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Abstract: Optical flow is a fundamental component of video compression as it can be used to effectively compress 
sequential frames. However, currently optical flow is only a transformation of one frame into another. This 
paper considers the possibility of representing optical flow based on physics principles which has not, to our 
knowledge, been researched before. Video often consists of real-world events captured by a camera, meaning 
that objects within videos follow Newtonian physics, so the video can be compressed by converting the motion 
of the object into physics-based motion paths. The proposed algorithm converts an object’s location over a 
series of frames into a sequence of physics motion paths. The space cost in saving these motion paths could 
be considerably smaller compared with traditional optical flow, and this improves video compression in 
exchange for increased encoding/decoding times. Based on our experimental implementation, motion paths 
can be used to compress the motion of objects on basic trajectories. By comparing the file sizes between 
original and processed image sequences, effective compression on basic object movements can be identified. 

1 INTRODUCTION 

The goal of video compression is to minimise the size 
of digital video files. This area has been studied 
extensively, focusing on compressing the data in 
several different ways, which can be divided into two 
categories: intra-frame and inter-frame compression. 
Intra-frame compression is applied within individual 
frames without concern of surrounding frames; this is 
equivalent to regular image compression. Inter-frame 
compression, however, focuses on how similar 
consecutive frames can be compressed, such as 
saving vectors to transform one frame into the next if 
the two are similar enough to achieve this. However, 
given a large quantity of video produced contains 
objects from real life, it may be possible to 
retroactively apply physics movement to objects 
captured on camera. The aim of this paper is to 
propose a method to transform object motion into 
physics-based motion paths which can be used to 
compress this information. 

Currently available methods for video 
compression are inbuilt into video codecs (the 
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formats for how video is stored on digital devices) 
such as H.264 and HEVC (also called H.265) which 
are the two most adopted at the time of writing. Both 
example codecs use optical flow / motion estimation 
to generate motion vector arrays to trace the 
movement of groups of pixels (termed micro 
blocks/coding tree units) from one frame to another. 
To clarify, motion estimation is the term relating to 
estimating motion in the world, whereas optical flow 
refers specifically to estimating motion of pixels with 
the video frame (Sellent et al., 2012). These two are 
not always equal, but in most cases are. This allows 
them to compress the information by storing the pixel 
values of only one frame and then only the motion 
vectors used to transform that frame to the next; 
however, this process is only ever used to convert one 
frame to another. This paper proposes the possibility 
of using physics to transform these individual motion 
vector arrays into motion paths defined by physics 
principles, thus adding an additional layer onto the 
already existing compression. 

As this concept is in its early stages, the 
experimental setup applies physics to the movement 
of individual segmented objects from the DAVIS 
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2016 dataset (Perazzi et al., 2016). Then, the file sizes 
of the original image sequence can be compared with 
the extracted object and background sequences along 
with the new generated physics motion path data. 

Video compression is a beneficial field of study as 
video is stored digitally almost exclusively. At high 
resolutions such as 4K, reducing the file sizes should 
enable faster video file transfers, and reduce hardware 
and energy costs. The aim is that applying physics to 
object motion within videos would allow increased 
compression rates and a new branch of potential 
research is discovered. 

2 LITERATURE REVIEW 

There is, to the author’s knowledge, no current 
research into using physics to improve video 
compression, so this research focuses on relevant 
existing video compression methods that could be 
used as a base to build on. Optical flow is a key 
component in video compression, and there are a 
wide variety of different approaches and methods 
available to calculate it. One key method is block 
matching/motion blocking, which is compared with 
other methods by Philip et al. (2014). Optical flow is 
saved in the form of a motion vector array, which is a 
transformation from one frame into another, and this 
makes it a possible input for our proposed physics 
estimation algorithm. Each frame’s optical flow 
encodes the translation of all applicable pixels within 
the video, which can be further compressed using 
physics-based motion paths in our proposed method. 

Further research was carried out on the variety of 
different optical flow methods (Barron et al., 1994), 
and more specifically using segmentation with optical 
flow as the objects would need to be extracted from 
the videos. DeepFlow (Weinzaepfel et al., 2013) 
effectively adapted optical flow to handle larger 
displacements, while ObjectFlow (Tsai et al., 2016) 
builds on it and other similar methods to use optical 
flow to segment objects and would be useful as a 
segmentation process before physics estimation. 

