
A Novel Key Exchange Protocol using Logic Algebra for the 
Factorization Problem 

Junhui Xiao, Ashish Neupane, Hiba F. Fayoumi and Weiqing Sun 
University of Toledo, Toledo, Ohio, U.S.A. 

Keywords: Logic Algebra, Key Exchange, Factorization Problem, OpenSSL, Cryptography. 

Abstract: Our current key exchange protocols are at risk of failing to keep private data secret due to advancements in 
technology. Therefore, there is a need to develop an efficient and secure key exchange protocol which can 
function in the new computing era to come. In this paper, we propose and develop a novel key exchange 
protocol based on logic algebra for the factorization problem. Both the security analysis and experimentation 
evaluation demonstrate promising results of our proposed approach. 

1 INTRODUCTION 

In 1976, the Diffie-Hellman public key exchange 
algorithm (Diffie and Hellman, 1976), which is 
known as the first asymmetric encryption algorithm, 
was proposed. A Key Exchange Protocol is a protocol 
in which a key is established by exchanging 
information between two parties. The scheme to 
accomplish this is as follows: 

(1) Each party holds a private key and a public key.  
(2) The encrypted message and public key are sent to 

the other party.  
(3) The two parties use a series of mathematical 

methods to calculate the private key and public 
key in their hands and the other party’s public key 
obtained from the communication to generate a 
common key that can encrypt or decrypt a 
message (Diffie and Hellman, 1976; Li, 2010).  

The advantage of the public key cryptosystem is that 
the communicating parties do not need to have a 
shared secret key before communicating. The private 
keys held by the communicating parties are generated 
randomly by themselves, and the communicating 
parties cannot calculate the others’ private key from 
the private key they each hold. While this method can 
prevent network data snooping to a certain extent, it 
cannot prevent the tampering of network data, which 
is known as the man-in-the-middle attack (MITM) 
(Kader and Hadhoud, 2009). 

In order to address this problem, many 
suggestions have been made over the years. Most of 
them are based on the optimization of Diffie-Hellman 

key exchange protocol. Each includes a key exchange 
system that combine the Diffie-Hellman algorithm 
with various digital certificate algorithms such as 
RSA and DSA, which rely on signature algorithms for 
identity verification (Chen and Wang, 2019; Pal and 
Alam, 2017; Yusfrizal et al., 2018; Thayananthan and 
Albeshri, 2015; Bhavani and Krishna, 2021). Each 
also includes some algorithms that optimize the key 
generation based on the DH algorithm. For instance, 
the ECDH algorithm, which solves the “Discrete 
Logarithm Problem” in the DH protocol is replaced 
with solving the “Elliptic Curve Discrete Logarithm 
Problem”. Another example includes an algorithm 
which changes the prime number in the DH algorithm 
to a group or a matrix (Vidhya and Rathipriya, 2020; 
Megrelishvili, 2018; Rudy and Monico, 2021; 
Bharathi et al., 2017). Gentile and Migliorato (2002) 
proposed cryptosystems that use hypergroupoids as 
keys for encryption on the issue of key structure. In 
(Shpilrain, 2008; Grigoriev and Shpilrain, 2014, 
2019), Shpilrain proposed tropical algebra as the key 
structure based on the study of key exchange protocol 
using random natural number with exponential 
operations; the key exchange protocol using public 
non-commutative rings; and an analysis of a linear 
algebra attack. Ezhilmaran and Muthukumaran 
(2016) proposed the key exchange protocol using 
“The Decomposition Problem” in the near-ring 
scheme. These schemes have become the main trend 
of the current cryptosystem. 

In this paper, we have further optimized the key 
construction scheme based on the ideas of using 
classical algebra and tropical algebra and chose to use 

396
Xiao, J., Neupane, A., Fayoumi, H. and Sun, W.
A Novel Key Exchange Protocol using Logic Algebra for the Factorization Problem.
DOI: 10.5220/0010843300003120
In Proceedings of the 8th International Conference on Information Systems Security and Privacy (ICISSP 2022), pages 396-403
ISBN: 978-989-758-553-1; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



logic algebra as the basis for key construction. The 
groupoid factorization proposed by Fayoumi 
(Fayoumi, 2020), splits a given groupoid into 
different factors according to the characteristics of 
logic algebra. A different operation, diamond 
(Fayoumi, 2020), is used instead of the usual 
mathematical operations. By optimizing key 
generation, we can greatly mitigate the man-in-the-
middle attacks. Section 2 discusses the background 
and related work. Our proposed key exchange 
protocol is described in Section 3, followed by its 
security analysis in Section 4. The implementation 
and evaluation of the proposed protocol are covered 
in Sections 5 and 6. Finally, we conclude and propose 
our future work in Section 7. 

