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Abstract: Recently, many methods with complex structures were proposed to address image parsing tasks such as image
segmentation. These well-designed structures are hardly to be used flexibly and require a heavy footprint.
This paper focuses on a popular semantic segmentation framework known as encoder-decoder, and points out a
phenomenon that existing decoders do not fully integrate the information extracted by the encoder. To alleviate
this issue, we propose a more general two-branch paradigm, composed of a main branch and an auxiliary
branch, without increasing the number of parameters, and a boundary enhanced loss computation strategy to
make two-branch decoders learn complementary information adaptively instead of explicitly indicating the
specific learning element. In addition, one branch learn pixels that are difficult to resolve in another branch
making a competition between them, which promotes the model to learn more efficiently. We evaluate our
approach on two challenging image segmentation datasets and show its superior performance in different
baseline models. We also perform an ablation study to tease apart the effects of different settings. Finally,
we show our two-branch paradigm can achieve satisfactory results when remove the auxiliary branch in the
inference stage, so that it can be applied to low-resource systems.

1 INTRODUCTION

Semantic segmentation can be formulated as the task
of labeling all pixels in an image with semantic
classes. Most state-of-the-art semantic segmentation
models are based on the encoder-decoder architecture
or its variants. Specifically, the encoder extract infor-
mation from the original input, and the decoder in-
tegrate previously extracted information and recover
semantic information from it. In recent years, re-
searchers commit to exploring different network ar-
chitecture (Simonyan and Zisserman, 2014; He et al.,
2016) to learn a more general representation, then de-
ployed to the image segmentation task (Chen et al.,
2018; Wang et al., 2020).However, a general repre-
sentation extracted by the encoder means that the de-
coder need to decrease the gap between task free rep-
resentation and task dependency information.

In order to improve the parsing ability of de-
coder, DeeplabV3+ (Chen et al., 2018) through pyra-
mid pooling integrate the contextual information at
multiple scales. FCN (Long et al., 2015) use skip-
connection to fuse feature maps of different lay-
ers. (Li et al., 2019; Li et al., 2018) try to explore
the interrelationships between features through atten-
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Figure 2. Overview of our proposed two-branch architecture. 

(b) Second branch (Decoder2)

(a) Two-branch structure paradigm

Figure 1: Overview of our proposed two-branch architec-
ture. The output of the encoder is divided into two groups,
which are represented by two ‘half arrows’. Then each
group is input to each branch separately and followed by
a residual-liked module to fuse the outputs of two branches.

tion mechanisms. It is worth noting that some re-
cent works start exploring the two-branch structure
in the decoder (Fu et al., 2019; Yuan et al., 2020).
They capture meaningful information by carefully
designing different branches. Unfortunately, exist-
ing two-branch structures were elaborately designed,
thus hard to port to other types of decoders, and the
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Figure 2: Encoder-Decoder paradigm.

degradation of model performance caused by remov-
ing a branch is also unacceptable. Or they were just
designed for post-processing and are challenging to
train end-to-end. On the other hand, with the con-
tinuous improvement of the encoder’s representation
ability, making full use of the information extracted
by the encoder is still an open question. Therefore,
we have reason to suspect that the existing encoder-
decoder-based models do not fully integrate the in-
formation extracted by the encoder. We verified this
view through experiments.

To alleviate these problems, we propose a more
general two-branch paradigm, composed of a main
branch and an auxiliary branch for improving the
structure of the decoder. At the same time, we de-
sign a simple yet efficient branch that can be flexi-
bly integrated into existing encoder-decoder seman-
tic segmentation systems to verify the effectiveness
of the proposed two-branch structure. In order to en-
able two branches to learn complementary informa-
tion, we customize a loss calculation method to super-
vise the learning process of each branch. With these
ideas, different branches can learn complementary in-
formation adaptively instead of explicitly indicating
the specific learning elements of different branches.
In addition, learning complementary information can
make the two branches compete with each other to a
certain extent during the learning process, which can
further improve performance. Moreover, compared
with the counterpart of the original model, the ame-
liorated two-branch version reduces or maintains the
number of parameters while improving performance.

