched with oligo (dT) primers, and then fragmented. After size selection, millions or even 

billions of short sequence reads are generated from a randomly fragmented cDNA library (Zhao et al. 

2015; Zhao et al. 2018).  The major steps in RNA-seq data analysis include quality control, read 

alignment, quantification of gene and transcript expression levels, normalization, analysis of differential 

gene expression, characterization of alternative splicing, functional analysis and gene fusion detection. 

The algorithms and challenges associated with each step have been reviewed elsewhere (Garber et al. 

2011; Conesa et al. 2016; Zhao et al. 2016). RNA-seq has a wide variety of applications in biological 

research, drug discovery and development (Khatoon et al. 2014). However, the most common and 

popular application of RNA-seq is the identification of differentially expressed genes (DEGs) or isoforms 

between two or more conditions. These DEGs may serve as drug targets and biomarkers for clinical 

diagnosis, improve our understanding of disease pathophysiology, help determining a compound’s 

mechanism of action, and assist with patient stratification (Khatoon et al. 2014).  

 

Measures of expression: RPKM/FPKM and TPM 

In RNA-seq, the expression level of each mRNA transcript is measured by the total number of mapped 

fragments, which is expected to be directly proportional to its abundance level. However, after 

calculating the read counts, data normalization is essential to ensure accurate inference of gene 

expressions (Dillies et al. 2013; Li et al. 2015; Evans et al. 2018).  Raw counts mapped to a given gene are 

not comparable between samples or conditions because the sequencing depths or library sizes (the total 

 Cold Spring Harbor Laboratory Press on December 24, 2024 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


3 

 

number of mapped reads) typically vary from sample to sample. Raw counts of different genes within 

one sample are also not directly comparable, because longer transcripts have more reads mapped to 

them compared with shorter transcripts of a similar expression level. Therefore, instead of using integer 

counts directly, normalized expression units such as RPKM (Reads Per Kilobase of transcript per Million 

reads mapped), FPKM (Fragments Per Kilobase of transcript per Million fragments mapped), and TPM 

(Transcripts Per Million), are necessary to remove technical biases in sequenced data. FPKM is closely 

related to RPKM except with fragment (a pair of reads) replacing read (the reason for this nomenclature 

is historical, since initially reads were single-end, but with the advent of paired-end sequencing it now 

makes more sense to speak of fragments, and hence FPKM).  

 

RPKM was initially introduced to facilitate transparent comparison of transcript levels both within and 

between samples, as it re-scales gene counts to correct for differences in both library sizes and gene 

length (Mortazavi et al. 2008).  Since RPKM was introduced, it has been widely used due to its simplicity. 

RPKM � 10� �  

��� ����� �� ��� ����������

����� ���� �  ���������� ������
 

 

The intended meaning of RPKM is a measure of relative RNA molar concentration (rmc) of a transcript in 

a sample. If a measure of RNA abundance is proportional to rmc, then their average over genes within a 

sample should be a constant, namely the inverse of the number of transcripts mapped. Unfortunately, 

RPKM does not respect this invariance property and thus cannot be an accurate measure of rmc 

(Wagner et al. 2012). In fact, the average RPKM varies from sample to sample. Therefore, TPM 

(Transcripts Per Million), a slight modification of RPKM, was proposed (Li and Dewey 2011; Wagner et al. 

2012).  

TPM � 10� �  
���� ����� �� ���������� / ���������� ������

��� ����� ����� �� ���������� / ���������� ������ 
 

TPM and RPKM are closely related. It is straightforward to convert a RPKM to a TPM using the formula 

below.  

TPM � 10� �  

!"#

��� �
!"# 
 

 

By definition, TPM and RPKM are proportional. However, TPM is unit-less, and it additionally fulfils the 

invariant average criterion. For a given RNA sample, if you were to sequence one million full length 

transcripts, a TPM value represents the number of transcripts you would have seen for a given gene or 
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isoform. The average TPM is equal to 10^6 (1 million) divided by the number of annotated transcripts in 

a given annotation, and thus is a constant. TPM is a better unit for RNA abundance since it respects the 

invariance property and is proportional to the average rmc, and thus adopted by the latest 

computational algorithms for transcript quantification such as RSEM (Li and Dewey 2011), Kallisto (Bray 

et al. 2016) and Salmon (Patro et al. 2017). Therefore, TPM will be used in the subsequent discussions 

unless mentioned otherwise, and examples will be given to illustrate how it can be misused.  