2 BACKGROUND 

2.1 Algebras 

In this paper, a groupoid is the main component of the 
key. To obtain the required groupoid efficiently and 
to make the groupoid strong and diverse, different 
types of logic algebras, such as BCK-algebra, BCI-
algebra, BCH-algebra, and d-algebra, will be used. 
Several of their properties, which are used as axioms 
to define each algebraic structure, are in the following 
list (Fayoumi, 2020). Let ሺ𝑋,• ,0ሻ be an algebra, for 
any 𝑥, 𝑦, 𝑧 ∈ 𝑋: 

B1: 𝑥 •  𝑥 ൌ 0, 
B2: 𝑥 •  0 ൌ 𝑥, 
BG: 𝑥 ൌ ሺ𝑥 • 𝑦ሻ • ሺ0 • 𝑦ሻ, 
BH: 𝑥 •  𝑦 ൌ 0 𝑎𝑛𝑑 𝑦 •  𝑥 ൌ 0 ⇒ 𝑥 ൌ 𝑦, 
BF: 0 • ሺ𝑥 • 𝑦ሻ ൌ 𝑦 • 𝑥, 
K: 0 •  𝑥 ൌ 0, 
B: ሺ𝑥 • 𝑦ሻ • 𝑧 ൌ 𝑥 • ൫𝑧 • ሺ0 • 𝑦ሻ൯, 
BM: ሺ𝑧 • 𝑥ሻ • ሺ𝑧 • 𝑦ሻ ൌ 𝑦 • 𝑥, 
BN: ሺ𝑥 • 𝑦ሻ • 𝑧 ൌ ሺ0 • 𝑧ሻ • ሺ𝑦 • 𝑥ሻ, 
BO: 𝑥 • ሺ𝑦 • 𝑧ሻ ൌ ሺ𝑥 • 𝑦ሻ • ሺ0 • 𝑧ሻ, 
BP1: 𝑥 • ሺ𝑥 • 𝑦ሻ ൌ 𝑦, 
BP2: ሺ𝑥 • 𝑧ሻ • ሺ𝑦 • 𝑧ሻ ൌ 𝑥 • 𝑦, 
Q: ሺ𝑥 • 𝑦ሻ • 𝑧 ൌ ሺ𝑥 • 𝑧ሻ • 𝑦, 
CO: ሺ𝑥 • 𝑦ሻ • 𝑧 ൌ 𝑥 • ሺ𝑦 • 𝑧ሻ, 
BZ: ൫ሺ𝑥 • 𝑧ሻ • ሺ𝑦 • 𝑧ሻ൯ • ሺ𝑥 • 𝑦ሻ ൌ 0, 
I: ൫ሺ𝑥 • 𝑦ሻ • ሺ𝑥 • 𝑧ሻ൯ • ሺ𝑧 • 𝑦ሻ ൌ 0, 
BI: 𝑥 • ሺ𝑦 • 𝑥ሻ ൌ 𝑥. 

By combining two or more of these axioms, we can 
get different types of algebras we need to generate the 
groupoid (Table 1). 
 
 

Table 1: Axioms of different types of algebras (Fayoumi, 
2020). 

