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Abstract—Dense deployment of small cells operating on dif-
ferent frequency bands based on multiple technologies provides
a fundamental way to face the imminent thousand-fold traffic
augmentation. This heterogeneous network (HetNet) architecture
enables efficient traffic offloading among different tiers and tech-
nologies. However, research on multi-tier HetNets where various
tiers share the same microwave spectrum has been well-addressed
over the past years. Therefore, our work is targeted towards
novel multi-tier HetNets with disparate spectrum (microwave
and millimeter wave). In fact, despite the huge capacity brought
by millimeter-wave technology, the latter will fail to provide
universal coverage, especially indoor, and so mmWave will
inevitably co-exist with a traditional sub-6GHz cellular network.
In this work, we propose a coordinated user association and
spectrum allocation by resorting to non-cooperative game theory.
In fact, in such an arduous context, efficient distributed solutions
are imperative. Extensive simulation results show the precedence
of our coordinated approach in comparison with state-of-the-
art heuristics. Moreover, we evaluate the impact of various
network parameters, such as mmWave density, cell load, and
user distribution and density, offering valuable guidelines into
practical 5G HetNet design. Finally, we assess the benefit brought
by massive MIMO for mmWave in such a highly heterogeneous
setting.

Index Terms—5G HetNet, mmWave, User association, spec-
trum allocation, non-cooperative game theory, convex optimiza-
tion.

I. INTRODUCTION

It is undeniable that there would be no single technology
that can meet the stringent 5G requirements. These require-
ments consist in achieving more capacity and better Quality
of Experience (QoE) while servicing a very large number of
wireless connections for both human and machine applica-
tions, with diverse characteristics. To address the capacity and
data rate demands, current consensus is to aggregate more
bandwidths and infrastructure nodes, especially by resorting
to network densification and adopting mmWave spectrum [1].

Hence, future wireless networks will remain highly het-
erogeneous, from a dual perspective to deliver the 5G per-
formance expectations. First, we have the heterogeneity in
spectrum, since frequency bandwidth below 6 GHz is very
crowded and can no longer meet the aggressive requirements
in terms of network capacity. Accordingly, the millimeter
wave is considered as a good candidate to attain Gigabit
communications. Second, we have the unavoidable hetero-
geneity in cell size where a diverse set of small-cells will

still overlay macro-cells. Macro-cells deliver basic long-range
coverage, and small cells provide short-range but high quality
communication to users in their vicinity. Particularly, the cell
size for mmWave spans only a few hundred meters because
of the high attenuation in the corresponding frequency bands
[2], [3]. Hence, 5G Heterogeneous Networks (HetNet) are
typically composed of multiple tiers: macro Base Stations
(BSs), with a double overlay of femto BSs, and mmWave
BSs. If mmWave BSs are noise rather than interference-
limited, the increased density of femto BSs renders co-tier
and cross-tier interference prohibitive for traditional sub-6GHz
networks. In this strenuous context, novel Radio Resource
Management (RRM) should be conceived to mitigate such
interference while efficiently associating users with the various
technologies and tiers.

This double-facet heterogeneity complicates the problem
of RRM in 5G HetNets. To tackle both aspects, this paper
proposes a coordinated spectrum allocation (SA) and user
association (UA). The main issue is the interdependence of
SA and UA: on the one hand, to devise adequate spectrum
allocation algorithms, we need to know the cell load which
is reliant on the user association algorithm. On the other
hand, the attractiveness of a given cell for the user association
relies on its capacity and hence on the number of subchannels
assigned by the spectrum allocation scheme. We implement in
this framework algorithms for solving the compound problem
in a centralized and distributed fashion. We also compare
the devised algorithms with state-of-the-art approaches, and
assess the benefit brought by massive MIMO for mmWave.
In what follows, we examine related work and highlight our
contributions.

A. Existing Work

The user association that has recourse to the effect of
range expansion techniques in conjunction with spectrum
allocation has been formulated in ([4]–[9]). In particular, an
analytical approach for biasing and interference coordination
was thoroughly studied in ([7]–[9]). Classical user association
compounded with spectrum allocation was studied in ([10]–
[13]). In [10], the adopted spectrum allocation was restricted
to three pre-defined resource allocation strategies, namely,
orthogonal deployment, co-channel deployment, and partially
shared deployment. The work in [11] extends the work in
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[10] by considering pre-defined strategies (i.e., reuse patterns)
when the user association is also optimized. Although the
problem is non-convex combinatorial, the authors developed
efficient algorithms to compute tight upper bounds using con-
vex relaxation. In [12], authors resort to stochastic geometry
to obtain a continuum of users in their objective function;
the latter property enables them to jointly optimize spectrum
allocation and user association. The optimal solution is put
forward when the density of users is low, and near-optimal
solution is provided with high users’ density. In [13], authors
further consider power control and BS operation mode, albeit
iteratively. Likewise, in [11] and [14], power control and user
association is handled iteratively. The work in [15] investi-
gates also spectrum allocation and user association employing
frequency reuse patterns. Yet, spectrum bandwidth of each
cell is adapted to its load similarly to [16] in order to cope
with spatially inhomogeneous traffic distribution. In fact, the
majority of literature does not directly consider the imbalance
of cell load in partitioning the frequency bands, and thus the
devised algorithms perform poorly unless traffic is uniformly
distributed. Hence, three algorithms that alternately evaluate
spectrum partition, cell load and user association are applied
in [15] until convergence to a fixed point.

The present work will evaluate the impact of integrating
mmWave spectrum as a key enabler to achieving gigabyte-
level data traffic in future networks. Lately, mmWave fre-
quencies have attracted a lot of attention. Activities for 5G
have been launched in 3GPP [17] and completed the practical
stage of defining use cases and objectives. In [18], it has
been proven that a heterogeneous architecture with mmWave
small-cell base stations overlaid on macro cellular network can
tremendously increase the system capacity. In [19], a proof-
of-concept of such a mmWave overlay HetNet is provided.
In particular, a HetNet with commercial LTE and mmWave
access is studied. Another important work handling field
experimentation is found in [20] where integrated proof-of-
concept has been developed for a mmWave-integrated cellular
network. This growing interest establishes the key role of
mmWave technology in enhancing the capacity of 5G HetNets.

The work in ([21]–[24]) are the closest to ours in evalu-
ating a multi-tier network with multiple technologies using
bandwidth below and beyond 6 GHz. However, they only
consider user association and overlook spectrum allocation.
In particular, the work in [22] considers only mmWave small
cells while the work in [24] considers a particular scenario
where small cells are assumed to be deployed linearly along
roads. Besides, the work in [25] and [26] have similarity
with our UA scheme where a weighted proportional fair
allocation is adopted. However, the distributed UA in ([25],
[26]) stems from an optimal centralized problem by resorting
to dual decomposition; whereas, our approach is inherently
distributed, built on a game theoretic model. Furthermore,
we consider a HetNet that includes mmWave to be in phase
with the technological innovation of 5G, contrarily to the
mentioned references. More importantly, spectrum allocation
is not considered in both [25] and [26].

B. Motivation and contributions

This work presents a coordinated approach for spectrum
allocation SA and user association UA in future wireless
HetNets. We summarize in this section the major contributions
and the demarcation from existing work.

• Contrary to existing work where SA and UA problems
are addressed independently, the coordinated framework
enables to tailor the spectrum allocation to the user
distribution and perform user association accordingly. As
a matter of fact, such framework yields load-aware RRM
that prevents from over-dimensioning radio resources, or
defectively associating users to crowded cells.

• In our work, we devise an original method for esti-
mating the cell load. This method enables to explicit
the interdependence between spectrum allocation and
user association. In fact, the intricacy between the two
problems is typically tackled by iterative procedures
([10]–[13]). These procedures necessitate cumbersome
computations and jam the two RRM problems at the
same timescale. However, spectrum allocation and user
association usually take place on different timescales: SA
is a dimensioning task that takes place prior to UA that
is more dynamic and frequent. Henceforth, our proposed
method enables to obtain a pertinent estimation of any
cell load that will serve as a guideline to allocate the
spectrum adequately. This estimation takes into account
the user distribution and balances between spectral ef-
ficiency and spectrum reuse. Afterwards, UA is applied
based on the operated spectrum allocation. Finally, we
provide insights on how to fine tune the balance between
spectral efficiency and spectrum reuse, and hence improve
user rates.

• While the spectral resources are disjoint between both
types of cells, the user association is still very challenging
in this context. The original contribution of our work
resides in evaluating the impact of mmWave cells and
their density on the coordinated problem of SA and
UA in 5G HetNets. Moreover, as already highlighted in
the literature [3], we further assess the shortcomings of
traditional power-based UA in a heterogeneous setting
with sub-6GHz and mmWave technologies. In particular,
the work in [23] proposes a different bias per tier and
per technology in a sub-optimal two-step user association
procedure to address that issue. We validate the difficulty
to circumvent the misleading impact of received power
in a highly heterogeneous network. Finally, we assess the
advantages of massive MIMO in mmWave.

