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Abstract: Currently in industry, inspection tasks are essential to ensure a product efficacity and reliability. Some 
automated tools to inspect, i.e. to detect defect exist, but they are not adapted to an industrial inspection 
application. Most of industrial inspection is human made. In this article, we propose a new algorithm to match 
a 3D point-cloud to its 3D reference to track visual defects. First, we reconstruct a 3D model of an object 
using Iterative Closest Points (ICP) algorithm. Then, we propose an ICP initialization based on a Monte Carlo 
Metropolis-Hasting optimization to match a partial point-cloud to its model. We applied our algorithm to the 
data measured from a Time-of-Flight sensor and a RGB camera. We present the results and performance of 
this approach for objects of different complexities and sizes. The proposed methodology shows good results 
and adaptability compared to a state-of-the-art method called Go-ICP. 

1 INTRODUCTION 

Today in industry, inspection remains a complex and 
hard task to achieve for an operator. Most of its 
activity is done by eye, sometimes in hostile or dark 
environment e.g., in a wind turbine nacelle or in a 
pipe system for energy distribution. Automatize part 
of their task with computer vision or Artificial 
Intelligence (AI) will help make their work less 
difficult. Such technology assistance should answer 
to ground reality of the inspection work: 
- These methods must be applicable in real time. 

The operator needs the result during its 
inspection cycle to buy replacement parts. 

- These approaches must be precise. In some fields 
like aeronautics. 

- These solutions require to treat any object size. 
In aeronautics, the operator inspects objects from 
a bolt to a turbine.  

Online drones, robots or other platforms equipped 
with sensors can be used to recover data on the 
condition of the object. W. Chen et al., 2020 studied 
the state of power lines using a drone using a deep 
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learning (DL) approach to classify foreign objects. 
Saavedra et al., 2021 also used a DL approach for 
analyzing X-Ray images. Overall, classification and 
object detection are essentially based on Machine 
Learning (ML) technics. However, these methods 
efficiency depends on the training database, its 
diversity and size. For industrial inspection, this will 
imply a large training database for each inspection 
application. Yet, to our knowledge, there is no public 
database for industrial inspection. 

Instead of using ML approach, a well-known 
approach consists in comparing a scan of the object 
of interest with its no-defect 3D reference. For 
example, in Abdallah et al., 2020; Abdallah et al., 
2019, they used Computer-aided design (CAD) as the 
no-defect reference. Such approach needs CAD, 
which is not always available in industry, especially 
in aeronautics where pieces are often replaced by new 
models.  

In this work, we present our method to compare 
an object 3D scans with its reference model to detect 
defects. Our goal is to provide an approach fitting the 
inspection requirements. Our approach can provide a 
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3D model of the object to have a standard reference, 
which means it does not require CADs. 

2 RELATED WORK 

In this section, we briefly introduce state-of-the-art 
methods for evaluate changes between a 3D model 
and a partial scan of an object. First, we present 
methods creating a 3D model in a section called 3D 
reconstruction. Then, we present several methods to 
evaluate changes on the object, i.e., 3D matching. 
Finally, we will present some optimization methods 
to improve 3D matching. 

2.1 3D Reconstruction 

The literature shows that 3D reconstruction is a 
common problem. There is two main approaches 
studied: photogrammetry (Bhadrakom, 2016) and 
point cloud processing (Bethencourt & Jaulin, 2013). 
The first category reconstructs 3D models using set of 
2D images and camera information via Structure from 
Motion to produce point cloud. Points of interest are 
extracted using Scale-invariant Feature Transform 
(SIFT). The second category, called point cloud 
processing, is mainly based on merging partial point 
clouds using 3D matching algorithm (Bethencourt & 
Jaulin, 2013). Partial point clouds are usually pre-
matched using interest points extractor like SIFT. 
Then, Random Sampling Consensus (RANSAC) 
(Zhou et al., 2016) is applied to get a first point cloud 
alignment. Finally an Iterative Closest Point (ICP) 
(Besl & McKay, 1992) step refines the alignment 
estimation. If available, pose estimation can be 
improved using Inertial Measurement Unit (IMU).  