Our main contributions can be summarized as fol-
lows:

• We propose a general two-branch paradigm to en-
hance the capability of the decoder to parse the
information extracted by the encoder without in-
creasing the number of parameters.

• We propose the BECLoss that can supervise two-
branch decoders to learn complementary informa-
tion adaptively instead of explicitly indicating the
specific learning elements to each branch.

• We design a simple yet efficient branch that can
be flexibly integrated into the existing encoder-
decoder framework to form a two-branch struc-
ture.

2 RELATED WORK

Encoder-decoder and Variants. As a general struc-
tural paradigm, encoder-decoder is widely used in the
field of image segmentation. Such a structure usually
first encode features from the input to a latent feature
space, then gradually recover the information in the
decoder. U-Net (Ronneberger et al., 2015) explored
the potential relationship between the features of the
encoding phase and their counterpart in the decoding
phase through multiple skip-connections. SEMEDA
(Chen et al., 2020) first learned to convert the label to
an embedding space under the guidance of the bound-
ary information, and then supervised the encoder-
decoder structure under the learned subspace. PSP-
Net (Zhao et al., 2017) and Deeplab family (Chen
et al., 2018; Chen et al., 2017) introduced dilated con-
volution in encoder for increasing the receptive field
while maintaining the resolution, then several parallel
pyramid pooling were followed to integrate informa-
tion at different scales. Inspired by (Hu et al., 2018;
Woo et al., 2018), attention mechanism and its vari-
ants are adopted in encoders or decoders (Li et al.,
2019; Zhong et al., 2020) to improve performance.
In (Li et al., 2018), attention was deployed in the de-
coding stage for re-calibrating the feature maps with
learnable weights. In addition, the application of self-
attention (Vaswani et al., 2017) in encoder has grad-
ually become popular due to its capability of encod-
ing distant dependencies for better feature extraction.
SETR (Zheng et al., 2020) adapted a pure transformer
encoder to extract features from an image seen as a se-
quence of patches then followed a decoder to restore
the semantic information.
Multi-branch. Learning different information
through multiple parallel data streams has been
proved to have more advantages for representation
and generalization. Specifically, HRNet (Wang et al.,
2020) repeatedly exchanged the information across
different resolutions by a series of parallel feature ex-
traction streams in the encoding process to maintain
high-resolution representations. Based on HRNet,
(Tao et al., 2020) proposed a hierarchical multi-scale
attention approach in which each data stream learned
a specific image scale so that the model can consider
the information of multiple input image scales when
predicting. GSCNN (Takikawa et al., 2019) designed
a two-stream structure, one for context information
extraction, another one for boundary-related infor-
mation extraction. Combined with attention, RAN
(Huang et al., 2017) proposed a three-branch struc-
ture that performs the forward and backward attention
learning processes simultaneously. Similarly, DANet
(Fu et al., 2019) used a two-branch encoder to learn
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Figure. (a) Mis-labeled boundary pixels and (b) Extracted inner boundary.

Figure 3: (a) Mis-labeled boundary pixels and (b) Extracted
inner boundary.

the semantic relevance in spatial and channel fea-
ture spaces respectively. Unlike above works, Seg-
Fix (Yuan et al., 2020) proposed a post-processing
scheme that predicted boundary and direction maps
employing a two-branch decoder supervised by two
boundary-related losses.

Encouraged by multi-branch learning, we pro-
pose a more general and easy-to-deploy two-branch
paradigm, in which a new branch can be easily in-
serted into the original decoder to form a two-branch
decoder and, as a result, improve the discriminating
ability. Unlike previous works, we design a general
paradigm and enable different branches to learn com-
plementary information adaptively instead of explic-
itly indicating the specific learning elements of differ-
ent branches.

3 METHODOLOGY

In this section, we first systematically describe the
two-branch decoder paradigm, then design a simple
yet efficient branch that can be applied as a plug-in
to existing encoder-decoder frameworks to turn them
into our proposed two-branch architecture. Finally,
we introduced a new loss calculation method that can
be used to supervise branch learning complementary
information.