• We introduce in this work original mathematical formula-
tions for the spectrum allocation and the user association
problems. First, we formulate SA for LTE femto cells as
a non-cooperative game. Femto BSs allocate RBs (Re-
source Block) in a way to meet the cell load estimation
and selfishly strive to minimize perceived interference.
We provide a formal mathematical proof that the por-
trayed game has an exact potential function. Such prop-
erty guarantees the convergence to pure Nash equilibrium
by applying simple Best Response dynamics. Second, we
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tackle user association in 5G networks following two
approaches. We formulate a centralized approach and
solve it using convex optimization tools. Then, we for-
mulate a distributed approach as a non-cooperative game,
where users are players that independently maximize their
rate. This game is proven to converge to a unique Nash
equilibrium. Owing to the exact potential property, an
iterative Best Response algorithm permits attaining such
equilibrium.

• We implement in our coordinated framework various
spectrum allocation and user association algorithms fol-
lowing centralized, distributed, or basic state-of-the art
approaches. Our contribution consists in providing a
benchmark where different combinations of algorithms
are examined. We provide a thorough analysis for the
impact of various network parameters, such as mmWave
density, cell load, and user distribution and density. Fur-
thermore, we do not restrain our evaluation to a uniform
user distribution and assess the impact of so-called crowd
scenario in a given network region.

The rest of the paper is organized as follows. In section
II, the network model is thoroughly explained. In section III,
our devised coordinated framework is detailed for spectrum
allocation and user association. In section IV, we assess the
performances of our coordinated approach through various
combinations of SA and UA algorithms. By evaluating the
impact of different important network metrics, we succeed in
offering valuable guidelines into practical 5G HetNet design.
In section V, we adapt the network model to include massive
MIMO for mmWave and evaluate the corresponding impact
on network performances. We finally conclude the paper in
section VI.

II. NETWORK MODEL

In this section, we describe the network topology and
radio model used in this work. Although our framework
adapts to different deployment scenarios, we select a realistic
context for performance evaluation consisting of a multi-tier
heterogeneous 5G network. We consider a three-tier wireless
network comprising macro LTE cells, femto LTE cells, and
mmWave cells.

Tri-sectorized macro-BSs are distributed according to a
hexagonal structure with a double overlay of femto BSs and
mmWave BSs randomly positioned. We denote by J the total
set of BSs in the network, including J LTE which is the set of
macro BSs and femto BSs, and JmmW the set of mmWave
BSs. We focus on the network downlink where users can
concurrently connect to multiple BSs.

As we are dealing with technologies working in disjoint
frequency bands, inter-band interference is negligible and
SINR expressions can be derived independently as follows.

A. SINR for LTE

We consider that OFDMA (Orthogonal Frequency Division
Multiple Access) is used as the multiple access scheme in
macro BSs and femto BSs. The time and frequency radio
resources are grouped into time-frequency RBs. An RB is the

smallest radio resource unit that can be scheduled to a mobile
user. Each RB consists of Ns OFDMA symbols in the time
dimension and Nf sub-carriers in the frequency dimension
(Ns = 7 as in the most used formats and Nf = 12). The set
of RBs is denoted by K, and the set of users is denoted by I.

As aforementioned, spectrum allocation consists of com-
puting the allocation of RBs to LTE BSs. The output of such
allocation is a set of variables xjk identifying if RB k ∈ K is
allocated to BS j ∈ J LTE as in:

xjk =

{
1 if RB k is used by BS j,

0 otherwise.
(1)

On each allocated RB k, the SINR observed by user i ∈ I
when connected to LTE BS j, is denoted by SINRLTEijk and
given as:

SINRLTEijk =
pjkgjgiγij∑

j′∈JLTE

j′ 6=j
pj′kxj′kgj′giγij′ + pN

. (2)

The numerator of (2) represents the received signal power, and
the denominator represents the sum of the interfering signals
and the thermal noise power per RB denoted by pN . Interfering
signals solely result from the transmission of LTE BSs using
the same RBs (for which xj′k = 1) since mmWave BSs use
disjoint frequency bands.

In the SINR expression, we denote by pjk the transmit
power of LTE BS j on RB k, gj and gi the BS antenna
gain and the user antenna gain respectively, γij the pathloss
between BS j and user i. Note that we assume a constant
power level per RB in the SINR expression. This power level
per RB is independent of the number of allocated RBs and is
given by pjk = Pj/ |K|, where Pj is the total power of BS j
and |K| the total number of RBs. As shown in [27], using a
constant power allocation averages the impact of interference
and does not hinder the system performance in a multi-cell
network.

B. SINR for mmWave

For mmWave, we assume that the totality of the spectrum is
used in each cell. Particularly, the coverage of mmWave cells is
very limited because of the high attenuation in the correspond-
ing frequency bands. Thus, a full reuse of the spectrum does
not generate harmful interferences. As a result, we assume that
the totality of spectrum is used in each mmWave BS. It is then
unavailing to consider the RB granularity, especially if it leads
to loss in generality. In fact, our model goal is to encompass
all possibilities open to 5G/mmWave specifications. Hence,
our model remains valid and pertinent:
• For different 5G NR (new radio) numerologies (i.e.,

different RB definitions), and,
• For different mmWave technologies, even if they do

not use OFDM (e.g., IEEE 802.11ad uses single-carrier
modulation scheme).

The SINR observed by user i ∈ I, when connected to
mmWave BS j ∈ JmmW , can then be expressed as:

SINRmmWij =
pjgjgiγij∑

j′∈JmmW

j′ 6=j
pj′gj′giγij′ + p̃N

(3)
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The numerator of (3) represents the received signal power, and
the denominator the sum of the interfering signals and the
thermal noise power in the totality of the spectrum denoted
by p̃N . Interfering signals result from the transmission of all
mmWave BSs, as in a frequency reuse-1.

In the SINR expression, we denote by pj the transmit power
of mmWave BS j, γij the pathloss between BS j and user
i. We note that the pathloss model is different from that of
LTE BSs: mmWave BSs and LTE BSs operate on different
carrier frequencies, have different antenna heights, cover and
serve different environment types, and thus undergo different
attenuations. In our work, we implement the mmWave pathloss
model as given in the seminal work in [28].

C. Peak Rate

The radio conditions of a mobile user yield the instanta-
neous peak rate it can obtain when connected alone to a given
BS. Those conditions are assumed to be invariant as neither
mobility nor fading are taken into account. Thus, the peak rate
ρij of user i ∈ I when associated with BS j ∈ J is a function
of the perceived SINR as in:

ρij =

{
Wjfj(SINR

mmW
ij ) if j ∈ JmmW ,∑

kWkfj(SINR
LTE
ijk )xjk if j ∈ J LTE ,

(4)

where Wj and Wk are respectively the cell and RB bandwidth,
and fj is a function that computes the spectral efficiency for
a given SINR. This function takes into account the adaptive
modulation and coding in LTE and is implemented according
to the technical specification in [29]. For mmWave, we make
use of the Shannon formula as an upper bound of the spectral
efficiency1.

III. FRAMEWORK OF THE COORDINATED SPECTRUM
ALLOCATION AND USER ASSOCIATION PROBLEMS

A. Coordinated Problem Formulation

We introduce a mathematical formulation of the coordinated
spectrum allocation SA and user association UA problem.
We consider a network utility for the downlink of a mutli-
tier heterogeneous network. While conventional UA basically
uses the max-SINR rule, it is evident that max-SINR is
inappropriate as it may deprive bad channel quality users from
accessing radio resources. Hence, in this work, we strike a
good compromise between efficiency and load balancing.

We denote by θij the user association variable indicating
the percentage of time user i is associated with BS j. The
network utility is given by:∑

i∈I

∑
j∈J

θij log(ρij)−
∑
i∈I

∑
j∈J

θij log(
∑
i∈I

θij) (5)

When maximizing the network utility, the first term∑
i∈I
∑
j∈J θij log(ρij) enables to maximize the user traffic

allocations on BSs offering the highest peak rates. Note that
taking the logarithm of the peak rate ρij prevents allocations
on BSs that do not ensure coverage (ρij = 0). The second

1This is an upper bound of upcoming technical specification

term corresponds to the load entropy of the network. In fact,
Θj =

∑
i∈I θij corresponds to the load of BS j. Thus, the

second term can be rewritten as −
∑
j∈J Θj log(Θj) and

maximizing the entropy leads to balancing the load on the
different BSs in the network. Therefore, load balancing avoids
congestion on BSs offering the highest peak rates as implied
by the first term.

Given (4), the peak rate for LTE cells depends on the
spectrum allocation variables xjk, conversely to mmWave cells
where the totality of spectrum is allocated in each cell. In the
following, the utility function is rewritten as:∑

i∈I

∑
j∈J

θij log(
ρij∑
i∈I θij

) (6)

The coordinated spectrum allocation and user association is
formulated as a mathematical optimization:

maximize
θ,x

∑
i∈I

∑
j∈JLTE

θij log(
ρij(xjk)∑
i∈I θij

)

+
∑
i∈I

∑
j∈JmmW

θij log(
ρij∑
i∈I θij

)

(7a)

subject to
∑
j∈J

θij ≤ 1, ∀i ∈ I, (7b)

θij ≥ 0, ∀i ∈ I,∀j ∈ J , (7c)

xjk ∈ {0, 1}, ∀j ∈ J LTE ,∀k ∈ K. (7d)

The objective function (7a) maximizes the total network utility
and ensures proportional fairness between users. Constraints
(7b) ensure that each user shares its time on the available BSs.