 

For example, if we want to generate a fr-algebra, 
based on the axioms in Table 1, we know that the 
groupoid should satisfy B1, B2 and K. A groupoid 
ሺ𝑋,•ሻ satisfies axiom B1 means for any 𝑥 ∈ 𝑋, we 
can always get ሺ𝑥 • 𝑥ሻ ൌ 0. If ሺ𝑋,•ሻ satisfies B2, then 
for any 𝑥 ∈ 𝑋, ሺ𝑥 • 0ሻ ൌ 𝑥. Finally, if ሺ𝑋,•ሻ satisfies 
property K, means for any 𝑥 ∈ 𝑋, t ሺ0 • 𝑥ሻ ൌ 0. As 
for this, we can first generate an algebra frame as 
follows: 

• 0 1 2 3 4 
0 0 0 0 0 0 
1 1 0 x x x 
2 2 x 0 x x 
3 3 x x 0 x 
4 4 x x x 0 

And then, we can fill up the groupoid using 
random method or brute-force method to get a 
complete groupoid with fr-algebra. 

2.2 Factorization 

Factorization is an important part in our experiment. 
As we mentioned in Section 1, we used a different 
type of binary operation, the diamond operation (⋄), 
to calculate two groupoids. Corresponding to this, we 
use factorizations to divide a groupoid into two factor 
groupoids (Fayoumi, 2020). In this section, we 
present two different types of factorizations. 

2.2.1 Similar-Signature Factorization 

Similar-Signature Factorization is a unique 
factorization of a given groupoid in which two factors 
are derived from itself and from the left-zero-
semigroup (Fayoumi, 2020). 

Let ሺ𝑋,•ሻ be a groupoid of finite order n. Then d• 
is the diagonal function of ሺ𝑋,•ሻ such that  

d•: ℕ → 𝑋 𝑤ℎ𝑒𝑟𝑒 d•ሺ𝑖ሻ ൌ 𝑥 •  𝑥, 

A Novel Key Exchange Protocol using Logic Algebra for the Factorization Problem

397



𝑖 ൌ 1, 2, … , 𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. 

2.2.2 Orient-Skew Factorization 

Orient-Skew Factorization is another unique 
factorization which can be applied to groupoids with 
the orientation property OP: 𝑥 ∗ 𝑦 ∈ ሼ𝑥, 𝑦ሽ  for all 
𝑥, 𝑦 ∈  𝑋 . We can derive the orient-factor of a 
groupoid such that all its elements are the same as 
those of a left-zero-semigroup except elements 
belonging to the anti-diagonal (Fayoumi, 2020). 
Similarly, the skew-factor is derived from the 
groupoid by letting its anti-diagonal change to its 
skew-diagonal, and the other elements are kept the 
same as the original groupoid. 

2.3 Binary Operations 

Given a binary operation “∗” on a non-empty set X, 
groupoid ሺ𝑋,∗ሻ is then considered a generalization of 
the very well-known structure of a group. Consider 
the collection of all groupoids defined on X, call it 
𝐵𝑖𝑛ሺ𝑋ሻ . Let ሺ𝑋,∗ሻ  and ሺ𝑋,∘ሻ  be two random 
groupoids in BinሺXሻ , define a groupoid product 
operation “⋄” where ሺ𝑋,⋄ሻ ൌ ሺ𝑋,∗ሻ ⋄ ሺ𝑋,∘ሻ such that 
𝑥 ⋄ 𝑦 ൌ ሺ𝑥 ∗ 𝑦ሻ ∘ ሺ𝑦 ∗ 𝑥ሻ for all x, y ∈  X. This turns 
𝐵𝑖𝑛ሺ𝑋,⋄ሻ into a semigroup with identity ሺ𝑥 ∗ 𝑦 ൌ 𝑥ሻ, 
the left-zero-semigroup, and an analog of negative 
one in the right-zero-semigroup. One can naturally 
observe that we can always get such a product if we 
know groupoidsሺ𝑋,∗ሻ and ሺ𝑋,∘ሻ. However, reversing 
this action is not so straightforward. There are four 
cases we need to note:  
Case 1 Distinct Factors: 

ሺ𝑋,•ሻ ൌ ሺ𝑋,∗ሻ ⋄ ሺ𝑋,∘ሻ, such that ሺ𝑋,∗ሻ ് ሺ𝑋,∘ሻ. 
Case 2 Uniqueness: 

ሺ𝑋,•ሻ ൌ ሺ𝑋,∗ሻ ⋄ ሺ𝑋,∘ሻ, such that if ሺ𝑋,∙ሻ ൌ ሺ𝑋,∗ሻ ⋄
ሺ𝑋,∘ሻ, thenሺ𝑋,∙ሻ ൌ ሺ𝑋,•ሻ. 
Case 3 Relatively prime to ሺX,•ሻ: 