 

Given the utility of RPKM and TPM in comparing gene expression values within a sample, it is not 

surprising that researchers would also seek to use the metrics for comparisons across projects and 

datasets.  While conceptually valid, this type of cross-sample comparison can be problematic. As TPM 

values are already normalized, t is easy to assume  they should be comparable across samples. 

Unfortunately, this is not always true. In this review, we illustrate typical scenarios in which direct 

comparison of RPKM and TPM across samples is problematic. To demonstrate, three public datasets 

were downloaded from the Sequence Read Achieve (SRA) and processed with Salmon (Patro et al. 2017) 

using Gencode (Harrow et al. 2012) Release 29. The choices were based upon in-house evaluations of 

isoform quantification algorithms (Zhang et al. 2017) and different gene models (Zhao 2014; Zhao and 

Zhang 2015). 

 

Sample preparation protocol can greatly affect expression values 

Ribosomal RNA (rRNA) is the most highly abundant component of total RNA isolated from animal or 

human cells and tissues, comprising the majority (>80% to 90%) of the molecules in a total RNA sample 

(O'Neil et al. 2013; Fang and Akinci-Tolun 2016). To allow efficient transcript/gene detection, highly 

abundant rRNAs must be removed from total RNA before sequencing. Standard approaches include 

selection of polyadenylated RNA (polyA) transcripts using oligo (dT) primers, or depletion of rRNAs 

through hybridization capture followed by magnetic bead separation. However, the polyA+ selection 

and rRNA depletion methods each have their unique advantages and limitations. In principle, polyA+ 

selection mainly captures mature mRNAs with polyA tails, whereas the rRNA depletion method can 

sequence both mature and immature transcripts.  

 

Both polyA+ selection and rRNA depletion were evaluated for gene quantification in clinical RNA 

sequencing using human blood and colon tissue samples (Zhao et al. 2018).  The same samples were 

prepared and sequenced using both protocols. All the raw sequencing reads were deposited into the 
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NCBI Sequence Read Archive under the accession number SRP127360. All sequenced transcripts were 

broken down into five categories according to their annotated biotypes in Gencode (Figure 1A). For both 

blood and colon samples, the most abundant category with polyA+ selection was protein-coding genes, 

whereas in the rRNA depletion protocol it was small RNAs. As shown in Figure 1A, the sequenced RNA 

repertoires between the polyA+ selection and rRNA depletion protocols are quite different.  As a result 

of the different sample preparation protocols, the TPM values are not directly comparable, despite that 

they are derived from the same sample. In the blood sample (Figure 1B) sequenced by the polyA+ 

selection, the top three genes represent only 4.2% of transcripts (HBA2:1.5%, S100A9:1.4%, and 

FTL:1.3%). In contrast, in the rRNA depletion, the top three genes (RN7SL2:34.3%, RN7SL1:31.4%; and 

RN7SK:9.3%) represent 75% of sequenced transcripts. As a result, the expression levels of many other 

genes are artificially deflated in the rRNA depletion sample. For the blood sample, the log2 ratio of TPM 

values between polyA+ selection and rRNA depletion was calculated for individual genes. The 

distribution of log2 ratio is depicted in Figure 1C, in which the mean values for protein-coding and small 

RNA genes are shown as dotted lines. For protein-coding genes, TPM values tend to be higher in the 

polyA+ selection, while for small RNAs, the tendency is exactly opposite.  

 

The different distribution of mRNAs across tissue types can mislead comparisons 

Since different tissues express diverse RNA repertoires, TPM values across tissues should not be 

considered directly comparable. To demonstrate this point, RNA-seq samples corresponding to six tissue 

types from the same subject GTEX-N7MS were downloaded from the Genotype-Tissue Expression 

(GTEx) project (Carithers and Moore 2015) and processed. The percentages of transcripts from 

mitochondria and the top three most abundant transcripts are shown in Figure 2A.  An examination of 

blood and heart tissues makes the problem clear. In heart, 48.3% of sequenced transcripts are from 

mitochondria, while in blood this percentage drops to as low as 1.5%. Mitochondria generate most of 

the cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy, and play an 

important role in the control of cell death in cardiac myocytes (Gustafsson and Gottlieb 2008). Thus, it is 

not surprising to see that mitochondrial genes are actively transcribed and highly expressed in heart. In 

heart, the top three highly expressed genes correspond to MT-ATP6, MT-ATP8 and MT-CO3, and 

represent a total of 17.4% of transcripts (Figure 2A). In blood, the top three genes (HBA2, HBB and 