For clarity, all variables and parameters are summarized in
Table I.

J = JLTE ∪ JmmW Set of BSes, where
JLTE is the set of LTE BSs and
JmmW is the set mmWave BSs

I Set of users
K Set of RBs
θij percentage of time user i is associated with BS j
xjk RB allocation variable indicating if RB k

is alloted to LTE BS j

TABLE I: Sets, parameters and variables in the document

The optimization problem formulated in (7) is a Mixed Inte-
ger Non-Linear Program (MINLP). Particularly, the objective
function (7a) is non-convex and the problem is intractable for
a large number of variables in realistic scenarios.

Recently, in the literature, iterative approaches are still used
to overcome the complexity of the original problem in [11],
[14]. These approaches consist in iteratively solving the SA
and UA problems. These procedures necessitate cumbersome
computations and wrongly align the two problems at the
same timescale. In fact, SA is a dimensioning task that takes
precedence in time over UA that is more frequent.

In this section, we introduce a framework that operates in
two levels in order to solve the spectrum allocation and user
association problem formulated in (7). These two levels are
astutely coordinated in order to provide an efficient solution
to the original problem. Precisely, we devise a pertinent
estimation of any cell load that will serve as a guideline to
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allocate the spectrum adequately. This estimation takes into
account the user distribution and balances between spectral ef-
ficiency and spectrum reuse. Afterwards, UA is applied based
on the operated spectrum allocation. Contrarily to existing
approaches, our framework is suited to the multiplicity of
timescales and takes into account the interdependence of the
two problems without having recourse to iterative procedures.

Our framework is represented in two building blocks, as
shown in Figure 1. The first building block aims at computing
the spectrum allocation for the network cells. We consider
separately LTE cells and mmWave cells, as they use disjoint
frequency bands. For LTE cells, we start by deciding of
the macro-femto spectrum sharing. Then, we allocate the
appropriate RBs per cell for each tier, based on a devised
cell load estimation introduced in the following section.

The second building block shown in Figure 1 includes peak
rate, SINR computation and user association. Considering the
spectrum allocation, we compute the user peak rate and SINR
per BS for each user in the network. Such computation takes
into account the user radio conditions in terms of pathloss
and interference. Then, UA is performed following centralized,
distributed, and basic state-of-the art approaches.

Spectrum allocation 
for LTE cells

User association

LTE femto-cell load 
estimation

SINR and peak rate 
computation

Spectrum allocation 
for mmWave cells

RB demand 
per femto-cell

User SINR and 
peak rate per cell

Macro-femto 
spectrum sharing

Fig. 1: Building blocks of the SA and UA coordinated frame-
work

We implement in our coordinated framework various SA
and UA algorithms. The common framework introduced in this
work enables to provide deep understanding of the different
building blocks and their mutual dependence. Additionally, it
constitutes a scientific benchmark where different combina-
tions of the devised algorithms are examined.

B. Spectrum Allocation
In the downlink, OFDM allows assigning frequency sub-

carriers to users within each cell in an orthogonal manner, each
sub-carrier having a much lower bandwidth than the coherence
bandwidth of the channel. With the use of cyclic prefix inser-
tion, intra-cell interference can be eradicated. However, inter-
cell interference remains problematic and must be tackled.

For mmWave, we assume that the totality of spectrum
is used in each cell. Particularly, the coverage of mmWave

cells is very limited because of the high attenuation in the
corresponding frequency bands. Thus, a full reuse of spectrum
does not generate harmful interferences.

For LTE cells, OFDMA is very attractive as it enjoys
high spectral efficiency and immunity to both frequency se-
lective fading and inter-symbol interference (ISI). The latter
encourages the use of frequency reuse-1. However, when the
same RB is used in neighboring cells, high interference may
occur. The latter can degrade the SINR perceived by serviced
users, especially in femto cells that can be randomly close to
each other. Consequently, SA starts by allocating the adequate
bandwidth to LTE cells as follows:
• We start by estimating the load of each LTE tier based on

the maximum received power. A user i ∈ I is estimated
to be associated with BS j if Pij ≥ Pij′ ,∀j′ ∈ J LTE ,
where Pij = pjgjgiγij is the power received by user
i from BS j. Accordingly, we denote by nj the num-
ber of users associated with BS j. Finally, we denote
by nfemto =

∑
j nj , j ∈ J LTEfemto and by nmacro =∑

j nj , j ∈ J LTEmacro the load of femto and macro tiers
respectively.

• Each LTE tier is allocated a number of RBs proportional
to its load: the number of RBs allocated to the macro
tier is consequently equal to nmacro

nmacro+nfemto
× |K|. Sim-

ilarly, the number of RBs allocated to the femto tier is
nfemto

nmacro+nfemto
× |K|, where K is the set of RBs.

Then, in each tier, the RB allocation is done as follows:
• The totality of RBs available for macro cells is deployed

with frequency reuse-1, as advocated for increased spec-
tral efficiency.

• The spectrum share available for femto cells is allocated
in two steps: first, each femto cell is allocated a number
of RBs proportional to its load, according to the load
estimation method presented in Section III-B1. Second,
the exact RBs are selected in a way to mitigate the co-
tier interference resulting from a random BS deployment.
The latter RB allocation method is portrayed as a non-
cooperative game and presented in Section III-B2.

1) Femto Cell Load Estimation: In our cell load esti-
mation, we allocate a number of RBs to each femto cell
proportionally to its load. Computing an exact value of this
load necessitates knowing how many users are serviced by
each femto. However, such information is not available at the
spectrum allocation level as we are in the initial phase of a
two-level approach. For this reason, we introduce a pertinent
load estimation that captures the user distribution and radio
coverage.

Let us consider a femto BS j ∈ J LTEfemto, where J LTEfemto

is the set of femto LTE BSs. Given the pathloss model, a
user i ∈ I is estimated to be associated with BS j if γij ≥
γij′ ,∀j′ ∈ J LTEfemto. We denote by Lj the absolute load of BS
j or equivalently the number of users associated with this BS.
We define a per-cell cluster Cj of BS j as the set of BSs
j′ ∈ Cj where γjj′ ≥ γthreshold. We consider that the totality
of spectrum is used in each per-cell cluster Cj ,∀j ∈ J LTEfemto.
Then, the threshold is defined in a way to balance between
interference and spectrum reuse. A large threshold reduces the
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size of each per-cell cluster enabling higher spectrum reuse
at the cost of higher co-tier interference and lower spectral
efficiency, and vice versa. Given the notion of per-cell cluster,
the relative load of BS j is computed by lj =

Lj∑
j′∈Cj

Lj′
.

Finally, the number of RBs allocated to BS j is proportional
to its relative load Nj = lj × |K|, where K is the set of RBs.

2) Femto Cell RB Allocation: Inter-cell interference re-
mains a central issue for the design of 5G networks with dense
small cells that are particularly vulnerable to interference [30].
In this work, we rely on non-cooperative game theory to devise
a distributed RB allocation algorithm. In fact, non-cooperative
game theory models the interactions between players compet-
ing for a common resource. Hence, it is well adapted to model
the spectrum allocation between selfish competing femto cells.
Our algorithm builds on the number of RBs computed at the
cluster level in the previous section III-B1. Accordingly, each
femto cell identifies the pool of the least interfered RBs. Our
distributed algorithm minimizes the interference level by only
making use of local information available at the femto cells
through Channel Quality Indication (CQI) feedbacks [29].

a) RB Allocation Game: We define a multi-player game
GSA between all femto cells. Femto cells are assumed to make
their decisions without knowing the decisions of each other.
The formulation of the game GSA =

〈
J LTEfemto, S

SA, I
〉

can
be described as follows:

• The finite set of femto cells J LTEfemto;
• Each femto cell j has to pick Nj RBs among the |K|

available RBs. The action of femto cell j is xj =
(xj1, ..., xj|K|). A strategy profile x = (x1, ...,x|JLTE

femto|
)

specifies the strategies of all players;
• For each femto cell j, the space of pure strategies is SSAj

given by what follows:

SSAj = {xj ∈ {0, 1}|K|, such as
∑
k∈K

xjk = Nj , ∀k ∈ K}

and SSA = SSA1 ×...×SSA|JLTE
femto|

is the set of all strategies;
• A set of cost functions I =

(I1(x), I2(x), ..., I|J |LTE
femto

(x)) that quantify players’
objective for a given strategy profile x, where Ij(x) is
the cost function of femto cell j.