ሺ𝑋,•ሻ ൌ ሺ𝑋,∗ሻ ⋄ ሺ𝑋,∘ሻ , such that ሺ𝑋,∗ሻ ് ሺ𝑋,•ሻ 
and ሺ𝑋,∘ሻ ് ሺ𝑋,•ሻ. 
Case 4 Commutative: 

ሺ𝑋,•ሻ ൌ ሺ𝑋,∗ሻ ⋄ ሺ𝑋,∘ሻ , such that if ሺ𝑋,•ሻ ൌ
ሺ𝑋,∘ሻ ⋄ ሺ𝑋,∗ሻ, then ሺ𝑋,∘ሻ ⋄ ሺ𝑋,∗ሻ ൌ ሺ𝑋,∗ሻ ⋄ ሺ𝑋,∘ሻ. 

Of course, one can consider the subcases of each 
of the above four cases or even the combinations of 
two or more of them. We should notice that not all 
groupoids can satisfy case 4, in other words, not all 
groupoids commute. It is important to be able to find 
a collection of groupoids that do commute, and logic 
algebras using Similar-Signature Factorization and 
Orient-Skew Factorization can more likely generate 
commuting groupoids under our special diamond 
operation. It means, all groupoids can be factorized 

using the Similar-Signature Factorization and the 
Orient-Skew Factorization into two factor groupoids, 
but not all pairs of factor groupoids commute. In our 
experiment, an important step is to obtain groupoids 
which can be factorized into two commuting factor 
groupoids. Here is an example of using the Similar-
Signature Factorization to generate two commuting 
factors. 
Example. Let ሺ𝑋,•ሻ = ሺ𝑍ହ,• ,0ሻ be a groupoid with 0, 
and binary operation defined by: 

• 0 1 2 3 4 
0 0 0 0 0 0 
1 1 0 1 0 1 
2 2 2 0 3 0 
3 3 3 2 0 3 
4 4 4 1 1 0 

Then we can find factors ሺ𝑋,∗ሻ and ሺ𝑋,∘ሻ which 
commute, as follows: 

 

and, 

 

2.4 OpenSSL 

OpenSSL is an open-source software library written 
in the C programming language and has a wide 
variety of cryptographic functions to implement 
secure features. It is a powerful tool that implements 
the popular SSL and TLS protocols (Ruiter, 2016). 
Some of the features implemented by the OpenSSL 
library include symmetric encryption, asymmetric 
encryption, certificate handling and hash functions. 
Apart from that, OpenSSL also supports a wide range 
of cipher suites.  

One of the main reasons for choosing OpenSSL 
platform is that OpenSSL has all the features already 
built into it to test a new cryptographic protocol. 
Researchers trying to test the functionality of a 
cryptographic algorithm or a protocol in a full-
fletched application can do so by implementing that 
module in the OpenSSL library and using the already 
available applications like HTTP to test its 
performance. However, to integrate the module into 
the OpenSSL, we need to understand the libraries the 

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

398



two main libraries of OpenSSL – libssl and libcrypto. 
Libssl, as the name suggests is a library that 
implements SSL and TLS functions like opening and 
closing a connection, forming packets, managing 
handshakes, creating certificates, and using lib-crypto 
library to perform cryptographic operations. The 
libcrypto library has a wide variety of symmetric, 
asymmetric, and key-exchange protocols, which 
provides the low-level implementation of 
cryptographic algorithms to the libssl library.  

Another reason is that since OpenSSL is an open-
source software, all of its software packages rolled 
out in the past is easily accessible. In addition, the 
older cipher suits, which have been retired by the 
IETF, can be modified in a specific way to add a new 
cryptographic algorithm easily. Modifying the older 
cipher suites like AECDH-NULL-SHA allows us to 
integrate our new key exchange algorithm by 
modifying the already present Elliptic Curve Diffie-
Hellman key exchange without having to write a 
symmetric algorithm that goes with it, as indicated by 
NULL in the middle. Moreover, the “A” in AECDH 
means anonymous, i.e., the key exchange algorithm 
will not have to use an Ephemeral Key for changing 
the keys periodically. However, we should be careful 
not to use those cipher suites on their own as these 
generally have security vulnerabilities. This 
important feature allows us to test the functionality of 
our key exchange algorithm in isolation without 
having to implement a Pseudo Random Function for 
generating symmetric keys as well as making the keys 
ephemeral. It is important to note that these two 
components are the foundation of modern 
cryptography and should not be excluded from any 
cryptographic implementation. However, these 
components have been left out from our 
implementation as it gives us more flexibility to test 
the raw performance of our key exchange protocol. 