HBA1) constitute as high as 81.8% of sequenced transcripts. Considering the sequenced RNA repertoires 

differ so dramatically, direct comparison of TPM values across tissues can be misleading.  
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The blood transcriptome in Figure 2A has a high complement of globin RNA that could potentially 

saturate next-generation sequencing platforms, masking lower abundance transcripts. To circumvent 

this issue, many commercially available globin RNA reduction kits have been developed (Mastrokolias et 

al. 2012; Shin et al. 2014).  The top three genes (HBA2, HBB and HBA1) in this blood sample constitute as 

high as 81.8% of sequenced transcripts. If a very effective globin reduction kit is used, all goblins are 

efficiently cleared. Accordingly, compared to RNA-seq without globin reduction, TPM values for the 

remaining genes in the same sample will increase about five-fold after globin reduction. This is another 

example where differences in TPM values would be due to the experimental protocol and not 

biologically relevant. 

 

RNA compartmentalization affects TPM values between cytosolic and nuclear RNA-seq 

The starting material for RNA-seq studies is usually total RNA or polyA+ enriched RNA. Several 

limitations arise from analysing these heterogeneous pools of RNA molecules from nucleus, cytoplasm 

and mitochondria. Although total RNA-seq has been shown to provide insight into ongoing transcription 

and co-transcriptional splicing in the nucleus (Tilgner et al. 2012), the simultaneous presence of mature 

RNAs from the cytoplasm confounds the analysis of nuclear RNA maturation steps. Thus, the RNA-seq of 

separated cytosolic and nuclear RNA (Figure 2B) can significantly improve the analysis of complex 

transcriptomes from mammalian tissues (Zaghlool et al. 2013). In comparison with conventional polyA+ 

RNA, cytoplasmic RNA contains a significantly higher fraction of exonic sequences, providing increased 

sensitivity in expression analysis and splice junction detection. Conversely, the nuclear fraction shows an 

enrichment of unprocessed RNA compared with total RNA-seq, making it suitable for analysis of nascent 

transcripts and RNA processing dynamics (Zaghlool et al. 2013). Considering the large differences in RNA 

repertoires between nucleus and cytoplasm (Tilgner et al. 2012), the direct comparison of TPM values 

across cellular compartments of the same sample or between samples is not recommended. 

 

The “strandness” of RNA-seq has a substantial impact on transcriptome profiling 

Non-stranded RNA-seq does not retain the strand specificity of origin for each sequencing read. Without 

strand information it is difficult - sometimes impossible - to accurately quantify expression levels for 

genes with overlapping genomic loci that are transcribed from opposite strands (Pomaznoy et al. 2019). 

In contrast, stranded RNA-seq retains the strand information of a read, and thus can resolve read 

ambiguity in overlapping genes transcribed from opposite strands to provide a more accurate 

quantification of gene expression levels (Zhao et al. 2015). The scatter plots of gene expression profiles 
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for four biological replicates of blood samples (raw data downloaded from SRA under accession 

SRP056985) are shown in Figure 3. When comparing the same samples sequenced by the non-stranded 

and stranded protocols, there are many genes that are poorly correlated. It is not unusual that there are 

genes whose expression levels are high in one protocol, but very low or even zero in the other protocol. 

When the stranded versus non-stranded sequencing groups were compared, as many as 1751 genes 

were identified to be differentially expressed (a fold change greater than 1.5 and a Benjamini-Hochberg 

adjusted p-value smaller than 0.05) (Zhao et al. 2015). Thus, whether an analysis uses stranded RNA-seq 

or not has a substantial impact on transcriptome profiling and expression measurements for many 

genes. 

 

Caution on RPKM and TPM comparison across samples with varying mRNA levels 

RPKM and TPM represent relative abundance of a gene or transcript in a sample. The direct comparison 

of RPKM and TPM across samples is meaningful only when there are equal total RNAs between 

compared samples and the distribution of RNA populations are close to each other. Although equal total 

RNAs are generally expected, it is rarely tested and not always met. For instance, cellular stress can 

dramatically alter the amount of RNA in cells, as shown for heat-shock treated cells (van de Peppel et al. 

2003). Furthermore, a comparison of embryonic stem cells and fibroblasts revealed a 5.5-fold difference 

in mRNA levels (Islam et al. 2011). Additionally, it was recently found that cells with high levels of c-Myc 

can amplify their gene expression program, producing two to three times more total RNA and 

generating cells that are larger than their low-Myc counterparts (Nie et al. 2012).  Thus, under both 

natural and experimental conditions, the critical assumption that cells produce similar levels of RNA/cell 

between cell types, disease states or developmental stages is not always valid. Depending on severity, 

these differences can influence the biological interpretation of gene expression values.  RPKM and TPM 

represent relative abundance of transcripts in a sample but do not normalize for global shifts in total 

RNA contents (Aanes et al. 2014).  