Our RB allocation game enables each femto cell to select
a pool of least interfered RBs. Therefore, the cost function
must capture the co-tier interference endured by users of a
given femto cell. The latter is the harmful signal received
from neighboring cells using the same RBs. Computing co-tier
interference necessitates knowing the users that are serviced
by each femto. However, user association information is not
available at the spectrum allocation level. For this reason,
we devise a cost function Ij that considers the impact of
neighboring femto cells on cell j itself instead of the impact
on users associated to femto cell j. This approximation is
pertinent as the size of femto cells is small. Accordingly, the
co-tier interference endured by femto cell j on RB k can
be written as

∑
j′∈JLTE

femto,

j′ 6=j

xj′kpj′kgj′gjγjj′ + pN , where γjj′

denotes the pathloss between BS j′ and BS j. Then, the cost

function of femto j that enables to minimize the total co-tier
interference is casted as:

Ij =
∑
k∈K

xjk(
∑

j′∈JLTE
femto,

j′ 6=j

Gjj′ · xj′k + pN ), (8)

where Gjj′ = pj′kgj′gjγjj′ . The latter is independent of k as
the power per RB pjk is constant.

b) Reaching Pure Nash Equilibriums: In a non-
cooperative game, an efficient solution is obtained when all
players adhere to a Nash Equilibrium (NE). A NE is a profile
of strategies in which no player will profit from deviating its
strategy unilaterally. Hence, it is a strategy profile where each
player’s strategy is an optimal response to the other players’
strategies:

Ij(xj ,x−j) ≤ Ij(x′j ,x−j),∀j ∈ J LTEfemto,∀x′j ∈ SSAj , (9)

where x−j denotes the vector of strategies played by all
femto cells except femto cell j. We turn to potential games
to show the existence of NE.

Exact Potential Games: Potential games form a special
class of normal form games where the unilateral change of
one player strategy xj to x′j results in a change of its cost
function that is equal to the change of a so-called potential
function φ : SSA → R. A potential game [31] admits at least
one pure NE which is a desired property.

Proposition 3.1: The game GSA is an exact potential game.
A candidate for the potential function which maps a profile
x = (x1, ...,x|JLTE

femto|
) to a real is the following:

φ(x) = 1/2
∑

j∈JLTE
femto

∑
k∈K

xjk(
∑

j′∈JLTE
femto,

j′ 6=j

Gjj′ · xj′k + pN )

Proof: We prove that if x and x′ are two pure profiles which
only differ on the strategy of one BS `, then I`(x`,x−`) −
I`(x

′
`,x−`) = φ(x`,x−`)− φ(x′`,x−`) as Gjj′ = Gj′j :

2φ(x)− 2φ(x′) =∑
j∈JLTE

femto,

j 6=`

∑
k∈K

xjk(
∑

j′∈JLTE
femto,

j′ 6=j,
j′ 6=`

xj′kGjj′ + x`kGj` + pN )

−
∑

j∈JLTE
femto,

j 6=`

∑
k∈K

xjk(
∑

j′∈JLTE
femto,

j′ 6=j,
j′ 6=`

xj′kGjj′ + x′`kGj` + pN )

+
∑
k∈K

x`k(
∑

j′∈JLTE
femto,

j′ 6=`

xj′kG`j′ + pN )

− x′`k(
∑

j′∈JLTE
femto,

j′ 6=`

xj′kG`j′ + pN )

=
∑
k∈K

∑
j∈JLTE

femto,

j 6=`

(xjkGj` + pN ) · (x`k − x′`k)

+ I`(x`,x−`)− I`(x′`,x−`)
=2 · (I`(x`,x−`)− I`(x′`,x−`))
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Best Response Dynamics for RB allocation: A NE is a
static concept that often abstracts away the question of how
it is reached. Thus, the main challenge in non-cooperative
game theory is to devise practical algorithms to reach those
equilibriums. The simplest example of such algorithms are
repeated Best Response dynamics: each player selects the
best (locally optimal) response to other players’ strategies,
until convergence. However, convergence of Best Response
dynamics is not guaranteed in general. In this work, we
are in presence of an exact potential game where a greedy
Best Response algorithm permits attaining Pure NEs (PNE)
according to [32].

The best response strategy of a player is the one that
minimizes its cost given other players’ strategies. The pseudo-
code of our distributed RB allocation problem is presented
in Algorithm 1. Our algorithm iterates until convergence to a
PNE (Line 8). Note that in our case, convergence is guaranteed
regardless of the players initial strategies. Hence, in the first
iteration (Line 1), we set the allocation vectors to zero. At
each iteration, each femto cell j ∈ J LTEfemto minimizes its cost
function Ij given by (8) in response to the strategies of other
femto cells in the previous iteration (Line 5). This consists in
solving the following optimization problem:

(Pj(x−j)) : min
xj

{
∑
k∈K

xjk(
∑

j′∈JLTE
femto,

j′ 6=j

Gjj′ · xj′k + pN )}

(10a)

subject to
∑
k∈K

xjk = Nj , (10b)

xjk ∈ {0, 1}, ∀k ∈ K. (10c)

Problem (Pj(x−j)) solved by each femto cell j ∈ J LTEfemto

at each iteration is an Integer Linear Program (ILP). An
ILP is typically solved using a branch-and-bound approach
based on linear programming. The idea of this approach is
to solve Linear Program (LP) relaxations of the ILP and to
look for an integer solution by branching and bounding on the
decision variables provided by the LP relaxations. Thus, in a
branch-and-bound approach the number of integer variables
determines the size of the search tree and influences the
execution time of the algorithm. In our case, the number of
integer variables is equal to the number of RBs and is limited
by the available bandwidth (in LTE, the number is less than
100 for 20 MHz [29]). Thus, the optimization problem is
solved in a reasonable time for practical scenarios.

C. User Association

In this section, we introduce the second building block
of our coordinated framework. Exploiting the output of the
spectrum allocation block, we compute the user peak rate and
SINR per BS for each user in the network. Such computation
takes into account the user radio conditions in terms of
pathloss and interference, and is done according to the SINR
expression (i.e., (2) for LTE and (3) for mmWave) and peak
rate (4), as introduced in Section II. Then, user association is

Algorithm 1 Best Response Algorithm for femto cell RB
allocation
Require: J LTEfemto,K, Gjj′ ,∀(j, j′) ∈ (J LTEfemto)

2

Require: Iteration t← 0
1: xj(0)← 0,∀j ∈ J LTEfemto

2: repeat
3: t← t+ 1
4: for j ∈ J LTEfemto do
5: Solve Pj(x−j(t− 1)) in (10)
6: xj(t)← x∗j . Optimal values of Pj(x−j(t− 1))
7: end for
8: until (x(t) == x(t− 1))

performed following two widely adopted approaches, namely
the network centric association and the mobile-terminal centric
association. The network centric approach is implemented as
a centralized optimization problem in Section III-C1, whereas
the mobile-terminal centric approach is portrayed as a dis-
tributed non-cooperative game in Section III-C2.

Centralized approaches enable to compute a global maxi-
mum of the network utility that strikes a good compromise
between efficiency and load balancing. Such solutions ne-
cessitate coordination and signaling between BSs. Distributed
approaches enable autonomous users to maximize their own
utility leading to complexity reduction at the cost of lower
efficiency.

1) Centralized User Association: Building on the output of
the spectrum allocation x, the coordinated problem introduced
in (7) boils down to the following centralized user association
problem:

(P(x)) : maximize
θ

∑
i∈I

∑
j∈JLTE

θij log(
ρij(xjk)∑
i∈I θij

)

+
∑
i∈I

∑
j∈JmmW

θij log(
ρij∑
i∈I θij

)

(11a)

subject to
∑
j∈J

θij ≤ 1, ∀i ∈ I, (11b)

θij ≥ 0, ∀i ∈ I,∀j ∈ J . (11c)

The objective (11a) is convex as a maximization of a concave
function. Indeed, it can be written as:∑

i∈I

∑
j∈J

θij log(
ρij∑
i∈I θij

) (12a)

=
∑
i∈I

∑
j∈J

θij log(ρij)−
∑
j∈J

(
∑
i∈I

θij) log(
∑
i∈I

θij), (12b)

where the first expression is linear (hence concave) and the
second is concave as the opposite of the entropy function.
Moreover, the constraints (11b) and (11c) are linear. Therefore,
Problem (P(x)) is a convex optimization problem that can
be solved very efficiently using solvers such as CVX [33].
However, such centralized solutions are efficient but highly
computational. In fact, they require a central controller that
collects information from BSs and UEs, optimizes parameters,
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and sends signaling messages back to the BSs and UEs which
can be cumbersome.

2) Distributed User Association: We propose to solve the
distributed user association problem by having recourse to
non-cooperative game theory. Non-cooperative game theory
models the interactions between players competing for a com-
mon resource which is the set J of BSs. We define a multi-
player game GUA between the |I| users which are assumed to
make their decisions without knowing the decisions of each
other. Each user i strives to compute the amount of time θij
to be associated with BS j in a way to selfishly maximize its
own utility. Note that, in this game, each user can associate
with any BS, mmWave or LTE.

a) User Association Game: The formulation of the non-
cooperative user association game GUA =

〈
I, SUA, η

〉
can be

described as follows:
• The finite set of users I = {1, · · · , |I|}.
• Each user i ∈ I strives to compute the amount of time
θij to be associated with BS j, ∀j ∈ J . Hence, the action
of user i is θi = (θi1, ..., θi|J |). A strategy profile θ =
(θ1, ...,θ|I|) specifies the strategies of all players.