Currently, the two most commonly used codecs 
(H.264, H.265) each use a version of motion blocking 
to generate the optical flow used, with the only 
difference being the sizes of the motion blocks used, 
and thus the number of motion vectors stored 
(Rajabai & Sivanantham, 2018). Our proposed 
method is to build upon the output of these created 
motion vectors to apply physics estimation to their 
movement throughout the video. 

Many related studies were included within the 
research involving components of optical flow and 

segmentation in order to inform this study. Tsai et al. 
(2016) uses optical flow to discern object boundaries 
which would be a useful basis to then apply physics 
to. Motion Blocking also could be expanded upon, for 
example Gao et al. (2020) develops upon the method 
by breaking down motion blocks into a large number 
of possible polygons. This resulted in 82 options, 
which allowed motion blocks to be divided 
effectively along object edges. By improving the 
accuracy of how motion blocks represent objects, this 
would allow for semi-segmentation within the motion 
blocking process and the proposed physics process 
could then be applied more effectively. Being able to 
detect and recognise camera movements will also be 
important for adjusting the axis that the physics is 
measured against, so authors such as Sandula & 
Okade (2019) suggesting methods of detecting such 
camera movements were also researched. These 
issues could also be corrected with some inversion of 
motion stabilization where the axis measured against 
is stabilized to the camera movement. This can also 
be achieved during the motion blocking stage of 
compression (Wang et al., 2017), which analyses the 
global motion parameters to stabilize the video. 

To keep it simple for this proof-of-concept, we 
use a segmented dataset and track object movement 
via its centre point without regarding any rotation or 
other transformation. These will be areas that require 
more investigation if this proof-of-concept indicates 
a value to physics-based compression. 

While physics/mechanics has been widely 
explored in areas such as computer vision and object 
tracking, the authors have not seen any examples of 
an attempt to implement it into video compression. 

3 METHODOLOGY 

This paper aims to build a process that can compress 
videos by segmenting each video frame into objects, 
and then analysing the object’s motion in terms of 
physics equations which allows this motion data to be 
compressed. Firstly, the paper will outline some 
physics concepts, then these will be used to convert 
object location data into motion paths based on these 
concepts, and finally this will be implemented into a 
basic video compression process. 

As this is a proof-of-concept, this paper is solely 
concerned with a physics-based representation of 
motion. This means rotation, scaling and 
complex/non-rigid objects are disregarded at present. 
We also use a segmented dataset to perform an 
intuitive test without needing to solve the complicated 
issues behind object tracking, but do not suggest 
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Figure 1: A conceptual video sequence of a ball bouncing with the calculated values of location (y), velocity (Vy) and 
acceleration (Ay) for each frame. The values for Vy and Ay are calculated using Equations (1) & (2). The arrows are visual 
representations of the velocity (green) and acceleration (yellow). For simplicity, only the y dimension is specified.  

segmentation as a method for tracking objects in 
future as it is a more intensive process than video 
compression requires. 

3.1 Physics Concepts 

To explain our proposed video compression 
technique, it is important to first outline the basic 
physics concepts used to achieve it. All object 
interactions can be modelled by many different 
physics frameworks. For example, the theory of 
relatively could be used (Einstein, 2010), but this was 
created to update the previous framework’s 
interpretation of particles interacting in extreme cases 
(such as close to light speed). Newtonian physics 
however is what is more typically used to simulate 
object interactions at the time of writing, and it is 
more mathematically simple to model. As such, 
Newtonian physics will be used to build this 
modelling of object movement.  

Movement in Newtonian physics relies on the 
basic concepts of location, velocity and acceleration. 
Location is the place where an object is, at a set time 
or frame. Velocity is the difference between the 
location of the object over a set gap in time (for video 
purposes, one frame to the next). Acceleration is the 
difference between the velocity of an object at one 
point in time, and the velocity of an object at the next 
point in time. For an object in motion while no new 
force acts upon it, the object’s acceleration will 
remain constant, manipulating its velocity which in 
turn influences its location (Raine, 2013). These 
concepts are formalised in equations (1) and (2) 
below, which are then demonstrated visually in 
Figure 1. Newtonian Physics concepts can be 
demonstrated more clearly using Figure 1, which is a 
ball bouncing sequence accompanied by values for its 
distance, velocity and acceleration, as would be 

calculated using the definitions of location, velocity 
and acceleration stated. ሾ𝑉𝑥, 𝑉𝑦ሿ = ሾ𝑥ାଵ െ 𝑥, 𝑦ାଵ െ 𝑦ሿ (1)ሾ𝐴𝑥, 𝐴𝑦ሿ = ሾ𝑉𝑥ାଵ െ 𝑉𝑥, 𝑉𝑦ାଵ െ 𝑉𝑦ሿ (2)