However, these methods are not suited for 
inspection application mostly due to the lack of 
precision for photogrammetry, lack of data for ML 
approaches, and due to the time cost and adaptability 
for existing 3D matching method. To resolve this 
issue, we have chosen a simple method. It is based on 
existing tools of 3D reconstruction, allowing to obtain 
a 3D model of an object under few minutes with a 
precision around 1mm. A set of 3D scans are fused to 
reconstruct an object based on ICP color (Park et al., 
2017). 

2.2 3D Matching 

A wide range of algorithms exists for matching two 
point-clouds. Each of them has advantages and 
limitations. We can cite for example RANSAC 
combined with Fast Point Feature Histogram (FPFH) 

(Rusu et al., 2009) or Kernel correlation (KC) (Tsin 
& Kanade, 2004). However, these approaches suffer 
from intrinsic limitations such as the high 
computational cost for the most precise ones, or the 
non-uniqueness of the minimization solution due to 
the high dimensionality problem. Iterative Closest 
Point is the widest and commonly used method for 
registration (Wang & Zhao, 2017) due to its fitness 
and precision. They are many studies to optimize and 
to improve ICP (Lamine Tazir et al., 2018; Park et al., 
2017; Pomerleau et al., 2015). This method consists 
in minimizing the following criterion: 
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where �⃗�
ᇱ is the position of the target point cloud, �⃗� is 

the corresponding points in the source point cloud, 𝑅 
is a rotation matrix and 𝑡  a translation vector. A k-
Nearest Neighbors (k-NN) algorithm evaluates the 
pairwise similarity. As shown in the previous 
equation, ICP is a self-consistent method which 
requires to initialize some parameters. Due to the high 
dimensionality of the equation to minimize, local 
minima can occur. However, adding constraints to the 
problem can help with this issue. We present three 
commonly used ICP approaches: 
- ICP point-to-point (Pt to Pt) (Arun et al., 1987): 

This is the initial approach developed. It is used 
as base for every ICPs variants. 

- ICP point-to-plan (Pt to Pl) (Besl & McKay, 
1992): This variant add surface constrain to 
equation (1). 

- ICP color (Park et al., 2017):  Based on ICP Pt to 
Pl, this variant add the RGB information of the 
point cloud as another constrain in the 
minimization equation. 

However, such methods alone require an a priori 
to be executed. This implies or to have two scans with 
an initial important overlap, or to have an 
approximated form of the transformation matrix. To 
define the most suited ICP approach for our problem, 
a preliminary study was performed on complex object 
as a pipeline system. Results for scans matching show 
better results for ICP color in term of precision and 
overlap between two scans. Color information add a 
degree of freedom that help to get optimal 3D 
matching. So, we applied ICP color to generate the 
3D models used as reference for the object inspection. 

2.3 Global Optimization 

As we said in the section before, ICP and generally 
3D matching methods are sensitive to initialization. 
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They are not sufficient to match points in any cases 
since these methods can converge to local minima. A 
common approach is to use global optimization for 
initialization (Linh & Hiroshi, 2015; Yang et al., 
2016). The literature shows different methods. First 
category being deterministic optimization methods. 
These methods use rigorous optimization providing a 
theoretical guarantee to find the best solution. We can 
cite Bound and Branch (BnB) as an example of such 
approach (Land & Doig, 2010). Yang et al., 2016 
proposed an algorithm that make use of BnB 
combined with ICP to find global optimal matching 
called Go-ICP. In such method, a rough optimization 
is done using BnB approach, followed by a fined ICP 
optimization. The BnB and ICP procedure is repeated 
until convergence is reached. However, these 
methods are computationally expensive since they 
explore recursively all the possibilities to get the 
global minimum. Second category is stochastic 
optimization. A well-known example is Monte-Carlo 
based simulation. These methods use randomness to 
explore all the solution and retain only the best one. 
They are easy to implement but require important 
computational time to guarantee the optimal solution. 
The last category is metaheuristic optimization 
methods based on iterative stochastic algorithms. 
They use random sampling to extract information of 
a given cost function local properties. These methods 
allow to get optimal solution but do not assure to find 
the optimal solution. Linh & Hiroshi, 2015 proposed 
an approach based on simulating annealing 
(van Laarhoven & Aarts, 1987) combined with ICP to 
do point cloud matching. Their procedure is similar to 
Go-ICP procedure in which a simulated annealing is 
done instead of BnB. Such approach is not suited due 
to possible slow convergence and high risk to be stuck 
in local solution for symmetric object and/or plan. 