• The space of strategies SUA formed by the Cartesian
product of each set of strategies SUA = SUA1 × SUA2 ×
...×SUA|I| , where the strategy space of any user i is SUAi =
{0 ≤ θij ≤ 1, ∀j ∈ J and

∑
j∈J θij ≤ 1}.

• A set of utility functions

η(θ) = (η1(θ), η2(θ), · · · , η|I|(θ))

that quantify users’ utility for a given strategy profile θ.
The utility function of any user i is given according to
the objective function of the coordinated problem in (5):

ηi(θi,θ−i) =
∑
j∈J

θij log(
ρij

θij +
∑
i′∈I
i′ 6=i

θi′j
). (13)

For every user i, ηi is strictly concave w.r.t. θij ,∀j ∈ J and
continuous w.r.t. θlj , l 6= i,∀j ∈ J . Hence, a Pure NE exists
and it is unique [34], which is a valuable asset for practical
scenarios. In the following section, we will investigate how to
reach this PNE.

b) Reaching Pure Nash Equilibriums: We prove here-
after that we are in presence of an exact potential game. This
property enables us to use a greedy Best Response algorithm
in order to reach the PNE according to [32].

Proposition 3.2: The game GUA is an exact potential game.
Proof: The game GUA is a continuous exact potential game

as we have what follows:

∂ηi
∂θij

=
∂V (θ)

∂θij
, ∀i ∈ I,∀j ∈ J ,

where the potential function V is given by:

V (θ) =
∑
j∈J

(
∑
i∈I

θij log(ρij) +
∑
i∈I

θij log(
∑
i∈I

θij)(|I| − 2)

−
∑
i∈I

(
∑
u∈I
u6=i

θuj) log(
∑
u∈I
u6=i

θuj))

(14)

�

Exact potential games have a distinct computational advan-
tage in that computing the PNE consists in maximizing the
potential function. Therefore, the computation of an equilib-
rium is reduced to solving an optimization problem at each
iteration of the Best Response dynamics, obviating the need for
computational fixed point theory. Accordingly, at each iteration
step t of the Best Response algorithm, user i ∈ I strives to find
the following optimal association vector θ∗i (t) as a response
to θ−i(t− 1):

θ∗i (t) = argmax
θi

ηi(θi,θ−i), subject to θi ∈ Suai , (15)

which amounts to the following optimization problem:

(Pi(θ−i)) : max
θi

ηi(θ) = {
∑
j∈J

θij log(
ρij

θij +
∑
i′∈I
i′ 6=i

θi′j
)}

(16a)

subject to
∑
j∈J

θij ≤ 1, (16b)

θij ≥ 0, ∀j ∈ J . (16c)

Problem (Pi(θ−i)) solved by each user i ∈ I at each iteration
is a convex optimization problem. Indeed, the constraints (16b)
and (16c) are linear, while the objective (16a) decomposes into
two functions:

ηi =
∑
j∈J

θij log(ρij)−
∑
j∈J

θij log(θij +
∑
i′∈I
i′ 6=i

θi′j), (17)

where the first expression is linear (hence concave) and the
second is concave as the opposite of the entropy function. Con-
vex optimization is a special class of mathematical problems
that can be solved numerically very efficiently. In particular,
we resort to the subgradient-based algorithm to solve Problem
(16) in what follows.

c) Projected subgradient-based algorithm: In order to
solve the convex problem (Pi(θ−i)) for each user i ∈ I, we
can have recourse to the subgradient method for constrained
optimization. This algorithm takes the following form:

θn+1
ij = θnij + δngn,

where n is the step number, δn a step size, and gn a
subgradient of the objective function in (16a). This subgradient
is written as follows:

gn = ∇θijηi(θ
n
i ,θ

n
−i) (18a)

= log(
ρij

θnij +
∑
i′∈I
i′ 6=i

θni′j
)−

θnij
θnij +

∑
i′∈I
i′ 6=i

θni′j
. (18b)

The feasible set of user association vectors is a simplex
defined by constraints (16b) and (16c). The projection of the
subgradient on the simplex is straightforward and performed
according to the algorithm in [35].

Algorithm 2 details the computation process for solving
the user association problem in a distributed manner. Given
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Algorithm 2 Best Response algorithm for user association

Require: I,J ,K, ρij ,∀(i, j) ∈ (I×J ). Maximum tolerance
for the subgradient algorithm ε ≥ 0 and for the Best
Response algorithm ε′ ≥ 0

Require: Iteration t← 0
1: θij(1)← 1

|J | ,∀i ∈ I,∀j ∈ J
2: repeat
3: t← t+ 1
4: for i ∈ I do
5: Step n← 0
6: θnij(t)← θij(t),∀j ∈ J
7: repeat . Solve (Pi(θ−i)) in (16)
8: for j ∈ J do
9: θn+1

ij (t) = θnij(t) +

δn

log(
ρij

θnij(t)+
∑
i′∈I
i′ 6=i

θi′j(t)
)− θnij(t)

θnij(t)+
∑
i′∈I
i′ 6=i

θi′j(t)


10: θ̃n+1

ij (t)← Projection(θn+1
ij (t))

11: end for
12: n← n+ 1
13: until |θ̃

n+1

i (t)− θ̃
n

i (t)| ≤ ε
14: θi(t+ 1)← θ̃

n+1

i (t)
15: end for
16: until |θ(t+ 1)− θ(t)| ≤ ε′

initial user association vectors, the Best Response algorithm
iterates until convergence to a PNE (Line 16). Each iteration
consists of computing the user association successively for all
users in the network (Line 4). When dealing with user i ∈ I,
the optimal user association is computed using the projected
subgradient method (Line 7-13). The subgradient algorithm
converges when the variation in the user association vector
between two successive steps is less than a predefined maximal
tolerance ε (Line 13). The convergence of the gradient-based
optimization is guaranteed and proved in 3.3. Similarly, the
global user association problem converges when the variation
in the UA vector between two successive iterations is less than
a predefined maximal tolerance ε′ (Line 16).

Proposition 3.3: The convergence of the subgradient method
in the best response algorithm with constant step size is
guaranteed.

Proof: According to [36], a constant step size is more
convenient for distributed algorithms. In the latter case, the
gradient algorithm converges to the optimal value provided
that the step size is sufficiently small and that the objective
function ηi(θi, θ−i) has Lipschitz continuity property. The
latter property is verified if the Hessian is bounded in the
l2 norm.

All Hessian diagonal values are equal to:

λjj =
∂2ηi
∂2θij

= −1− dij
θij + dij

, (19)

where dij =
∑
i′∈I
i′ 6=i

θi′j .

As non-diagonal values are null, l2 = λjj . To establish the
proof and show that l2 norm is bounded, we need to distinguish
two cases:

• Case 1: for a given user i ∈ I, ∀j ∈ J , there exists
some θi′j 6= 0 (i.e. at least one user is associated with
BS j) and hence 0 < dij ≤ |I|. Accordingly, l2 = λjj is
bounded because 0 ≤ θij ≤ 1:

−2 ≤ λjj ≤
−1− 2× dij

1 + dij
(20)

• Case 2: for a given user i ∈ I, ∃j ∈ J such as∑
i′∈I
i′ 6=i

θi′j = 0. Here, we need to separate again two

subcases:
1) θij 6= 0 which means that no user other

than user i is associated with BS j. Ac-
cordingly, ηi(θi, θ−i) =

∑
j∈J θij log(ρij) −∑

j∈J θij log(θij). Thus, ∂2ηi
∂2θij

= −1
θij

which means
that the l2 norm is bounded as 0 < θij ≤ 1.

2) θij = 0 which means that there will be no traffic
on BS j. Such a case is problematic because it
will lead to an indeterminate expression in the
subgradient of the objective function in (18b) (0/0).
However, we show that such a case will boil down
to removing BS j from the gradient iteration of
user i. In fact, we consider that at given iteration
n, user i needs to optimize θ(n)ij and θ

(n)
i′j = 0 for

i′ 6= i ∈ I. If user i responds by setting θ(n)ij to zero
in order to optimize its objective function in (17),
θij will remain null for further iterations. Indeed,
if for the most suitable traffic condition on BS j
(all concurrent users overlooked BS j), user i has
decided not to select it, then it will avoid allocating
traffic to that BS in the future when eventually other
users might select it again, forcing the rate obtained
by user i through BS j to further drop down.

�

In the Best Response algorithm 2, each user iteratively
optimizes its utility using the projected-subgradient algorithm.
The latter necessitates a set of parameters for initialization for
each user i ∈ I:
• The peak rates ρij when associated to each BS j ∈ J

(obtained as an output of the SA block).
• The UA vector θi(t) (obtained locally at the previous

iteration t).
• The expression

∑
i′∈I
i′ 6=i

θi′j(t).