 

Discussions and Conclusions 

The sequenced RNA repertoire can vary due to differences in RNA extraction & isolation protocols (total 

RNA-seq vs polyA+ selection), difference in library preparation protocols (stranded vs non-stranded), 

and RNA abundance differences in mitochondrial and nuclear RNA compartments across tissues. Such 

differences should be controlled prior to comparing mRNA abundances across samples, even when using 
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TPM normalization. Below is a suggested workflow to follow in order to compare RPKM or TPM values 

across samples.  

1. Make sure both samples are sequenced using the same protocol in terms of strandedness. If not, 

samples cannot be compared. 

2. Make sure both samples use the same RNA isolation approach (polyA+ selection vs ribosomal 

RNA depletion). If not, they should not be compared. 

3. Check the fraction of the ribosomal, mitochondrial and globin RNAs, and the top highly 

expressed transcripts and see whether such RNAs constitute a very large part of the sequenced 

reads in a sample, and thus decrease the sequencing 'real estate' available for the remaining 

genes in that sample. If the calculated fractions in two samples differ significantly, do not 

compare RPKM or TPM values directly. 

 

TPM should never be used for quantitative comparisons across samples when the total RNA contents 

and its distributions are very different. However, under appropriate circumstances, TPM can be still 

useful for qualitative comparison such as PCA and clustering analysis.  In practice, it’s not common to 

use RPKM or TPM directly in differential analysis. Instead, counts-based methods such as DESeq (Anders 

and Huber 2010) and edgeR (Robinson et al. 2010; Robinson and Oshlack 2010) have been developed to 

identify differentially expressed (DE) genes. The fundamental assumptions underlying DESeq and edgeR 

are summarized as follows. 

1. Most genes are not DE. 

2. DE and non-DE genes behave similarly. 

3. Balanced expression changes, i.e. the number and magnitude of up- and down- regulated genes 

are comparable.   

Normalization methods would perform poorly when the assumptions above are violated. RNA-seq 

normalization plays a crucial role to ensure the validity of gene counts for downstream differential 

analysis (Dillies et al. 2013; Costa-Silva et al. 2017). However, to select the right between-sample RNA-

seq normalization methods for differential analysis is beyond the scope of this review, and reviewed 

elsewhere (Evans et al. 2018). 

 

As more and more RNA-seq datasets are generated, meta-analyses of large-scale RNA-seq datasets are 

becoming increasingly common. In this review, we illustrated how easily RPKM and TPM can be 

unintentionally misused, resulting in misleading conclusions that can be attributed simply to technical 
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differences to which researchers may not be attuned. It can be reasonable to assume that the 

partitioning of total RNA among the different compartments (ribosomal RNA, pre-mRNA, mitochondrial 

RNA, genomic pre-mRNA and polyA+ RNA) of the transcriptome is comparable across samples in a given 

RNA-seq project. This should be a key consideration in the initial experimental design. However, cross-

study analyses are frequently done without proper control for these factors. Sequenced RNA repertoires 

may change substantially under different experimental conditions and/or across different sequencing 

protocols; thus, the proportions of gene expressions are not directly comparable in such cases. 

Therefore, it is strongly recommended to always check whether the total RNA amount and the 

composition of the RNA population are close to each other when comparing RPKM/TPM values across 

samples and sequenced RNA repertories. Otherwise, the comparison might be misleading, or become 

even pointless. 
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Figure 1.  Comparison of TPM values of blood or colon samples with either polyA+ selection or rRNA

deletion. The same blood and colon RNA samples were sequenced by both protocols (denoted as polyA+

and rRNA, respectively). A) The breakdown of sequenced transcripts by their biotype; B) The

percentages of the top three highly expressed genes; and C) The distribution of log2 ratio of TPM values

in polyA+ selection over rRNA deletion. 
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Figure 2. A) The percentages of transcripts from mitochondria, and the top three most abundant

transcripts, in different tissue samples of the same subject (GTEX-N7MS) from the GTEx project.  B) In

cellular fractionation RNA sequencing, the nucleic and cytosolic RNA populations are very different, and

thus TPM values are not directly comparable. 
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Figure 3. Scatter plots of gene expression profiles between stranded and non-stranded RNA-seq. For

blood biological replicates PFE1, PFE2, PFE3, and PFE4, the scattering patterns are consistent. While the

majority of genes are arrayed along the diagonal lines, there are still many genes whose expression

levels are dramatically impacted by sequencing protocols. The x- and y-axis represent Log2(RPKM). 
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