For this work, we used a metaheuristic method of 
optimization refer as Monte Carlo Metropolis 
Hastings (MCMH) (Hastings, 1970). This method 
based on the Markov chain is simple to adapt to our 
problem. However, such methods are limited alone 
because finding the best matching solution would be 
expensive in time cost. In the next section, we explain 

our approach which uses MCMH to find an 
approximate solution before refinement with ICP. 

3 3D MATCHING APPROACH 

In this work, we propose a new complete approach to 
detect defects by comparing a generated 3D model 
with a partial scan. Figure 1 shows the proposed 
approach based on 3D registration with ICP and 
global optimization. First, we apply preprocessing on 
point clouds to clean it. Then a first 3D matching 
evaluation is done using MCMH. The 3D matching is 
refined with a last ICP color (Park et al., 2017) 
calculation. Our solution gives as output a 
comparison between the scan and the reference 3D 
model. 
In a first part, we will present the pre-processing in 
which we present cleaning steps of scans before 
matching. Then, we will present our matching method 
based on MCMH combined with ICP color. 

3.1 Pre-process 

Scans are cleaned before 3D matching due to possible 
outliers created by the sensor used for scan capture. 
Cleaning process stands in three steps. First, we 
remove the background. Above a certain distance, the 
sensor suffers from distortion in the measurement. 
Given the a priori of working on a close-by object, we 
remove points with a depth over a threshold 
dependent of the sensor range sensibility. Secondly, 
if the object is placed on a surface, we remove the 
surface. RANSAC is used to estimate plan equation 
and to remove points from and below the plan. 
Thirdly, we apply a statistical outlier removal method 
to remove points considered as noise. We also use 
 clustering method (Ester et al., 1996) to highlight 
cluster of points and discriminate clusters having less 
points than an empirically defined threshold (~ 500 
points). This allows to only keep the points of the 
object of interest. 

 

Figure 1: Scheme of the 3D matching process of our developed approach. We focus in this article on the 3D matching. 
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3.2 Scan Matching 

We know ICP requires a good initialization to have 
good results due to its self-consistent nature (cf. 
equation (1)). That is why, usually, ICP methods are 
used as a last step for fine registration. To solve our 
matching problem, we need a global 3D matching 
approach. We show in the related work section that 
the optimization field helps to find a global optimal 
solution. We present here our approach based on 
MCMH combined with ICP to match a misoriented 
scan to its 3D reference. We also compare our method 
to Go-ICP (Yang et al., 2016) a state-of-the-art 
method. Since this last method is based on a 
deterministic approach, we assume it should find 
correct solution, and so it can be used as a 
comparison. 

3.2.1 Monte-Carlo Metropolis Hastings 

 
Figure 2: Scheme of the MCMH exploration. MCMH 
allows to overcome barrier to find global minima. 

As the previous section explains it, MCMH approach 
is a meta-heuristic method used for phase spaces 
exploration and optimization of cost function. In our 
case, phase space corresponds to translation and 
rotation spaces to apply on the scan point cloud to 
match the 3D model point cloud. The Figure 2 
illustrates the approach. Rotation and translation are 
initialized with given values (Yinitial in Figure 2). 
Rotation matrix expression is derived from Euler 
angle. Then, we apply random variation on rotation 
angles and translation elements. A new 
transformation is then evaluated (Yn in Figure 2). If 
the new obtained configuration minimizes the overlap 
between the two points clouds, then the solution is set 
as the new reference. Else, in a classical Monte-Carlo 
Markov Chain (MCMC) simulation, the solution is 
rejected. However, in MCMH an acceptance criterion 
is added: The Metropolis-Hastings criteria. It is the 
probability of transition between the previous and the 

new estimated values of the cost function. Usually, 
the probability is expressed as follow: 

 

p௧௦ ൌ exp ൬ቀ𝑓ሺ𝑥௧ሻ െ 𝑓൫𝑥൯ቁ ∗ 𝛽൰  (2)
 

With 𝛽  the inverse of a fictitious temperature. A 
uniformly random number is drawn. If the random 
number is lower to the computed probability of 
transition, then the new state is kept (as shown with 
the kept solution Ym in the Figure 2). Else the state is 
finally rejected. This procedure allows to exit local 
minimum and to overcome barrier in the phase space. 
A new random variation is drawn at each iteration. 
This procedure allows to access the global minima. 