The last expression can be written as Lj(t) − θij(t), where
Lj(t) =

∑
i∈I θij(t) is the load of BS j ∈ J . This load

information can be signaled on a broadcast channel by the
BSs at each iteration t. As all the aforementioned parameters
can be made available to the user, Algorithm 2 can be straight-
forwardly implemented in a distributed fashion.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the impact of various network
parameters, such as mmWave density, cell load, and user
distribution and density. Finally, we offer valuable guidelines
into practical 5G HetNet design.
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A. Description of the Algorithms

We implement various algorithms for the coordinated Spec-
trum Allocation (SA) and User Association (UA) in 5G hetero-
geneous networks. These algorithms are presented hereafter:

1) BR-SA + BR-UA combines astute spectrum allocation
as in Section III-B with distributed user association
as in Section III-C2. This algorithm includes cell load
estimation and applies distributed RB allocation to shield
vulnerable femto cells from harmful interferences. Par-
ticularly, it implements Best Response dynamics for
femto cell RB allocation (Algorithm 1). As for BR-
UA, it implements a Best response algorithm with a
projected-subgradient (Algorithm 2).

2) BR-SA + Cent-UA combines the same spectrum alloca-
tion as BR-SA + BR-UA with the centralized optimal
user association as in III-C1. The optimal user associ-
ation is based on convex optimization and solved with
CVX [33].

3) BR-SA + Pow-UA combines the same spectrum alloca-
tion as previously with the state-of-the-art power-based
user association. Precisely, each user is associated with
the BS corresponding to the maximum received power.

4) CoCh-SA + PR-UA deploys the totality of the LTE
spectrum in femto and macro cells with frequency reuse-
1. It implements a peak rate user association where each
user is associated with the BS delivering the highest peak
rate given by (4).

5) SepCh-SA + SCFirst-UA equally shares the LTE spec-
trum between macro and femto tiers with frequency
reuse-1. Users are associated with the BS delivering the
maximum received power: a bias of 10% is added to
the power received from small cells to artificially extend
their coverage [37].

6) CoCh-SA + Pow-UA deploys the totality of spectrum
in femto and macro cells with frequency reuse-1. User
association is power based.

The choice of the aforementioned algorithms represents differ-
ent strategies in spectrum allocation and user association. The
first three algorithms challenge the savvy spectrum allocation
made by BR-SA by combining it with different user associa-
tion schemes: a selfish UA (BR-UA) that amounts to a global
distributed solution, an optimal centralized user association
(Cent-UA) that provides upper bound performances, and a
basic state-of-the-art power-based association (Pow-UA). The
last three algorithms combine static state-of-the-art spectrum
allocation with basic UA schemes that tackle different aspects
of network heterogeneity. PR-UA tackles heterogeneity in
terms of spectrum size (20 MHz for LTE and 1 GHz for
mmWave), SCFirst-UA tackles the heterogeneity in terms of
cell size, and Pow-UA tackles the heterogeneity in terms
of transmit power. In the following, we present a thorough
assessment of the algorithms performance in the coordinated
spectrum allocation and user association. We consider multiple
criteria such as user rate distribution, traffic distribution, and
global utility.

B. Simulation Context

We consider a three-tier wireless network comprising macro
LTE cells, femto LTE cells, and mmWave cells over a square
area of 1200 m x 1200 m shown in Fig. 2. We distribute seven
tri-sectorized macro-BSs according to a hexagonal structure
with an inter-BS distance of 500 m as in an urban environment.
In each one of the 21 sectors, we uniformly allocate two
geographical positions for femto and mmWave BSs.

-600 -400 -200 0 200 400 600

-600

-400

-200

0

200

400

600

Fig. 2: Three-tier wireless network with LTE tri-sectorized
macro BSs (in blue), LTE femto BSs (in red), and mmWave
BSs (in green). Red crosses represent user positions.

In our simulations, the LTE system bandwidth equals 20
MHz with 100 RBs of 180 kHz. Multiple Input Multiple
Output (MIMO) is supported to increase user rates eightfold
through spatial multiplexing. When radio conditions are favor-
able, 8 different data streams are transmitted on 8 transmitting
antennas and received on 8 receiving antennas, using the same
RB. Moreover, channels are generated using the publicly-
available MATLAB implementation of the WINNER Phase II
Channel Model [38]. The shadow fading map follows a normal
2D space-correlated distribution, as in [39]: the Gaussian
random variable has a zero mean and a standard deviation
of 10 dB.

As for the mmWave system, we consider a bandwidth of
1 GHz with a central frequency of 73 GHz. Channels are
generated using the model introduced by [40] following the
outdoor propagation measurement campaign in New York city.
We randomly consider 10% of the links between users and
mmWave BSs to have line of sight propagation. Here also, the
shadow fading map follows a normal distribution: the Gaussian
random variable has a zero mean and a standard deviation of
10 dB.

In the heterogeneous network, the transmit power of the
deployed antennas equals 42 dBm for macro BSs, 23 dBm
for femto BSs, and 30 dBm for mmWave. The transmit and
receive antenna gains equal 15 dBi and 0 dBi, respectively for
all types of devices.

The following numerical results are obtained for 20 runs
of each algorithm. In order to compare these results with
statistical distributions, we make use of boxplots: on each
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boxplot, the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points which are not considered
outliers, and outliers are plotted individually. We also make
use of cumulative distribution functions computed based on
the empirical measure of the total runs of the algorithms.

C. Reference Scenario

We start by defining a reference scenario where users are
generated according to a random uniform distribution. In this
scenario, the per-cell cluster Cj of BS j is the set of BSs
j′ ∈ Cj where γjj′ ≥ γthreshold with γthreshold = −110 dB.
Further, 15% of the generated small-cell positions are ded-
icated to mmWave BSs (according to a uniform random
distribution), the remaining for femto BSs. In this section, we
perform an exhaustive comparison of the various algorithms
using the settings of the reference scenario. Then, this scenario
is declined with multiple variations to stress out the impact of
different factors such as the mmWave BS density, the user
distribution and density, and finally, the femto cluster size.
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Fig. 3: Objective Value for reference scenario

We start by analyzing the performances of the simulated
algorithms in Fig. 3 and Fig. 4. Figure 3 displays the numerical
values of the objective in (7a) for the coordinated problem,
whereas Fig. 4 shows the percentage of users associated with
macro, femto, and mmWave BSs. This percentage is computed
for macro BSs as follows

(
∑

j∈JLTE
macro

∑
i∈I

θij)/(
∑
j∈J

nj).

The percentage of users associated with femto and mmWave
BSs are derived similarly.

In Fig. 3, we note that BR-SA + BR-UA and BR-SA + Cent-
UA achieve the best performances. First, BR-SA benefits from
the devised cell load estimation and interference minimization.
This increases the peak rate and consequently the value of
the objective function. Using an optimal centralized user
association in conjunction with BR-SA (as in BR-SA + Cent-
UA) leads to the best performance owing to the high peak rates
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Fig. 4: User association percentage for reference scenario

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Rate (Mbit/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

BR-SA + BR-UA

BR-SA + Cent-UA

CoCh-SA + PR-UA

SepCh-SA + SCFirst-UA

CoCh-SA + Pow-UA

BR-SA + Pow-UA

Fig. 5: User rate distribution for reference scenario

made available by BR-SA. Moreover, the distributed BR-UA
matches the optimal Cent-UA and the algorithm BR-SA + BR-
UA achieves equivalent performances compared to BR-SA +
Cent-UA. In Fig. 4, BR-SA + BR-UA and BR-SA + Cent-UA
depict equivalent user association percentages where users are
equally shared among macro cells and small cells.

Simulation results show the limitations of the widespread
state-of-the-art power based association. In Fig. 3, the ob-
jective value obtained by BR-SA + Pow-UA is low despite
the high efficiency of the spectrum allocation performed with
BR-SA. In such a heterogeneous network, the power based
user association Pow-UA incites users to select the BS with
the highest transmit power thus leading to congestion on the
LTE macro BSs. This is confirmed by Fig. 4 where 80% of
users are associated with macro BSs and almost no users select
mmWave.

The limitation of power based association is exacerbated
when CoCh-SA is used to statically allocate the spectrum in
CoCh-SA + Pow-UA. In this case, reuse-1 spectrum allocation
is agnostic to cell load and users associated to LTE BSs
suffer from magnified mutual interference between macro and

Authorized licensed use limited to: INRIA. Downloaded on November 13,2020 at 21:50:47 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3022681, IEEE
Transactions on Mobile Computing

12

femto. Such interference lowers the peak rates available in
the network and consequently the objective value after user
association as shown in Fig. 3.

Interestingly, CoCh-SA performs better in CoCh-SA + PR-
UA than in CoCh-SA + Pow-UA in terms of objective value
as seen in Fig. 3. The former associates users with the BS
delivering the highest peak rate taking full benefit from tech-
nologies such as mmWave, having short transmission range
but large bandwidth. In fact, 30% of users are associated with
mmWave BSs in CoCh-SA + PR-UA as in Fig. 4.