where [xn, yn] is the object’s location within frame n 
 

For simplicity, the y values are measured as the 
distance from the ground, however in implementation 
they are calculated vertically from the top of the 
frame. Figure 1 demonstrates this Newtonian physics 
concept as acceleration remains constant as the ball 
bounces, until it impacts with the ground on frame 7 
where the ball’s gravitational force is combined with 
the impulse force from the ground causing the ball’s 
acceleration to spike in the other direction for a single 
frame. Because of the discrete nature of frame by 
frame video, this acceleration is observed on frame 6 
because of the large change in velocity. 

This approach may seem over-simplified given 
that there appear to be many forces acting upon the 
ball over time. For example, the ball is affected by the 
force of gravity permanently pulling it downwards, 
and an occasional impulse force from the ground. 
However, this method calculates the acceleration 
from the movement of the ball, and as such does not 
need to concern itself with the individual forces. Any 
combination of forces creates a set acceleration for as 
long as those forces continue to act on the object, and 
as the process can calculate the acceleration from the 
observed movement, individual forces are catered for. 

This indicates that no matter the object or the 
motion, be it a boat sailing along a river or clouds 
moving across the sky, the motion of any object can 
be simplified into only the acceleration, velocity and 
location of the object over a sequence of frames. 
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3.2 Optical Flow into Motion Paths 

Optical flow is the vector array to transform one 
frame into the next. Finding optical flow is a complex 
task. There are many differing methods, along with 
numerous extensions, to calculate optical flow. 

Our proposed method is that the optical flow field 
has some underlying redundancy which can be 
extracted through the process of physics modelling, 
allowing for further compression. Because the optical 
flow field is representative of object movements 
between only two frames, considering a series of 
optical flow frames together, it is likely possible to 
group objects together and apply physics to model the 
object movements. This is because the motion of 
objects does not vary randomly between each frame, 
but instead follows a defined path in relation to the 
object’s movement in the world. As such, it should be 
possible to save optical flow data in the form of 
physics equations, and this may have a smaller file 
size than the optical flow data itself. This is quite a 
complex problem, especially transforming an optical 
flow field into distinct objects and maintaining their 
persistence throughout a video sequence. This kind of 
segmentation has been studied before (Kim et al., 
2003, p. 2; Kung et al., 1996) and indicates that the 
proposed method has potential. For example, if 
vectors of a similar direction and amplitude can be 
clustered together, objects within the video should be 
determinable. The same objects movements over the 
course of multiple frames can then be converted into 
physics motion paths. 

 
Figure 2: Optical flow field example. 

Figure 2 shows a depiction of optical flow where the 
frame is broken down into blocks, and the arrows 
represented the how the pixels are transformed from 
one frame into the next. The vast majority of pixels 
shift only a small amount, but there are a number of 
outlier vectors that have been mismatched with a 
similar but different section of the image. 

However, the conversion of this optical flow data 
into objects is quite a complex problem, so it would 
be sensible to determine if saving data into a motion 
path format will improve the compression ratio before 

attempting to solve it. As such, this paper proposes a 
simple proof-of-concept test using pre-segmented 
video to extract object coordinates, from which to 
determine object motion. 

3.3 Converting Filmed Object 
Coordinates into Motion Paths 

To achieve the video compression, a process has been 
constructed to transform a series of coordinates into 
motion paths based on physics. This process is 
outlined in the flow chart in Figure 3. The input to this 
flow-chart is a series of coordinates, and the output is 
the corresponding series of motion paths. It is 
possible to demonstrate the process with the ball 
bouncing sequence from Figure 1. 

To begin with, the counter n is used to count 
frames through the sequence. A threshold must also 
be determined to register a change in acceleration. 
Given the discretisation caused by video having a 
limited frame rate, a small threshold value should be 
chosen to discern big jumps in acceleration, as there 
will likely be minor changes detected throughout. In 
this case, 1 is a suitable value. It is initialised to the 
start of the sequence: frame 0. As there are more than 
3 frames in the sequence, the details of that first frame 
are saved as the first motion path according to 
equations (1) and (2): M[y = 0, Vy = 9, Ay = -3] as 
location (y), velocity (Vy) and acceleration (Ay) 
respectively. The counter is now increased by 3, 
because the first three frames are always accurately 
represented as they were used to calculate the motion 
path’s values. Then, the new frame’s acceleration is 
calculated, and as it is also -3, it is within a threshold 
distance from the path’s acceleration (also -3), so the 
counter is increased again. This loop will continue 
until the counter is equal to 6, as here the calculated 
acceleration is now 17 which is outside the threshold 
accepted radius around -3 (-4 to -2 are acceptable for 
a threshold of 1), so this concludes that motion path. 
As there are no longer 3 frames remaining, but only 
2, a dummy motion path is generated with no  
acceleration to store the location information for the 
final two frames, and the process is completed.  