3.2.2 Hungarian Distance Criteria 

To compute a cost function expressing the similarity 
between two point clouds, we use pairwise Euclidian 
distance between source and target. We compute a 
cost matrix which is optimized using the Hungarian 
algorithm (Kuhn, 1955). The diagonal of the cost 
matrix corresponds to the smallest pairwise distance 
between the two considered points clouds. The 
MCMH will optimize the value of the cost matrix 
trace. 

First, cost matrix between points of source and 
target is evaluated. Then, we execute the Hungarian 
algorithm to solve the assignment problem. 
Concretely, solving the problem consists in 
performing permutation operation on the cost matrix 
to minimize its trace. Each of the diagonal elements 
corresponds to the scan and source optimal pairwise. 
We compute the trace and divide the value by the 
number of diagonal elements. We refer to this value 
as the average Hungarian distance in the rest of this 
article. The following equation present the equation 
to minimize: 

 

 

Figure 3: Photo of the lego and pipeline systems used for 
our tests. 
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Where 𝐷௨ᇱ is the average Hungarian distance we 
seek to minimize, 𝑁ௗ  is the number of diagonal 
elements of the cost matrix 𝐶መ , and 𝐿 and 𝑅  are 
respectively line and row permutation matrix. With 
the MCMH, we seek to minimize this value by 
applying variations on rotation and translation. 

3.2.3 Our Matching Algorithm 

We present below a pseudo-algorithm which explain 
the global matching procedure of our approach.  
 

Pseudo-algorithm 1: Our approach based on MCMH 
optimization procedure. 
Input: Scan point cloud S and 3D reference model 
point cloud M 
Output: Optimal transformation T of S to M 
1:   Compute topological descriptor of S and M 
 S’ and M’ 
2:   Align the center of mass of S’ and M’ 
3:   Compute the initial average Hungarian distance 
𝐷௨ 
4:   Initialize the rotation and translation 
5:   MCMH algorithm 
 Best approximate transformation T, 𝐷௨, 
6:   Rotation of 180° on Oy axis of S’ 
7:   Perform the same described procedure between line 
2 and 5 
 Best approximated transformation Tଵ, 𝐷௨,ଵ 
8:   if 𝐷௨,  𝐷௨,ଵ then: 
9:   | T ൌ  Tଵ 
10: ICP color evaluation based on T  Compute T 
11: return T 

In step 1 of our method, topological descriptor 
corresponds to a simplified triangular mesh. Point 
clouds are converted into triangular mesh using 
Poisson surface reconstruction of Kazhdan et al., 
2006. Simplification of triangular mesh uses voxel 
downsampling on vertices. Then we have a simplified 
shape of the original point cloud. Vertices from this 
shape are used for cost matrix evaluation. This step is 
important to reduce computation cost. 

First MCMH is computed, followed by a second 
MCMH on the same scan rotated by 180° on the Oy 
axis. The choice of the Oy axis is motivated by the 
idea that the object is placed on a surface. This change 
of initial point allows to begin the MCMH procedure 
to a different place in the phase space and so, to access 
a different path to the global solution. This second 
MCMH helps to overcome similarity problem (like in 
quasi-symmetric systems). 

 

Table 1: Matching results for the model of lego with our 
MCMH approach. 

 
Matching 
time (s) 

Success 
rate 
(%)

RMSE 
(mm) 

Fitness 
(%) 

Scan 1 
13.1 ± 

1.4 
65.5 

0.73 ± 
0.04 

83.1 ± 
1.1 

Scan 2 
13.2 ± 

0.6 
71.5 

0.66 ± 
0.04 

91.3 ± 
2.3 

4 TESTS AND PERFORMANCES 

4.1 Technical Settings 

Calculations and tests are done on a Mac OS 
computer with Intel® Core™ i9 with 8 cores, a 
frequency of 2.3 GHz and a RAM of 16 Go. Our code 
is developed in python 3.8 using Open3D, NumPy 
and SciPy libraries. The data is acquired using frontal 
the RGB camera and the ToF sensor (TrueDepth) of 
an iPad Pro 11” 2nd generation.  

