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Abstract. This paper describes theAGILO RoboCuppers1 the RoboCup team of
the image understanding group (FG BV) at the Technische Universit¨at München.
With a team of four Pioneer I robots, all equipped with CCD camera and a single
board computer, we’ve participated in all international middle size league tourna-
ments from 1998 until 2001. We use a modular approach of concurrent subpro-
grams for image processing, self localization, object tracking, action selection,
path planning and basic robot control. A fast feature extraction process provides
the data necessary for the on-board scene interpretation. All robot observations
are fused into a single environmental model, which forms the basis for action
selection, path planning and low-level robot control.

1 Introduction
The purpose of our RoboCup activities is to provide a software and hardware platform
for (1) pursuing research in robot vision, probabilistic state estimation, multi-robot co-
operation, experience based learning, and plan-based control; (2) supporting undergrad-
uate and graduate education in computer vision, artificial intelligence, and robotics; and
(3) performing software engineering of large dynamic software systems.

2 Hardware Architecture
We aim at realizing the AGILO RoboCup team on the basis of inexpensive, off the shelf,
easily extendible hardware components and a standard software environment.

The team consists of four Pioneer I robots [1] each equipped with a single onboard
linux computer (Pentium 200 MHz CPU, 64 MB RAM,2:5" hard disk, on-board eth-
ernet, and VGA controller, and an inexpensive BT848-based PCI video capture card).
They are supported by an additional PC which resides outside the playing field. It is
used to fuse the observations made by the individual team members and to monitor the
robots’ data and states. All robot computers and the additional PC are linked via a 10
Mbps wireless ethernet (5.8 GHz) [3, 2].

Fig. 1 (a) shows two2 of our Pioneer 1 robots. Inside the robot a Motorola micropro-
cessor controls the motors, reads the wheel encoders and the seven ultrasonic sonars,
and communicates with the single board computer EM-500, which is mounted within a
box on the topside of the robot. PC and robot are connected via a standard RS232 serial

1 The name is derived from the Agilolfinger, which were the first Bavarian ruling dynasty in the
8th century, with Tassilo as its most famous representative.

2 All attackers and defenders have identical shape and equipment.



Fig. 1. (a) Theodo (goal keeper), Hugibert (attacker) and (b) what they perceive of the world
around them.

port. A PAL color CCD camera is mounted on top of the robot console and linked to
the S-VHS input of the video capture card. Gain, shutter time, and white balance of the
camera are adjusted manually. Currently RGB-16 images are captured with a resolu-
tion of 384� 172 (bottom 60% of half PAL resolution). For better ball guidance we’ve
mounted a simple concave-shaped bar in front of each robot. A custom made kicking
device enables the robot to kick the ball in direction of the robot’s current orientation.

3 Fundamental Software Concepts
The software architecture [9] of our system is based on several independent concur-
rent modules. The modules are organized hierarchically into main, intermediate, and
basic modules. The main modules are image (sensor) analysis, information fusion, ac-
tion selection, path planning, and robot control. Beside the main modules the system
employs auxiliary modules for monitoring the robots’ states. The key software methods
employed by the AGILO RoboCuppers software are:

1. vision-based cooperative state estimation for dynamic environments,
2. synergetic coupling of programming and experience-based learning for movement

control and situated action selection, and
3. plan-based control of robot teams using structured reactive controllers (SRCs).

3.1 Self Localization, Object Tracking and Data Fusion
The vision module is a key part of our system. Given a raw video stream, the mod-
ule has to estimate the pose of the robot and the positions of the ball and opponent
robots. Low/medium-level image processing operations are performed with the help of
the image processing library HALCON 5.2.3 (formerly known as HORUS [7]).

We have developed a probabilistic, vision-based state estimation method for indi-
vidual, autonomous robots. This method enables a team of mobile robots to estimate
their joint positions in a known environment and track the positions of autonomously
moving other objects. All poses and positions of the state estimation module contain
a description of uncertainty, i.e. a covariance matrix. The state estimators of different
robots cooperate to increase the accuracy and reliability of the estimation process. This
cooperation between the robots enables them to track temporarily occluded objects and



to faster recover their positions after they have lost track of them. A detailed descrip-
tion of the self localization algorithm can be found in [8] and the algorithms used for
cooperative multi-object tracking are explained in [13, 12].

Our vision algorithms can process up to 25 frames per second (fps) on a 200 MHz
Pentium PC. The average number of images processed during a match is between 12
and 17 fps. This is due to computational resources being shared with the path planning
and action selection modules.

3.2 Experience Based Learning for Situated Action Selection, Path Planning
and Movement Control

Another major field of our research activities isautomatic robot learning based on
experiences gained from exploration. Experience based learning provides a powerful
tool for the automatic construction of high-performance action selection and low-level
robot control. In this respect experience based learning can effectively complement
other methods for developing such controllers, in particular the hand coding of con-
trollers. We use learning from experience in several parts of our system such as low
level robot control, path planning and action selection.

In low level robot control we represent the state of a Pioneer I robot as a quintuple
� = hx; y; '; v; wi, wherex andy are coordinates in a global system,' is the orienta-
tion of the robot andv andw are the translational and rotational velocities, respectively.
The low-level robot controller accepts commands of the form� = hv; wi. A neural net-
work maps the desired state changes to low level robot commands:Net : h�0; �targeti 7! �0.
To train this network we measure a huge number of state changes according to different
executed low level commands [6]. Doing so our neural controller is based on nothing
but experiencenotmaking any assumptions.
In order to find the optimal path planning algorithm for our RoboCup robots we sta-
tistically evaluated different methods and found out that there isno optimalalgorithm
but a number of navigation problem classes each performed best with a certain algo-
rithm/parameterization [6]. These classes are defined with the help of a feature lan-
guage. In order to select the best method for the given situation we’ve learned a decision
tree [11]. The training data is obtained from accurate robot simulations where a huge
number of path planning problems were performed with different algorithms each.

The selection of an appropriate action is performed on the basis of a fused envi-
ronmental model. A set of possible actionsA such asgo2ball, shoot2goal, dribble,
block... is defined. For all robots and each of those actionsai success ratesP (ai) and
gainsG(ai) are estimated [5]. From all promising actionsP (ai), which exceed a pre-
defined threshold�ai

the oneaex with the highest gain is chosen to be carried out.

3.3 Plan-based Action Control
While our situated action selection aims at choosing actions that have the highest ex-
pected utility in the respective situation it does not take into account astrategicassess-
ment of the alternative actions and the respectiveintentionsof the team mates. This is
the task of the plan-based action control.

In order to realize an action assessment based on strategic consideration and on a
considerations of the intentions of the teammates, we develop a robot soccer playbook,
a library of plan schemata that specify how to perform individual team plays. The plans,
or better plays, are triggered by opportunities, for example, the opponent team leaving



one side open. The plays themselves specify highly reactive, conditional, and properly
synchronized behavior for the individual players of the team.

The high-level controller is realized as a structured reactive controller (SRC) [4]
and implemented in an extended RPL plan language [10]. The high-level controller
works as follows. It executes as a default strategy the situated action selection that we
have described in Sec. 3.2. At the same time, the controller continually monitors the
estimated game situation in order to detect opportunities for making plays. If an op-
portunity is detected, the controller decides based on circumstances including the score
and the estimated success probability of the intended play whether or not to perform
the play.

Our research goals in the development of the high-level controller include the devel-
opment of a computational model for plan-based control in very dynamic multi-robot
applications and for the integration of learning processes into the plan-based control.
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