In order to generate the original coordinates back 
from these motion paths, the following function can 
be used. 

𝑀ሺ𝑗ሻ = ቐ 𝑘, 𝑗 = 0𝑀ሺ𝑗 െ 1ሻ + 𝑉𝑘, 𝑗 = 1𝑀ሺ𝑗 െ 1ሻ + 𝑉𝑘 + ሺ𝑗 െ 1ሻ𝐴𝑘, 𝑗  1 (3)

where j = n – m for a path starting at frame m and n 
is the frame in the sequence, and k is x and y, 
performed on the [x, y] vector. 
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Figure 3: A flowchart showing the coordinate to motion path process, where Axn is the acceleration on frame n in the x axis, 
and MAx is the acceleration of the current motion path in the x axis, and so forth. 

For example, to gain the value from frame 3 using 
the saved motion paths, j = 3 as the motion path 
begins at frame 0, the function can then be solved 
recursively for Mk(3). 

The remaining issue is how to determine the 
threshold value that detects a change in acceleration 
effectively. The value of 1 works for the example, but 
from sequence to sequence the optimum threshold is 
likely to change. If the threshold is set too low, then 
motion paths will be unnecessarily created which will 
negate compression. If the threshold is too high, then 
the object will veer off its intended path because a 
new path is not created when it should be. 𝐹ሺ𝑛ሻ = ൜1, |𝑥 െ 𝑀௫ሺ𝑛ሻ| ൏ 𝑡 ∩  ห𝑦 െ 𝑀௬ሺ𝑛ሻห ൏ 𝑡0,               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (4)

where [x,y] is the object’s location, t is a tolerance 
and M is the function specified in (3) 𝐴 = ∑ ிሺሻಿషభసబே   (5)

where N is the total number of frames in the sequence 
 

To solve this issue, a function is proposed defined 
in equations (4) and (5) to test every frame. Equation 
(5) returns a percentage of frames where the object’s 
location has been placed correctly by the algorithm, 
using a small value for t to allow for acceptable 
displacement. This displacement of the object within 
the image is the only change to video quality 
introduced by the proposed method, and while this 
can be set to 0 to ensure no change/lossless 
compression, this would also limit the compression 
achievable. The target accuracy can now be set to 1 
to ensure the algorithm’s recreations do not vary from 
the true locations of the objects and the process could 
then be run repeatedly to generate and test object 

paths while shifting the threshold up and down until 
A = 1 . This method allows for some variation in 
acceleration so long as the motion path tracks the 
object accurately. 

3.4 Video Compression using Physics 
Paths 

Here is a proposed test to determine the effectiveness 
of the process discussed in section 3.3. While physics 
motion paths should eventually be implemented on 
top of current optical flow methods, it was decided to 
keep these initial proof-of-concept tests simple by 
using a segmented dataset to extract the object from 
each frame and track its motion. Figure 4 shows the 
encoding process. Each video sequence contains one 
segmented object of focus. This object is extracted 
from the background image for each frame and a list 
of the object’s centre points is generated using the 
centre point, described in equation (6).  𝐶ሾ𝑥, 𝑦ሿ = ሾ௫ೌೣା௫ଶ , ௬ೌೣା௬ଶ ሿ  (6)

Where xmax is the largest x coordinate within the 
object, xmin is the smallest x coordinate within the 
object, ymax is the largest y coordinate within the 
object and, ymin is the smallest y coordinate within the 
object. 

These centre points are then passed into the 
previously discussed physics estimation function 
specified in section 3.3 and then the resulting motion 
paths, as well as the background and object image 
sequences are saved into an encoded file. For a single 
object video, this file will consist of a background 
plate, an object sequence and the motion paths for the 
object. For multiple-object videos, the file will consist  
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Figure 4: A flowchart breaking down the video. 

of a background plate and several object sequences 
each with their own motion paths. Each motion path 
consists of three vectors, one for initial location, one 
for initial velocity and one for acceleration; an object 
may have many of these throughout the sequence. To 
decode, the object need only be added to the 
background frame at the coordinate retrieved from the 
motion path, which is very easy to read consecutively 
because of the recursive nature of equation (3). A 
possible implementation could be: at the start of each 
motion path, load the values of location, velocity and 
acceleration into some temporary variables; then for 
each frame add the velocity to the location; and add 
the acceleration to the velocity; repeat this until the 
start of the next motion path where the variables are 
overwritten, and this process can continue being 
repeated until the end of the image sequence. 