3 PROPOSED PROTOCOL 

3.1 Basic Scenario 

The basic scenario of our proposed key exchange 
protocol is as follows: 
1. Picking commuting groupoid pairs 

 Alice: 
Randomly picks two private groupoids 𝐴ଵ ൌ
ሺ𝑋,∗ሻ and 𝐴ଶ ൌ ሺ𝑋,∘ሻ. 
Sends Bob the shared groupoid 𝑢 ൌ 𝐴ଵ ⋄ 𝐴ଶ. 
 Bob: 
Randomly picks two private groupoids 𝐵ଵ ൌ
ሺ𝑋,⊛ሻ and 𝐵ଶ ൌ ሺ𝑋,⊙ሻ. 

Sends Alice the shared groupoid 𝑣 ൌ 𝐵ଵ ⋄ 𝐵ଶ. 
2. Generating the decryption key: 

 Alice computes 
  𝐾 ൌ 𝐴ଶ ⋄ ሺ𝑣ሻ ⋄ 𝐴ଵ 
ൌ ሺ𝑋,∘ሻ ⋄ ሾሺ𝑋,⊛ሻ ⋄ ሺ𝑋,⊙ሻሿ ⋄ ሺ𝑋,∗ሻ 
ൌ ሾሺ𝑋,∘ሻ ⋄ ሺ𝑋,⊛ሻሿ ⋄ ሾሺ𝑋,⊙ሻ ⋄ ሺ𝑋,∗ሻሿ 
ൌ ሺ𝑋,⊛ሻ ⋄ ሺ𝑋,∘ሻ ⋄ ሺ𝑋,∗ሻ ⋄ ሺ𝑋,⊙ሻ 
 Bob computes 
  𝐾 ൌ 𝐵ଵ ⋄ ሺ𝑢ሻ ⋄ 𝐵ଶ 
ൌ ሺ𝑋,⊛ሻ ⋄ ሾሺ𝑋,∗ሻ ⋄ ሺ𝑋,∘ሻሿ ⋄ ሺ𝑋,⊙ሻ 
ൌ ሺ𝑋,⊛ሻ ⋄ ሺ𝑋,∘ሻ ⋄ ሺ𝑋,∗ሻ ⋄ ሺ𝑋,⊙ሻ 

 

Figure 1: Proposed key exchange protocol. 

Thus, Alice and Bob have a shared secret key 
𝐾 ൌ  𝐾  ൌ  𝐾. For this protocol to work, we need 
the following pairs of groupoids to commute: 

1. ሺ𝑋,∗ሻ and ሺ𝑋,∘ሻ  
2. ሺ𝑋,⊛ሻ and ሺ𝑋,⊙ሻ 
3. ሺ𝑋,∘ሻ and ሺ𝑋,⊛ሻ  
4. ሺ𝑋,⊙ሻ and ሺ𝑋,∗ሻ  

Additional conditions considering Eve interception: 

 If she intercepts the key exchange, then she can 
either compute: 

𝑢 ⋄ 𝑣 ൌ ሾሺ𝑋,∗ሻ ⋄ ሺ𝑋,∘ ሻሿ ⋄ ሾሺ𝑋,⊛ሻ ⋄ ሺ𝑋,⊙ሻሿ 
       ൌ  ሺ𝑋,∗ሻ ⋄ ሺ𝑋,⊛ ሻ ⋄ ሺ𝑋,∘ሻ ⋄  ሺ𝑋,⊙ሻ 