3.1 Two-branch Structure Prototype

In an image segmentation model, existing encoder-
decoder architectures can be simply represented in
Figure 2. Our proposed encoder-decoder based two-
branch variant is depicted in Figure 1. As shown in
Figure 1 (a), raw data is first input into the encoder
for feature extraction, then encoded features are input
to two branches separately, followed by a residual-
liked module to integrate information from different

Figure 4: Ground-truth inner boundary extraction process.

branches adaptively. For the fusion of two branch fea-
tures, we use the output of the penultimate layer of
each decoder instead of the last layer to retain more
information. Specifically, in the residual path, we
first concatenate the output features of two branches,
next follow a 1× 1 convolution to reduce the chan-
nels. Then features are combined with the output of
the first branch by an element-wise addition opera-
tion. The final output is up-sampled to recover reso-
lution if needed.

3.2 Additional Branch Setting

In this part, we design a simple branch that can be de-
ployed into an encoder-decoder framework to form a
two-branch decoder architecture. As shown in Figure
1 (b), the branch takes the encoded features as input.
Similarly to (Zhao et al., 2017), we utilize a parallel
average pooling module, each path consisting of an
average pooling operator and a 1×1 convolution op-
erator. We concatenate the output of each path to get
a multi-scale feature representation and followed by
another 1× 1 convolution. Then, we get the output
of this branch through an up-sampling operation and
a 1× 1 convolution operation. Finally, we divide the
encoded features into two groups along the channel
axis, and each grouped feature is entered into a spe-
cific branch.

3.3 BECLoss

In supervised learning, loss function plays a cru-
cial role in the optimization of the network. Thus,
we further propose a novel loss computation strategy
that can efficiently optimize this two-branch structure.
Moreover, (Chen et al., 2020; Takikawa et al., 2019)
have proved that introducing boundary information in
the loss helps to improve the inherent sensitivity of
the network to boundary pixels. Thus, we introduce
boundary information in the proposed loss to help
the model learn boundary features during the training
stage, which is verified in ablation experiments.

We name this well-designed loss BECLoss.
Specifically, BECLoss takes three inputs: outputs of
the first branch X1 and the second branch X2 and
ground-truth map GT . We assume batch size as 1,
thus the shape of Xk(k = 1,2) is C×H×W and C, H
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and W indicate the number of predicted classes, high
and width of input images, respectively. First, we get
the probability distribution Sk ∈ RH·W×C which can
be computed as:

Sk
i =

exp(Xk
i )

∑
C
j exp(Xk

i [ j])
(1)

where i = 0 . . .H×W −1 denotes the index of pixels,
j = 0 . . .C− 1 denotes the index of channels. Then,
we compute the probability map of ground truth label
Pk ∈ RH·W×1 as:

pk
i = Sk

i [gti] (2)

where gti is the ith pixel in GT . Following, we define
a mask M1 for indicating all the pixels whose proba-
bility in P1 is less than a threshold τ. M1 indicates the
pixels that are difficult to predict in the first branch.
With the computed M1 and P2, we filter out all pixels
in X2 whose probability is less than a threshold τ:

M1
i =

{
1 if P1

i < τ

0 otherwise
(3)

where i = 0 . . .H×W −1 denotes the index of pixels.
In order to standardize the loss definition, we use

L1 to indicate the boundary enhanced loss computed
from X1, and L2 to indicate a partial loss that we get
from X2. In L1 and L2 we only consider the pixels
which are hard to predict in the first branch in order to
utilize the additional branch to assist in the prediction
of these pixels. In addition, we use a hyperparameter
γ to control the influence of boundary information B∈
RW×H (detailed in 3.4) to the loss of the first branch,
we get L1 ∈ RH·W×1:

L1
i =−log(P1

i )× (1+ γ ·Bi)×M1
i (4)

where i = 0 . . .H×W −1 denotes the index of pixels.
Following, we compute the partial loss L2 ∈RH·W×1:

L2
i =− log(P2

i )×M1
i (5)

Finally, the BECLoss can be written as a weighted
average sum of L1 and L2:

LBEC =
∑i(L1

i +η ·L2
i )

∑M1
i

(6)

where η is a hyperparameter used to control the ratio
of L2 in LBEC.

The two branches can automatically learn comple-
mentary information which helps the proposed model
to further learn a more appropriate way to combine
the outputs of the two branches.