Finally, SepCh-SA + SCFirst-UA achieves a lower objective
than CoCh-SA + PR-UA despite the bias towards small cells
and the interference cancellation obtained by a separate spec-
trum allocation for macro and femto BSs. First, the spectrum
separation between macro and femto BSs is independent of
the user distribution. Moreover, the reuse-1 strategy does not
protect femto users from harmful co-tier interference. Second,
the small-cell first user association does not lead to the suitable
user offload in a heterogeneous setting as seen in Fig. 4.

In Fig. 5, we plot the cumulative distribution function of
user rates for the different algorithms. The median rate for
BR-SA + BR-UA and BR-SA + Cent-UA is equal to 9 Mbit/s,
followed by 7 Mbit/s for CoCh-SA + PR-UA, and only 3
Mbit/s for the remaining algorithms. The plot shows that
around 50% of users have more than 10 Mbit/s for BR-SA
+ BR-UA and BR-SA + Cent-UA, 40% for CoCh-SA + PR-
UA, and less than 20% for the other algorithms. The advantage
of the best performing algorithms increases between 20 Mbit/s
and 100 Mbit/s. For instance, 20% of users obtain more than
50 Mbit/s with these two algorithms, 15% with CoCh-SA +
PR-UA, and only 1% with CoCh-SA + Pow-UA. Particularly,
BR-SA + Pow-UA outperforms the state-of-the-art algorithms
around 50 Mbit/s owing to the astute spectrum allocation that
reduces the harmful interference among LTE BSs.

D. Impact of mmWave Density

In this section, we assess the impact of mmWave BSs
density. We consider two scenarios where 5% and 25% of the
generated small-cell positions are dedicated to mmWave BSs
(according to a uniform random distribution), the remaining
for femto BSs, and compare them with the reference scenario
(15% for mmWave BSs).

Except the CoCh-SA + Pow-UA algorithm that is insen-
sible to the spectrum opportunity brought by mmWave, the
other algorithms have seen their objective largely increased
in proportion to the mmWave density as shown in Fig. 6.
This behavior is confirmed through Fig. 7 where we display
the percentage of users associated to the various BSs. In the
CoCh-SA + Pow-UA algorithm, the mmWave technology fails
to attract users, contrary to the CoCh-SA + PR-UA algorithm
where mmWave BSs absorb almost half of the traffic for
the highest density. The BR-SA + BR-UA algorithm is more
balanced as it shelters femto BSs from deleterious interference
via intelligent spectrum allocation. This enables femto BSs to
remain appealing for users: around 25% of users select femto
BSs in the reference model for BR-SA + BR-UA against 15%
for CoCh-SA + PR-UA. We note that this percentage is further
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Fig. 6: Value of the objective for different mmWave densities
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Fig. 7: User association percentage for different mmWave
densities

reduced when the mmWave density increases: only 10% for
CoCh-SA + PR-UA against 20% for BR-SA + BR-UA.

The user rate represented in Fig. 8 shows the invariance of
the state-of-the-art algorithm CoCh-SA + Pow-UA, whereas
the median rate increases significantly with the mmWave
density for the two other algorithms. Precisely, CoCh-SA +
PR-UA increases its median rate by 5 Mbit/s from low to
high mmWave density, while BR-SA + BR-UA records an
increase of 8 Mbit/s. We note that the intelligent coordinated
algorithm BR-SA + BR-UA enables to take full advantage of
the heterogeneous deployment. For a low mmWave density,
the third quartile is equal to 10 Mbit/s for CoCh-SA + PR-
UA and 12 Mbit/s for BR-SA + BR-UA. For a high mmWave
density, the performance gap increases significantly: the third
quartile is equal to 30 Mbit/s for CoCh-SA + PR-UA and 45
Mbit/s for BR-SA + BR-UA.

E. Impact of the User Distribution

In this section, we generate users according to a Gaussian
distribution with a standard deviation of 45 centered at the
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Fig. 8: User rate distribution for different mmWave densities
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Fig. 9: Value of the objective for different user distributions

origin of the network represented in Fig. 2. This scenario
represents a crowded space where the user density is very
high near the central macro BS. In Fig. 9, we compare the
objective value as computed by the selected algorithms for
the reference scenario (uniform distribution of users) and the
crowd scenario (Gaussian distribution of users). We note a
performance deterioration in the crowd scenario: some BSs in
the network become congested while others are underutilized.
This is exacerbated for the CoCh-SA + Pow-UA algorithm
where the power based UA restricts the number of candidate
BSs. This is further highlighted in Fig. 10 where the median
rate of BR-SA + BR-UA decreases from around 9 Mbit/s to
5 Mbit/s and the median rate of CoCh-SA + Pow-UA drops
from around 4 Mbit/s to 2 Mbit/s. Finally, in Fig. 11, we note
that in the crowd scenario, the percentage of users associated
with mmWave BSs becomes slightly higher (except for power
based user association). In fact, the number of users that are
in the mmWave coverage increases for the crowded region.
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Fig. 10: User rate distribution for different user distributions
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Fig. 11: User association percentage for different user distri-
butions

F. Impact of Femto Cluster Size

We assess in this section the impact of femto cluster size
on performances. In particular, we show that through cluster
size, we can control spectrum reuse.

a) Fine-tuning of Cluster Size: In this scenario, we con-
sider different values for the γthreshold that defines the cluster
size relative to each femto BS: -110 dB for the reference
scenario, -80 dB for smaller clusters, and -120 dB for larger
ones. To assess the impact of this threshold, we display in
Fig. 12 the cumulative distribution function for the user rates.

We note a low discrepancy between the different cases
except for rates ranging between 2 and 30 Mbit/s. Using a
higher threshold in comparison with the reference scenario
shrinks the cluster size. This increases the amount of available
resource blocks per femto BS, at the expense of magnified
interference. Precisely, the high interference level leads to
fewer users having rates between 5 and 30 Mbits/s compared
with the reference scenario. Contrarily, when decreasing the
threshold to -120 dB, the cluster size is increased, thus
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Fig. 12: Impact of reuse path loss threshold

reducing the number of available resources per femto BS. This
leads to fewer users having rates above 30 Mbit/s. However,
as the interference level is lowered, more users exploit the
MIMO spatial multiplexing gain, and consequently more users
have rates above 2 till 30 Mbit/s. Thus, the threshold is a
powerful tool to balance between interference and spectrum
reuse. A large threshold reduces the size of each per-cell
cluster enabling higher spectrum reuse at the cost of higher co-
tier interference and lower spectral efficiency, and vice versa.

b) Cluster Size and Femto Demand: Figures 13 and 14
respectively illustrate the impact of γthreshold on cluster size
and femto demand. As discussed earlier, a larger threshold
value reduces the cluster size and increases the number of
resource blocks per femto BS. We note, in Fig. 14, the very
high number of femto BSs with zero demand. These BSs may
be turned off, so as to reduce network power consumption
while still achieving the best performances. In fact, although
these BSs serve no users, the objective function value of BR-
SA + BR-UA significantly exceeds that of CoCh-SA + PR-UA,
SepCh-SA + SCFirst-UA, and CoCh-SA + Pow-UA, where all
femto BSs are provided RBs (cf. Fig. 3). Moreover, numerical
results show that providing one RB to the femto BS with zero
demand yields a decrease in the spectral efficiency and in the
objective function value. This confirms the efficiency of our
femto cell load estimation.

G. Complexity Analysis

Let us examine the complexity of the algorithms proposed in
this paper. Our coordinated framework operates in two steps:
a spectrum allocation followed by a user association.

In all heuristic user association algorithms (Pow-UA, PR-
UA, SCFirst-UA), every user computes a given metric per
BS and compare the metrics provided by all BSs to choose
its allocation. Thus, the complexity of these algorithms is
in O(|I| · |J |). The game theory based approach BR-UA
proceeds in iterations. Given initial user association vectors,
the Best Response algorithm iterates until convergence to a
NE. Each iteration consists of computing the user association
successively for all users in the network. Thus, it is important
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to evaluate the number of iterations in order to assess the
complexity of such algorithm. For this, we have performed
exhaustive simulations and plotted the distribution of the
number of iterations in Fig. 15. We note that the first quartile
of the iterations is equal to 8, the median is equal to 9
(corresponding to the third quartile), and the values never
exceed 10. This ensures in practice a fast convergence of our
algorithm.

Similar to the spectrum allocation, the game theory based
approach, BR-SA, proceeds in iterations. At each iteration,
each femto cell minimizes its cost function in response to the
strategies of other femto cells in the previous iteration. Fig.
15 shows that the median number of iterations is equal to 3.
This median value is also equal to the first and third quartiles.

H. Guidelines

For clarity, we sum up in this section the major contri-
butions of our coordinated framework for SA and UA in
novel 5G HetNets. Through this work, we proved that our
devised framework yields load-aware RRM that prevents over-
dimensioning radio resources, or defectively associating users
to crowded cells.

In our exhaustive simulations, the Best Response algorithm
for spectrum allocation enabled mitigating the impact of
harmful interference on femto BSs. When coupled with our
pertinent load estimation method as in BR-SA, we attained the
best performances in terms of global objective and user rates.
In fact, the load estimation succeeded in tailoring the spectrum
allocation to the user distribution. As for the user association,
the distributed approach in BR-UA matched perfectly the
optimal centralized Cent-UA. Consequently, the BR-SA + BR-
UA algorithm achieved the highest performance compared to
all other algorithms.