 Or she can compute: 
𝑢 ⋄ 𝑣 ൌ ሾሺ𝑋,⊛ሻ ⋄ ሺ𝑋,⊙ሻሿ ⋄ ሾሺ𝑋,∗ሻ ⋄ ሺ𝑋,∘ ሻሿ 

         ൌ  ሺ𝑋,⊛ሻ ⋄ ሺ𝑋,∗ ሻ ⋄ ሺ𝑋,⊙ ሻ ⋄  ሺ𝑋,∘ ሻ 
 For this to not recover the shared secret key K, we 

would need both of the following pairs of 
groupoids to not commute: 

5. ሺ𝑋,∗ሻ and ሺ𝑋,⊛ሻ  
6. ሺ𝑋,∘ሻ and ሺ𝑋,⊙ሻ  

Hence, by ensuring 1-6 hold, we have our public key 
exchange systems. 

3.2 Groupoid Generation 

Our protocol is based on a series of groupoid 
operations. Thus, how to generate a useful groupoid 
as the exchange key is important. A useful groupoid 
first means that it can use the Similar-Signature 
Factorization to derive a pair of commuting factor 
groupoids or it can be decomposed into two 
commuting factor groupoids using the Orient-Skew 

A Novel Key Exchange Protocol using Logic Algebra for the Factorization Problem

399



Factorization. After factorization, we must then 
ensure that these factor groupoids meet the four 
“commute” conditions and the two “not commute” 
conditions. 

In this paper, we decided to use two different 
groupoids as shared groupoids for both parties. It 
means while Alice and Bob communicate with each 
other, they send the different shared groupoids.  
Step 1: Read the input value of the groupoid length 
“L” and the type of logic algebra 𝑡ଵ, 𝑡ଶ or 0.  

 Type “ 𝑡ଵ ” will use the Similar-Signature 
Factorization.  

 Type “𝑡ଶ” will use the Orient-Skew Factorization. 
 Input “0” will choose a random type of logic 

algebra. 

Step 2: Based on the properties of the “𝑡ଵ” algebra 
shown in Table 1, create one groupoid frame (a two-
dimensional array) “𝐺ଵ” with dimensions 𝐿 𝑏𝑦 𝐿. Fill 
up the rest of the groupoid table with random integers 
greater than or equal to 0 and less than the length of 
the groupoid “L”. 
Step 3: Factor groupoid “ 𝐺ଵ ” using the Similar-
Signature Factorization to get factor groupoids 
𝐴ሺ𝑋,• ,0ሻ and 𝑈ሺ𝑋,• ,0ሻ. If they commute, we store 
them and continue to the next step. Otherwise, go 
back to step 2. 
Step 4: Based on the properties of the “𝑡ଶ” algebra 
shown in Table 1, create one groupoid frame “𝐺ଶ” 
with dimensions 𝐿 𝑏𝑦 𝐿 . Fill up the rest of the 
groupoid table with random integers greater than or 
equal to 0 and less than the length of the groupoid “L”. 
Step 5: Factor groupoid “G2” using Orient-Skew 
Factorization and we can get factor groupoids 
𝑂ሺ𝑋,• ,0ሻ and 𝐽ሺ𝑋,• ,0ሻ. If they commute, we store 
them and continue to the next step. Otherwise, go 
back to step 4. We can define a count number and a 
maximum number of times. If it cannot find the 
required groupoid G2 in the number of times, go back 
to step 2 to find a new groupoid G1. 
Step 6: Use check functions to check if the four factor 
groupoids satisfy the four commute conditions and 
the two non-commute conditions. If not satisfied, go 
back to Step 4 or Step 2 depending on the number of 
times. 
Step 7: Assign 𝐴ଵ ൌ 𝑈ሺ𝑋,• ,0ሻ , 𝐴ଶ ൌ 𝑂ሺ𝑋,• ,0ሻ , 
𝐵ଵ ൌ 𝐽ሺ𝑋,• ,0ሻ , 𝐵ଶ ൌ 𝐴ሺ𝑋,• ,0ሻ . The private 
groupoids of Alice are 𝐴ଵ and 𝐴ଶ; while her shared 
groupoid is 𝑢 ൌ 𝐴ଵ ⋄ 𝐴ଶ . Similarly, the private 
groupoids of Bob are 𝐵ଵ  and 𝐵ଶ ; while his shared 
groupoid is 𝑣 ൌ 𝐵ଵ ⋄ 𝐵ଶ. 
 