Figure 5: Architecture of modified SegNet with two de-
coders (SegNetT).

3.4 Ground-truth Boundary

In this part, we explain how we get a ground-truth
boundary map from a ground-truth label map. In-
troducing approximate boundary information in the
loss can improve the model’s sensitivity to physical
boundaries, which improves the prediction accuracy
in the boundary area. However, there are always la-
beled error pixels in the hand-labeled ground truth
map, which are especially obvious at the boundary
region, as shown in Figure 3(a). In order to allevi-
ate this problem, Figure 4 illustrates the inner bound-
ary extraction process. Concretely, we first extract the
boundary map B∗ from the original ground-truth label
map by a filter f that sets all pixels that do not have
8 identically-labeled neighbor pixels as 1, and other
pixels as 0. Then we thicken the boundary by a 7×7
dilation operator and get boundary map B∗t . Finally,
we get the inner boundary B∗in by applying the same
filter f on B∗t again and followed by another 3×3 di-
lation operator, as shown in Figure 3(b).

3.5 Joint Loss

The proposed BECLoss is designed for optimizing the
network with two branches. The purpose is to guide
the two branches to learn complementary informa-
tion. It can naturally be combined with other losses
for training the whole network. Therefore, the net-
work is trained to minimize a joint loss function:

L = LCE +α ·LBEC1 +β ·LBEC2 (7)

Specifically, LCE is cross-entropy loss, LBEC1 and
LBEC2 are proposed BECLoss for first and second
branch, respectively. α and β are weights parameters
of the two BECLoss.

4 EXPERIMENTAL RESULTS

In this section, we conduct experiments on Cityscapes
dataset (Cordts et al., 2016) and Freiburg Forest
dataset (Valada et al., 2016). In the following, we first
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Table 1: Comparison in terms of IoU vs different baselines on the cityscapes val set with 11 semantic class labels.

Methods sky building road sidewalk fence vegetation pole vehicle traffic sign person bicycle
SegNet 91.83 88.47 95.52 72.76 40.02 91.22 52.95 89.45 65.57 77.2 68.98
SegNetT (ours) 93.35 (+1.52)90.89 (+2.42)96.65 (+1.13)77.28 (+4.52) 49.72 (+9.7) 92.37 (+1.15)61.54 (+8.59)92.86 (+3.41)75.64 (+10.07)81.61 (+4.41)75.06 (+6.08)
DeepLabv3+ 93.99 90.9 97.29 80.47 54.73 91.92 56.56 93.05 71.78 78.9 73.79
DeepLabv3+T (ours) 93.95 91.99 (+1.09)97.62 (+0.33)82.31 (+1.84)54.85 (+0.12)92.55 (+0.63)62.69 (+6.13)94.17 (+1.12) 77.87 (+6.09) 82.4 (+3.5) 76.59 (+2.8)
HRNet 94.31 92.06 97.67 82.31 54.94 92.59 63.31 94.34 76.37 82.27 75.4
HRNet-T (ours) 94.83 (+0.52)92.68 (+0.62)97.98 (+0.31) 84.3 (+1.99) 56.28 (+1.34)93.06 (+0.47)67.17 (+3.86)94.83 (+0.49) 79.98 (+3.61) 84.35 (+2.08)77.09 (+1.69)

Table 2: Improvements with two-branch decoder on Freiburg Forest val set.

Methods BaseNet Trail Grass Veg. Sky Obst. Mean IoU (%) Parms. (M)
SegNet 84.15 85.55 88.97 91.28 0 69.99 29.4
SegNetT (ours) 88.55 (+4.4) 88.96 (+3.41) 0.91 (+1.94) 2.63 (+1.35) 47.93 (+47.93) 81.79 (+11.8) 18.6
DeepLabv3+ 83.03 86.11 89.96 92.16 36.1 77.48 26.6
DeepLabv3+T (ours) 88.02 (+4.99) 88.93 (+2.82) 91.02 (1.06) 2.83 (+0.67) 52.87 (+16.77) 82.73 (+5.25) 27.5
HRNet 84.79 86.49 89.79 91.96 38.44 78.29 9.6
HRNet-T (ours) 88.74 (+3.95) 89.35 (+2.86) 91.14 (+1.35) 92.6 (+0.64) 53.17 (+14.73) 83 (+4.71) 9.6

Res50

Hrnet-W18

Vgg16

Figure 6: Qualitative results on the Cityscapes val set with
11 semantic class labels.

modify some classic image semantic segmentation al-
gorithms to build their two-branch decoder counter-
part, then compare the proposed two-branch architec-
ture with the original network. Finally, we carry out
a series of ablation experiments on Freiburg Forest
dataset. Our models are trained on one Nvidia Tesla
P100 GPU with mixed precision settings.