4 EXPERIMENTATION AND 
RESULTS 

4.1 Dataset 

This process has been tested using a pre-segmented 
dataset and using the coordinates set by taking the 
centre of the segmented object in each frame using 
equation (6). The DAVIS 2016 Dataset has been used 
for the featured tests (Perazzi et al., 2016). This 
 

 
Figure 5: Example frames from the DAVIS 2016 dataset. 

dataset was chosen as it only segments one object per 
sequence and contains a wide variety of movement 
types with stationary and moving camera angles, as 
well as objects overlapping and complicated 
segmentation. In particular, three sequences with 
simplistic motion (‘soccerball’, ‘boat’ and ‘car-
roundabout’) and three sequences with complicated 
motion (‘bus’, ‘bmx-trees’ and ‘hockey’) were 
selected to test. The ‘soccerball’ is the simplest 
sequence in that the camera is stationary and the ball 
rolling along is a smooth deceleration, although the 
ball does roll behind some trees which renders the 
currently implemented centre tracker inaccurate in 
places. The ‘boat’ sequence has a smooth panning 
camera and a boat which is not overlapped by any 
objects resulting in a simple motion of the boat 
moving only slightly horizontally, and ‘car-
roundabout’ also has a smooth camera and no 
overlapping elements in its environment. 

The ‘bus’ sequence involves the bus driving 
behind several signs and a tree, where the overlap 
segmentation becomes very detailed, while the 
motion is simple as with the car. This sequence was 
included to indicate if the complexity of the 
segmentation has an effect on the file-size of the 
separated images. The ‘bmx-trees’ sequence is also 
complex in that the camera shakes quite considerably 
and the object is also a human riding a bike, making 
its motion more erratic and less consistent. Finally, 
‘hockey’ was included as an example of entirely 
human movement where the human and the hockey 
puck are tracked together as a very complicated and 
unpredictable shape moving also unpredictably. This 
was included to identify how the system would 
handle incorrectly segmented objects, as the human 
and puck’s centre point together is not representative 
of a real object’s movement. 

4.2 Experiments 

The current implementation is only focused on the 
centre-point of these objects and tracking that point’s 
movement. The tested implementation makes no 
attempt to break them up into individual components, 
even though they may have their own individual 
motion such as the BMX bike’s wheels. 

In order to test the effectiveness of the proposed 
process as a compression algorithm, it was going to 
be compared against H.264. The comparison would 
have been the size of the raw video file in .mp4 
format, against the size of the two separated video 
files and the saved motion path information. 
However, the results of this test were that the 
background plate (with the object removed) was 
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larger in size than the original base image for every 
test. We theorise this is because the empty space is 
more costly when compressed by the H.264 codec 
than when the object is present in the scene. 

 So, instead, the size of the original frames was 
compared with the size of the segmented frames and 
the motion data, which has been generated using the 
processes described in section 3.3. The dynamic 
threshold was used for the experiment to test the 
different sequences on a comparable playing ground, 
with a target accuracy of 1 (see equation (5)). A target 
of 1 ensures each and every frame in the sequence is 
accurately represented, while ensuring the minimum 
number of motion paths to enable compression. 

 This experiment was run in Python 3.7 using 
OpenCV to read and process the images, Numpy for 
matrix manipulation and Pickle for saving the motion 
path data. The threshold value was initialised at 1.0 
and was stepped up or down by 0.05 until the target 
accuracy was reached. If the threshold was lowered to 
0, then the test would proceed automatically, but this 
would result in an accuracy of 1, as it is equivalent to 
saving all the coordinates. The tolerance t (see 
equation (4)) was set to 3 pixels, as we were unable 
to identify that level of displacement with a visual 
inspection of the footage. 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑜𝑡𝑎𝑙 = 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 +𝑂𝑏𝑗𝑒𝑐𝑡 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒 + 𝑀𝑜𝑡𝑖𝑜𝑛 𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒 (7)

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑜𝑡𝑎𝑙𝐵𝑎𝑠𝑒 𝐼𝑚𝑎𝑔𝑒 𝑆𝑖𝑧𝑒  (8)