 
 

4 SECURITY ANALYSIS 

Different from the simple addition and multiplication 
operations of matrices, the groupoid of this 
encryption algorithm adopts the ⋄ operation of 
multiple coordinate values, by taking values of ሺ𝑥, 𝑦ሻ 
and ሺ𝑦, 𝑥ሻ, and then taking the values according to the 
value of ሺ𝑥, 𝑦ሻ and ሺ𝑦, 𝑥ሻ. This means that the length 
of one diamond operation is O ሺ𝐿ଶሻ, which is efficient 
for generating groupoids of size L. It not only ensures 
the complexity of the operation, but also makes the 
encryption algorithm simple, operable, and advanced 
in operation. However, to ensure the operability of the 
encryption key, it is essential to generate an effective 
groupoid. In this protocol of the encryption algorithm, 
we have analyzed the attacks that our proposed 
algorithm may suffer.  
Brute Force Attack. It is known that the most 
important factor affecting the brute force attack is 
the length of the key. In our key exchange protocol, 
the key is actually an 𝐿 ∗ 𝐿 groupoid. Hence, given a 
nonempty set X with |X| = L, we can deduce the 
complexity of the groupoids in our protocol (which 
are elements in Bin(X)) to be Lሺమሻ. Therefore, while 
we use this protocol, a sufficiently large enough “L” 
can ensure that the key exchange protocol will not 
be cracked within an effective period of time 
through brute force attack. 
Man-in-the-Middle Attack. When the man-in-the-
middle or the eavesdropper obtains the shared 
groupoids sent by both parties, the closest calculation 
method to the encryption key is to perform the 
obtained two groupoids ⋄ product operations or factor 
them into factor groupoids. However, as 
demonstrated in Section 3, after ensuring the 
generated private groupoids satisfy the four 
“commute” conditions, we can ensure that both 
parties can obtain the same key. We added two “non-
commute” conditions to ensure that the man-in-the-
middle cannot get the key by using the obtained two 
shared groupoids. Besides it, due to the particularity 
of the operation, it is very difficult for the attacker to 
generate another pair of groupoids that meet the six 
conditions for the groupoids of one or both parties and 
equal to the key. We can also make sure that the 
groupoids will never be the left-zero-semigroup, 
which is the identity in Bin(X), so that man-in-the-
middle cannot use any of the two shared groupoid 
directly as the key. Moreover, we assign groupoids U 
and O to Alice and groupoids J and A to Bob. The 
shared groupoid of each party will not be the same 
and will not be factored into any of the four factor 
groupoids, in which way we can say that this protocol 
is irreversible, that makes our protocol more secure. 

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

400



5 IMPLEMENTATION OF 
PROTOCOL 

All the implementations and experiments are 
performed on a PC workstation with the following 
specifications: 

• Operating System: Windows 10 Home 
• Processor: Intel i5-9600k 
• Processor Speed (Base): 3.70 GHz 
• Storage Type: SSD 
• System Memory (RAM): 32 GB 

5.1 Algorithm Implementation 

Our main groupoid generation algorithm and 
factorization algorithm are written in JAVA 
language. At the beginning, according to the study of 
different algebras, we present an array framework 
represent the groupoid which basically satisfies the 
axioms of selected algebra, and then we use brute 
force algorithm and random function to fill up the 
array. We have defined checkAU and checkOJ 
functions, while the array can be factorized to a pair 
of commutative factor groupoids A and U and a pair 
of commutative factor groupoids O and J, the factor 
groupoids A, U, O and J will be stored. Then we use 
commute function to check if the four factor 
groupoids meet the four commute and two not 
commute conditions. If all the conditions are met, we 
store the array as the result and use it in OpenSSL to 
see how it performs. Otherwise, we restart the 
groupoid generation process. 

5.2 OpenSSL Implementation 

Key exchange is a vital technique used by the 
SSL/TLS protocol to secretly exchange keys between 
the communicating parties, to obtain the final session 
keys by some form of conversion using Pseudo 
Random Function and other methods.  