Go-ICP is executed in python, using a cythonized 
version of the original code of Yang et al. originally 
coded in C++. Calculations were done on a Linux 
Ubuntu computer with Intel® Core™ i5 -8365U CPU 
@ 1.60GHz 1.90 GHz, with 8Go of RAM.  

Table 2: Matching results for the model of pipeline with our 
MCMH approach. 

 
Matching 
time (s) 

Success 
rate 
(%) 

RMSE 
(mm) 

Fitness 
(%) 

Scan 1 
18.7 ± 

1.1 
90.5 

0.83 ± 
0.01 

88.1 ± 
0.8 

Scan 2 
16.5 ± 

0.8 
70 

0.79 ± 
0.03 

87.4 ± 
2.0 

4.2 Systems Tested and Parameters 

We performed our tests on two objects showed in 
Figure 3: a lego and a pipeline system. The lego 
object is approximately of 12 cm length, 7 cm width 
and 4 cm height. The pipeline object is 30 cm length, 
10 cm width and 8 cm height. The last object 
represents well the inspection application since it is a 
reflective and complex object, made of steel. The lego 
is constraining by its size and sets the smallest object 
we successfully tested with our approach.  
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Table 3: Matching results for the pipeline and the lego models with Go-ICP. MSE Treshold is set to 0.00008. *Due to the 
computation time for this scan, only one calculation was performed. 

Lego 
 Time (s) Success RMSE (mm) Fitness (%) 

Scan 1 18.7 ± 0.3 FALSE 0.99 ± 0.01 48.7 ± 2.0 
Scan 2 19.9 ± 0.4 TRUE 0.63 ± 0.01 95.3 ± 0.9 

Pipeline 
 Time (s) Success RMSE (mm) Fitness (%) 

Scan 1 20.8 ± 1.3 FALSE 0.994 ± 0.001 55.3 ± 0.6 
Scan 2 3471* FALSE 1.11* 23.1* 

 
We now present the parameter used for the 

reconstruction and the global scan matching. We first 
begin with the MCMH parameters. Without any a 
priori, we must evaluate a large range of translations 
and rotations. So, we perform a large exploration in 
the first iterations. This allows us to move far enough 
from initial position. However, even if it helps to 
escape local minima, empirical tests show the need to 
restrain the range to access global minima. 
Metropolis-Hastings criteria is set to 𝛽 ൌ 700  (see 
equation (2)). MCMH procedure is computed over 
10000 iterations. This allows enough sampling of the 
phase space to find the best approximate solution. 

If luminosity can change during acquisition, we 
set the geometric parameter of ICP color 𝜆 ൌ
1.0. Voxel sizes from the coarse grain to the fine one 
are set to [0.01, 0.005, 0.002] for the lego model and 
[0.02, 0.01, 0.002] for the pipeline system. 
Adaptation of voxel size is needed for coarse to fine 
grain approach, depending on the size of the 
considered object. 

We compare our method with Go-ICP. For this 
method, the matching calculations are performed on 
the complete point cloud of the scan and the model 
without a support plan. We choose to proceed like this 
since Go-ICP is combinatory and supposed to assure 
a perfect matching. The tests with Go-ICP are 
performed using the set of default parameters. Only 
the shutoff parameter, here a mean square error 
(MSE) threshold, is fixed empirically at 0.00008.  
Higher values tested did not gave satisfying results on 
all the tests. Lower values increase CPU time above 
the hour.  

4.3 Scan Matching Performances 

We first present the matching results we got for two 
different scans of the lego. These two scans are 
complex cases due to the low point density on the 
object point cloud. We evaluate four performance 
criteria: the computation time, the success rate, the 
RMSE and the fitness between the scan and the 
reference model. Since MCMH is stochastic, we 

evaluated 200 runs of our approach to quantify its 
robustness. RMSE and fitness are evaluated only for 
good results only. We define empirically that a good 
match corresponds to a fitness greater than 80%.  

Results for the lego are presented in Table 1. We 
see our approach has an average success rate for the 
matching between 65 and 70% on 200 calculations. 
The time cost is about 13 seconds. We also saw 
empirically that RMSE and fitness can be used to 
evaluate the matching quality. A good matching has 
a value over 80% for the fitness and lower than the 
millimeter for the RMSE. The fitness is interesting 
since it traduces the overlap between the model and 
the scan, 100% means a perfect overlap. 