4.1 Datasets

Cityscapes. The Cityscapes dataset is a large-scale
database for urban street scene parsing. It contains
5000 finely annotated images captured from 50 cities
with 19 semantic object categories, in which 2875 im-
ages are used for training, 500 and 1525 images are
used for validation and testing separately. All images
are provided with a resolution of 2048× 1024. We
followed (Valada et al., 2019) and report results on
the reduced 11 class label set.
Freiburg Forest. The Freiburg Forest dataset is an
unstructured forested environments dataset. It con-
tains 6 segmentation classes, i.e., sky, trail, grass, veg-

etation, obstacle, and void. The dataset contains 325
images with pixel level hand-annotated ground truth
map. We follow (Valada et al., 2019) and use the same
train and test splits provided by the dataset.

4.2 Implementation Details

In order to comprehensively test, we deploy proposed
two-branch decoder on three classic baseline net-
works, namely, SegNet (Badrinarayanan et al., 2017),
DeeplabV3+ (Chen et al., 2018), and HRNet (Wang
et al., 2020). Two-branch SegNet is shown in Fig-
ure 5. We divide the output of the encoder into two
groups, one of which is input to the original data
stream, and another is input to the additional data
stream. In our two-branch implementation, we de-
note the upper branch in the decoder as the original
data stream, the lower branch as the additional data
stream. Next, we follow the residual-liked module to
fuse the two outputs while deploying the BECLoss
and cross-entropy loss during the training. More con-
cretely, we supervise the learning process of the two
branches through LBEC1 and LBEC2, and the combi-
nation of two outputs are guided by LCE . We fol-
low the same way to implement the counterpart of
DeeplabV3+ and HRNet. Note that we only take the
backbone in the original model as an encoder, and
the rest as the decoder. In practice, we use Resnet50,
Vgg16 and HRNet-W18 as backbones.

We initialize encoder with the weights pre-trained
on ImageNet, this is totally the same as its original
implementations (Badrinarayanan et al., 2017; Chen
et al., 2018; Wang et al., 2020). We employ a cycli-
cal exponent learning rate policy (Smith, 2017) where
the min lr and max lr are set to 1e−5 and 1e−2, and
cycle length and step size are set to 40 and 5 epochs
respectively . Momentum and weight decay coeffi-
cients are set to 0.9 and 0.0005. If not specified, all
models are trained with a mini batch size of 8. Fur-
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Table 3: Improvements with two-branch decoder on
Cityscapes val set with 11 semantic class labels.

Methods BaseNet Mean IoU (%) Parms. (M)

SegNet 75.82 29.4

SegNetT (ours) 80.64 (+4.82) 18.6

DeepLabv3+ 80.31 26.6

DeepLabv3+T (ours) 82.45 (+2.14) 27.5

HRNet-W18 82.34 9.6

HRNet-W18T (ours) 83.9 (+1.56) 9.6

Res50

Hrnet-W18

Vgg16

thermore, we configure the hyperparameter γ and η

in BECLoss as 10.0 and 0.3. The scale α and β in
Equation 7 are set to 2.0. For Cityscapes dataset, we
set input image size to 384×768, thus random crop-
ping (cropsize 384× 768) is applied during training,
and during testing, we use the original resolution of
1024× 2048. For Freiburg Forest dataset, we resize
the image to 384× 768 during training and testing.
All training images are augmented by random left-
right flipping. We set 160 and 120 training epochs
to Cityscapes datasets and Freiburg Forest dataset. In
addition, as we compare the original models with their
two-branch encoder counterpart, so we perform the
same settings for each comparison pair to ensure fair-
ness.