4.3 Results 

These tests revealed a substantial amount about the 
proposed process. The simplest clip ‘soccerball’ 
performed the best with a percentage difference of 
64% in comparison to the size of original image 
sequence. The ‘boat’ sequence, however, performed 
less well with only a 98% percentage difference, so 

only 2% smaller than the original file. The surprising 
result was the ‘bmx-trees’ sequence, which had a 
reduction to 74% its original file size despite the 
complexity of the motion in the sequence. As 
expected, the more complicated sequences performed 
less well, actually expanding the file size by up to 
150% of their original size for the very complicated 
overlapping ‘bus’ sequence. ‘bmx-trees’ and ‘car-
roundabout’ sequences were an exception, 
performing in opposition to our prediction. The 
results confirmed the hypothesis that image 
sequences can be compressed using motion paths. 

4.4 Discussion 

Results from the testing show the file size is 
unfortunately affected far more by the segmented 
image sizes than by the motion data. This reaffirms 
that applying segmentation in this way may be more 
costly than it is advantageous in many cases, 
especially where overlapping causes the 
segmentation to be very complex. This is also 
reflected in the increase in the background size when 
in video format, which could be attributed to the 
background plate containing a large empty area with 
no details to save and track, using motion blocking. 

While the motion paths themselves appear to be 
working effectively, the segmentation can greatly 
increase the file size which may far outweigh the 
compression advantages of the motion paths on more 
complicated objects and movements. This aligns with 
our initial understanding as segmentation is not 
suggested to replace traditional optical flow methods. 
Object size also has an effect as larger objects that 
take up more of the frame have a more complex 
segmentation, even without considering overlapping. 

A more relevant possible contributing factor is 
that video is discrete in terms of having a limited 
number of frames per second, whereas these physics  
 

Table 1:  Comparing the size of the original frames of the image sequence, and the separated frames of the image sequence. 

Image 
Sequence 

Background 
Image Size 

(Bytes) 

Object Image 
Size (Bytes) 

Motion Data 
Size (Bytes) 

Simulation 
Total (Bytes) 

Base Image 
Size (Bytes) 

Percentage 
difference (%) 

soccerball 5,381,742 606,487 411 5,988,640 9,316,723 64.28 

bmx-trees 5,631,113 1,686,822 604 7,318,539 9,871,661 74.14 

Boat 4,244,962 3,532,093 610 7,777,665 78,954,803 98.51 

hockey 3,810,400 3,659,393 592 7,470,385 7,336,290 101.8 

car-roundabout 4,866,468 6,461,275 498 11,328,241 9,535,231 118.8 

bus 4,438,933 9,575,051 571 14,014,555 9,340,244 150.0 
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concepts are assumed to exist in a continuous 
timeline. While they still function on a discrete frame-
by-frame basis, there may be minor information lost 
from this discretisation of the object’s movement. 

This process could also be improved by breaking 
down complicated objects into numerous more 
simple objects, and then tracking those components. 
While this seems a challenging prospect, all objects 
within reality obey the laws of physics. Complex 
objects may not display a constant acceleration; it is 
likely parts of a complex object may display a 
constant acceleration in relation to other parts of the 
same object. This could be achieved by developing on 
top of the optical flow already in place within most 
codecs, which is the next logical area of focus for 
study. Lucas & Kanade (1981) already differentiate 
between slow and fast object movement, and this is a 
useful feature to develop within the proposed method. 
Additionally, the ongoing areas we disregarded for 
this proof of concept, such as rotation, scaling and 
camera movement, will also need to be investigated 
and integrated into an overall system for peak 
compression to be achieved using this method. 

5 CONCLUSION 

This paper proposes a physics-based process to 
convert object movement into motion paths, as well 
as a rudimentary implementation using the DAVIS 
2016 segmented dataset. This is not a completed work 
but a proof-of-concept that requires further study. 

Based on the testing, the system currently 
performs well only in basic scenarios with small 
objects and a static camera view, as this is the best 
scenario it can use to recreate physics paths 
accurately. Motion in the camera will affect the 
object’s perceived movement away from its true 
movement and thus does not strictly comply to the 
physics rules being applied without some algorithmic 
stabilization. Based upon the testing, the final aim of 
this should be a hybrid method: the proposed physics 
estimation being applied onto a form of optical flow, 
like those used in the H.264 and HEVC codecs. If this 
process could be combined with or added after the 
pre-existing optical flow section of a codec to further 
compress these motion vector arrays, this could 
improve the observed compression ratio. 
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