We apply the same procedure to the pipeline 
model. Results are presented in Table 2. The 
computation time of the matching algorithm is 18 
seconds. The success rate depends on the complexity 
of the scan. For example, the first scan tested show a 
rate success of 90.5% and the second, more complex, 
70%.  

For the Go-ICP method, since this approach is 
deterministic, one calculation is enough to get value 
for the four performances criteria previously 
described. However, stochasticity is added due to our 
scan preprocessing, so we evaluate the results on a set 
of 20 calculations. The Table 3 shows the results with 
this approach. Go-ICP is supposed to give the best 
matching without a priori, but for the two systems we 
tested, only one scan matching gives the expected 
results. The other tests were not retained since they 
converge to wrong solution. Due to its deterministic 
aspects, the only possibility to change results should 
be to change MSE threshold or initial orientation of 
the scans. However, modifying the MSE threshold 
does not improve results and requires more time to 
converge. 

Our approach using MCMH shows interesting 
results. We have a ratio of success superior to 80% 
for most of the cases. However, difficult scan like 
scan 2 of the pipeline has a success rate of 70%, due 
to the quasi-symmetry of the object. Such 
phenomenon can be explained by the initialization 
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before the matching. In term of phase space, the scan 
is positioned close to a saddle point. Due to this, in 
term of probability, we favor in the first iteration one 
side of the pipeline more than the other. In addition, 
the barrier between the two regions of the pipeline 
should be high. This implies that even with our 
metropolis criteria, passing the barrier is difficult. 
However, we treat a realistic industrial object, and we 
can assure correct matching if we keep only the best 
matching over the 200 tests. We already have leads to 
get performance improvement like taking the initial 
position and orientation of the scan into account 
thanks to IMU information. For the lego, we see it is 
a difficult case for matching. This is mainly due to the 
size and the point density of the scan. It implies less 
constrain compared to the pipeline and so, more local 
minima. 

In term of computational time, our method is 
efficient. The complete matching algorithm took 
between 10 and 20 seconds for all the tested case. Our 
method is faster than Go-ICP. Half of the 
computational time is due to the point cloud pre-
processing. For difficult cases, Go-ICP 
computational time can explode (~ 1 hour).  

Finally, concerning the fitness and the RMSE, 
these two values are good performance criteria that 
can be used to interpret the matching quality. For 
most of the cases, a fitness value over 80% and with 
a RMSE below the millimeter means we have a good 
matching. In the case where Go-ICP shows good 
results, the method has a lower RMSE value and 
wider fitness value. Nevertheless, the adaptability 
showed by our approach is interesting for inspection 
application where objects are complex. 

5 CONCLUSIONS 

In this work, we proposed a MCMH approach 
combined with ICP for the point cloud matching 
problem. We showed encouraging results compared 
to a state-of-the-art method called Go-ICP. Our 
method includes a 3D reconstruction step using ICP 
color generating 3D models to compare scans. The 
method is efficient on small objects like the lego, and 
seems adapted to realistic objects for inspection 
problem like the pipeline system.  

Our approach still suffers from some limitations, 
especially in difficult cases where there is some 
symmetry in the object of interest. The simplified 
triangular mesh descriptor we used could be too 
restrictive for such case, causing some trouble for 
matching.  Some improvement can be done by 
changing the initial position of the scan for the 

matching. Parallelization of MCMH can also 
conserve efficient results while reducing the actual 
computation time of less than 20 seconds, which can 
let us consider a quasi-real-time application. 

In the future, we plan to use this approach to 
perform geometrical comparison between a scan and 
its reference model, to highlight the presence of 
defects using similarity criterion. Highlighted region 
of interest will reveal the presence of defects like 
missing pieces, extra pieces or misoriented pieces. 
This method could then be used for detection of 
foreign objects in aeronautical assembly lines or 
missing pieces for maintenance for example. Further 
tests on realistic industrial environment, with 
different object sizes and complexity, are also 
planned to validate the method usability. A last 
improvement for this method could be to simulate a 
video processing approach through the fusion of 
several partial scans to inspect before comparing with 
the 3D model. It could improve robustness by adding 
more information and increasing artificially the 
sensor precision. 
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