4.3 Experimental Evaluation

In this section, we provide an extensive evaluation of
each component of our framework on two challeng-
ing outdoor datasets, namely Cityscapes dataset and
Freiburg Forest dataset. We use the widely used inter-
section over union (IoU) to evaluate the performance
of our approach.

4.3.1 Results on Cityscapes Dataset

Table 3 summarizes the results of our two-branch
decoder with different baselines. We can see that
our approach significantly improves the mean IoU.
Specifically, our approach improves the mean IoU of
original encoder-decoder frameworks, namely Seg-
Net, Deeplabv3+, and HRNet, by 4.81, 2.14, and
1.56, respectively. In particular, our two-branch im-
plementation of SegNet (SegNetT) dramatically re-
duces the number of parameters while significantly
improving the performance. DeepLabv3+T and HR-
Net only slightly increase the parameters (0.9M) or
keep the number of parameters while improving the
model’s performance. Our results also reflect that the
original decoder does not fully use the information
extracted by the encoder. In addition, table 1 illus-
trates the category-wise comparison between various
baselines and their two-branch variants. We surpris-
ingly find that our method has a significant improve-

Figure 7: Qualitative results on the Freiburg Forest test set.

ment in the prediction accuracy of small-scale targets,
like ”pole”, ”traffic sign” and ”person”. Several seg-
mentation results are shown in Figure 6, we can see
that our two-branch variants perform better on those
small-size-object classes in the images than the base-
line models. Note that we may find the optimal hy-
perparameters to achieve better performances through
grid search, but this is not the focus of this work.

4.3.2 Results on Freiburg Forest Dataset

We carry out experiments on the Freiburg For-
est dataset to further evaluate the effectiveness of
our method. Quantitative results of Freiburg For-
est are shown in Table 2. The baselines (Seg-
Net, DeepLabv3+, HRNet) yield mean IoU 69.99%,
77.48%, and 78.29%. Our two-branch counterpart
boosts the performance to 81.79%, 82.73%, and 83%.
We can see that our methods outperform their base-
lines with notable advantage, especially for the class
of ”obstacle”, which is hardest to segment because
of its severe class imbalance. Several examples are
shown in Figure. 7.

4.4 Ablation Study

4.4.1 BECLoss and Boundary

All two-branch variants are implemented by replacing
the decoder of the original network with our proposed
two-branch decoder, and through our well-designed
BECLoss to explicitly supervise the learning process
of the model, the two branches can learn complemen-
tary information. In addition, we introduce bound-
ary information into BECLoss to improve the inher-
ent sensitivity of our models to boundary pixels. To
verify the validity of our method, we conduct a group
of ablations to analyze the influence of various fac-
tors within our method. We report the results over
the segmentation baseline SegNet on Cityscapes and
Freiburg Forest dataset in Table 4.

As shown in Table 4, two-branch decoder im-
proves the performance remarkably. Compared with
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Table 4: Ablation study on Cityscapes val set and Freiburg
Forest test set. Loss1-Loss3 represent deployed loss in Fig-
ure 1, B indicates BECLoss enhanced by boundary infor-
mation.

Cityscapes Freiburg
SegNet \ \ CE \ 75.82 69.99
SegNetT CE CE CE \ 78.54 (+2.72) 78.9 (+8.91)
SegNetT BEC CE CE N 79.54 (+3.72) 80.48 (+10.49)
SegNetT CE BEC CE N 79.07 (+3.25) 79.9 (+9.91)
SegNetT BEC BEC CE N 79.5 (+3.68) 81.43 (+11.44)
SegNetT BEC BEC CE Y 80.64 (+4.82) 81.79 (+11.8)

Methods Loss1 Loss2 Loss3 B
Mean IoU (%)

the baseline SegNet, employing two-branch decoder
yields a result of 78.54% mean IoU on Cityscapes
dataset and 78.9% mean IoU on Freiburg Forest
dataset, which brings 2.72% and 8.91% improve-
ment. In addition, when we gradually replaced the
cross-entropy loss CELoss of loss1 and loss2 with
the BECLoss we designed, the performance further
improved to 79.5% and 81.43%. Furthermore, we
notice that when we use only one BECLoss, the re-
sult very slightly exceeds the result of using two BE-
CLoss, as shown in the third row and the fifth row,
the result from 79.54% goes to 79.5% on Cityscapes
dataset. After introducing boundary information to
BECLoss, performance further increased to 80.64%.
Results show that our proposed two-branch decoder
and boundary enhanced BECLoss bring great benefit
to scene parsing.