In the heterogeneous wireless network, we showed the
prevalence of coordinated algorithms that capture the diverse
characteristics of the radio propagation in terms of radio
channel model, transmit power, and bandwidth. In particu-
lar, we shed light on the deficiencies of power based user
association Pow-UA, and the limitation of peak rate based
association PR-UA that both failed to consider the totality of
the aforementioned characteristics.

When dealing with the widely used small-cell first user
association SCFirst-UA, we noted its drawbacks as highlighted
in SepCh-SA + SCFirst-UA. In fact, the bias towards small
cells did not enable to benefit from resources available in
mmWave BSs. On the contrary, it provoked congestion on the
overloaded femto BSs.

Considering the global performance, CoCh-SA + PR-UA
showed the closest results compared with the best coordinated
algorithms (i.e., BR-SA + BR-UA). However, when the density
of mmWave BSs is high, their appeal increased at the expense
of femto BSs. This provoked traffic imbalance and caps the
performance of CoCh-SA + PR-UA.

Finally, in crowd scenarios, the global objective of the
network and the median rates diminished for all algorithms
compared to a uniform user distribution. This congestion
impact is exacerbated for static spectrum allocation (without

load estimation) and power based user association (agnostic
to load) as with the CoCh-SA + Pow-UA algorithm.

V. MASSIVE MIMO IN MMWAVE CELLS

Massive MIMO (mMIMO) [41] and mmWave are regarded
as two enabling 5G technologies. In this section, these two
technologies are combined to improve capacity. We assume
that mMIMO mmWave BS j ∈ JmmW employs time-division
duplexing (TDD), has Mj antennas, and simultaneously com-
municates with Bj single-antenna users over the same time-
frequency resource (Mj � Bj ≥ 1). In addition, relying on
channel reciprocity in TDD cells, the downlink channel is
estimated based on uplink pilots, whose number is equal to
Bj .

Further, mmWave BS j is considered to use linear zero-
forcing beamforming to transmit Bj user streams with equal
power assignment. Consequently, the SINR observed by user
i ∈ I, when connected to mmWave BS j ∈ JmmW , can be
rewritten as:

SINRmmWij =
Mj −Bj + 1

Bj

pjgjgiγij∑
j′∈JmmW

j′ 6=j
pj′gj′giγij′ + p̃N

,

(21)
Moreover, the downlink achievable rate ρij of user i ∈ I,

when associated with BS j ∈ JmmW , is expressed as follows:

ρij = ψWj log2(1 + SINRmmWij ), (22)

where ψ is between 0 and 1 and represents the fraction of
resources used for downlink data transmission. The remaining
fraction is used either for uplink data transmission or channel
estimation.

The coordinated spectrum allocation and user association
problem is thus reformulated as:

maximize
θ,x

∑
i∈I

∑
j∈JLTE

θij log(
ρij(xjk)∑
i∈I θij

)

+
∑
i∈I

∑
j∈JmmW

θij log(ρij)

(23a)

subject to
∑
j∈J

θij ≤ 1, ∀i ∈ I, (23b)∑
i∈I

θij ≤ Bj , ∀j ∈ JmmW , (23c)

θij ≥ 0, ∀i ∈ I,∀j ∈ J , (23d)

xjk ∈ {0, 1}, ∀j ∈ J LTE ,∀k ∈ K. (23e)

In the new objective function (23a), we note the absence
of scheduling in the part that covers the mmWave BSs∑
i∈I
∑
j∈JmmW θij log(ρij), owing to the mMIMO technol-

ogy. In fact, users associated to mmWave BS j are served
simulatenously as long as

∑
i∈I θij ≤ Bj , as stated in

constraints (23c). The optimization problem formulated in (23)
is still a Mixed Integer Non-Linear Program (MINLP).
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Building on the output of the spectrum allocation x, the
coordinated problem in (23) boils down to the following
centralized user association problem:

(P ′(x)) : maximize
θ

∑
i∈I

∑
j∈JLTE

θij log(
ρij(xjk)∑
i∈I θij

)

+
∑
i∈I

∑
j∈JmmW

θij log(ρij)

(24a)

subject to
∑
j∈J

θij ≤ 1, ∀i ∈ I, (24b)∑
i∈I

θij ≤ Bj , ∀j ∈ JmmW , (24c)

θij ≥ 0, ∀i ∈ I,∀j ∈ J . (24d)

The objective (24a) is a concave function. Indeed, the part
that covers LTE is concave similarly to (11a), whereas the
part that concerns mmWave

∑
i∈I
∑
j∈JmmW θij log(ρij) is

linear in θij ,∀j ∈ JmmW and hence concave. Moreover, all
constraints are linear. Therefore, Problem (P ′(x)) is a convex
optimization problem.

In what follows, we assess the impact of massive MIMO
combined with mmWave. For illustration, we consider the BR-
SA + Cent-UA algorithm, as it achieves the best performances.
We also assume that mmWave BS j ∈ JmmW has the
following parameters: Mj = 100, Bj = 20, and Wj = 1
GHz. We examine two scenarios, that differ in the fraction of
resources used for downlink data transmission, and compare
them with the reference scenario (without mMIMO). In the
first one, ψ equals 0.45: radio resources are alternately shared
between downlink data transmission and uplink data transmis-
sion. An additional fraction is further sacrificed for channel
estimation. In the second scenario, downlink and uplink traffics
are assumed to be extremely asymmetric, and all resources
are ideally dedicated to downlink data transmission. Thus, ψ
equals 1, maximizing the cell downlink capacity.

Since mMIMO boosts spectral efficiency and capacity,
mMIMO mmWave BSs attract more users, offloading LTE
cells, as shown in Fig. 16. With mMIMO, around 40% of
users select mmWave BSs against an average of 25% for the
case without mMIMO. Interestingly, when all resources are
dedicated to downlink data transmission (ψ = 1), mmWave
BSs fail to attract more users in comparison with the first
scenario (ψ = 0.45). This highlights the coverage limitation
of mmWave frequencies.

Moreover, higher median objective function values are ob-
served with mMIMO in Fig. 17. As more users benefit from
mMIMO and mmWave technologies, and less users compete
for LTE resources, the objective value increases. In the first
scenario, mmWave BSs use less than half their resources
for downlink transmission, in comparison with the reference
scenario. However, through improving spectral efficiency, the
massive MIMO technology compensates for the lack of radio
resources and yields slightly higher median objective value.
Consequently, with mMIMO, similar performances can be
achieved at lower costs. Further, in the second scenario, all
mmWave resources are dedicated to downlink transmission.
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Fig. 16: Impact of mMIMO on user association percentage
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Fig. 17: Impact of mMIMO on the objective value

Users associated with mmWave BSs take full benefit of
mMIMO and mmWave resources, contributing to a significant
increase in the objective value.

Furthermore, as mMIMO improves mmWave spectral effi-
ciency and capacity and reduces LTE load, median user rates
increase in comparison with the reference scenario (cf. Fig.
18): 9 Mbit/s for the reference scenario, 9.5 Mbit/s for the first
mMIMO scenario, and 12.5 Mbit/s for the second mMIMO
scenario. Besides, the lowest user rate value improves to
around 0.85 Mbit/s for the first mMIMO scenario and around
1 Mbit/s for the second mMIMO scenario. To conclude, using
mMIMO allows our BR-SA + Cent-UA algorithm to achieve
even higher performances in 5G HetNets (cf. second mMIMO
scenario), or relatively similar performances although with
fewer mmWave resources (cf. first mMIMO scenario).

VI. CONCLUSION

In this work, we tackled the problem of spectrum allocation
and user association in 5G heterogeneous networks consisting
of macro cells and small cells deployment with both mmWave
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Fig. 18: Impact of mMIMO on user rate

and traditional sub-6GHz technology such as LTE. We in-
troduced a coordinated framework that enabled tailoring the
spectrum allocation to the user distribution and performing
user association accordingly. In particular, we devised an
original method for estimating cell load. This method served as
a guideline to allocate the spectrum in a way to account for the
user distribution and strike a good balance between spectral
efficiency and spectrum reuse. The spectrum allocation for
LTE small cells was formulated as a non-cooperative game.
We proved the existence of pure Nash equilibrium that are
attained by Best Response dynamics. The user association was
addressed following two approaches: a centralized approach
solved using convex optimization tools, and a distributed ap-
proach portrayed as a non-cooperative game. The unique Nash
equilibrium of the latter game is attained by a fast converging
Best Response algorithm. We implemented in our coordinated
framework various spectrum allocation and user association
algorithms following centralized, distributed, or basic state-of-
the art approaches. Through extensive simulation, we assessed
the performance of the devised algorithms considering relevant
criteria such as BSs density, user density, traffic distribution,
cluster size, and global objective. We further succeeded in
offering valuable guidelines into 5G HetNet design. Finally,
we assessed the impact of massive MIMO combined with
mmWave in typical 5G HetNets.
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