4.4.2 Single Branch

As mentioned in section1, the proposed two branches
can compete during the training process, which prior-
itizes each branch to learn complementary knowledge
that can boost the parsing ability and improve learn-
ing efficiency. Thanks to this property, the results
are still far better than the original encoder-decoder
structure even if we remove a branch during the in-
ference process. Moreover, the number of parame-
ters is less than the original one, which alleviates the
challenging to deploy complex models into practical
applications in many real scenarios due to computer
resources and run-time limitations. As shown in Ta-
ble 5, we use an extremely simple branch, illustrated
in Figure 1(b), retraining on the Cityscapes dataset,
and we named the trained model ‘ED’. Moreover, we
test the output results of each branch separately on
the trained two-branch decoder model. Specifically,
we take SegNet as an example. In the inference pro-
cess, we only keep the upper branch of the model
in Figure 5, and the output result obtained corre-
sponds to ’O∗’. ’D∗’ corresponds to the result of only
keep the lower branch. ’O&D’ goes to the result of
original two-branch model. The results of the upper
branch in our trained two-branch model are 80.49%,
82.35%, and 83.87%, which significantly exceeds

Table 5: Single branch test on Cityscapes val set with 11
semantic class labels. ’Enc.’ represent encoder, ’Dec.’ rep-
resent decoder. ’O’ indicates the decoder deployed in the
original model. ’D’ the decoder in Figure 1(b), ’T ’ indi-
cates our two-branch decoder. ’O∗’, ’D∗’ and ’O&D’ mean
the result from upper branch, lower branch and final branch
separately.

Methods Enc. Dec.
SegNet O
ED D

80.49 67.34 80.64 18.4 14.9 18.6
DeepLabv3+ O
ED D

82.35 77.3 82.61 25.3 25.7 27.5
HRNet O
ED D

83.87 76.83 83.9 9.6 9.6 9.6HRNet-T (ours) T
Res50

82.34 9.6
81.25 9.7

32.2

75.82
65.34

29.4
15.3

80.31 26.6

DeepLabv3+ (ours)
Res50

T

T

76.67

Mean IoU (%) Parms. (M)

SegNetT (ours)
Vgg16

𝑂∗ 𝐷∗ O&D

𝐷∗ 𝐷∗

𝐷∗

𝑂∗ 𝑂∗

𝑂∗ O&D

O&D O&D

𝐷∗ 𝐷∗𝑂∗ 𝑂∗O&D O&D

the counterparts of original encoder-decoder models
(75.82%, 80.31%, and 82.34%). The results of lower
branch trained in two-branch model are also better
than correspond one-branch trained model. At the
same time, the number of parameters used dropped
remarkably. In addition, we find that the residual-
like module can effectively combine the outputs of
the two branches to further improve the final result
to 80.64%, 82.61%, and 83.9%, as shown in ’O&D’
columns, which means that the final results are not ad-
versely affected. The results once again show that our
method can make each branch learns complementary
information.

5 CONCLUSION

In this paper, we present a general two-branch de-
coder paradigm composed of a main branch and an
auxiliary branch for scene segmentation. This de-
coder paradigm can be directly applied in an encoder-
decoder framework to refine and integrate the infor-
mation extracted by the encoder efficiently. With
this two-branch decoder, we further propose a bound-
ary enhanced complementary loss named BECLoss to
guide two branches to learn complementary informa-
tion. Moreover, we designed a simple yet efficient
branch deployed as the auxiliary branch in our two-
branch decoder. The comparative experiment shows
that the proposed two-branch decoder paradigm and
BECLoss can significantly improve the performance
of the original encoder-decoder model consistently on
challenging outdoor datasets. In addition, although
we added a branch to the decoder, it did not signif-
icantly increase the number of parameters, and the
added branch can be removed in the inference process
while still getting performance far beyond the original
counterpart.
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