The application layer sits on the top of the protocol 
stack and has applications like ciphers and genpkey. 
This component is responsible for high-level 
implementation of ciphers. Below that component is 
TLS component, which is in charge of handling the 
connections. It has a state machine, a record layer, 
packet, and buffer formation mechanisms and so on. 
The crypto component below it implements all the 
encryption and key exchange algorithms needed for 
TLS in low-level. The engine is a dynamically 
loadable module that uses the available hooks to 
provide cryptographic algorithm implementations. 

OpenSSL operates everything in a state machine. 

The full operation of the state machine in SSL/TLS 
has been explained in (Ruiter, 2016). Using state 
machines makes it easier to get the current state of 
operation and makes packet management easier. An 
SSL/TLS connection can have states like ClientHello, 
ServerHello, ServerKeyExchange and so on. The 
next state of the connection depends on the previous 
states and the type of packet. Since the world of 
Internet is unpredictable, any of these packets could 
be dropped on its way. Hence, this way of message-
passing handles the situation by keeping track of 
every state and packet to manage them more easily. 

6 PROTOCOL EVALUATION 

6.1 Evaluation of Groupoid Generation 

In this section, we evaluate the performance of the 
groupoid generation algorithm. We ran the groupoid 
generation program by choosing the size as “5”, and 
the algebra t1 and t2 as “3”, the BH-algebra. We 
changed the variable count, the maximum number of 
times of groupoid generation to exit, as 10000000. 
Then, we ran the check function and finally got 5173 
pair of groupoids as the result with one example: 

 

We can use the Similar-Signature Factorization to 
derive the first groupoid and use Orient-Skew 
factorization to derive the second groupoid to get four 
factor groupoids. Next, by computing, we can get the 
same result from 𝐾 and 𝐾, and we can find that the 
assumed man-in-the-middle attacks will not get the 
same Key groupoid. This means the groupoid is ready 
to be the key composition of our protocol. 

6.2 Evaluation based on the OpenSSL 
Platform 

In this section, we will test the time it takes for each 
type of messages to be received. Each of these tests 
records the amount of time taken to form a 
ClientHello, ServerHello, ServerKeyExchange and 
ClientKeyExchange messages. That will essentially 
test the message passing time of the sender. We also 
need to test the amount of time the receiver takes to 
process the message. Finally, the times of the new key 

A Novel Key Exchange Protocol using Logic Algebra for the Factorization Problem

401



exchange algorithm will be compared with the ECDH 
protocol. 

We modified the message passing in ECDH 
algorithm’s built-in extension to make it work as a 
new key exchange protocol. The Elliptic Curve 
Diffie-Hellman sends two extensions in a ClientHello 
message. The first extension selects the client’s 
preference for the type of EC point format to use like 
compressed or uncompressed. The most common 
type of EC point format has an extension type 000b 
and is called Elliptic curve point formats 
uncompressed. The other extension that ECDH uses 
is for sending the preference on the EC curves. It has 
an extension of 000a and is called Elliptic curves.  For 
our purpose, we will not need the extension 000b, and 
will only use 000a to send the preference on the type 
of matrix to use for our algorithm. 

Custom extensions are treated differently in the 
OpenSSL library. Separate callback function needs to 
be written for these extensions and the performance 
of the protocol depends largely on the programmer. 
The first implementation is the unmodified ECDH 
key-exchange in OpenSSL. The second 
implementation modifies the built-in ECDH 
extension to piggyback our new key exchange data in 
OpenSSL. Finally, we used a custom extension using 
the private-use extension number provided by IETF. 
The packets formed by using our second and third 
implementation look very identical, the only 
difference is how OpenSSL treats these extensions. 
When built-in extension is used, the OpenSSL 
designers would have already set the properties of 
these extensions like extension number, maximum 
allowed data, information to be included in the 
certificate, etc. There is no flexibility in choosing the 
new functionality required for a new protocol. The 
gist is that although modifying built-in extensions for 
a new protocol is easy, it is impossible to add new 
functionality when it is needed later.  

In this paper, we look at two criteria to evaluate 
the performance of each implementation. The 
construction time is the time taken by the OpenSSL 
library to construct a particular message. This 
includes the time taken to fill in the header and data 
portion of the messages. For a ClientHello message, 
a header includes handshake message type, message 
version, content length, and client hello protocol 
version. Similarly, the data portion includes a random 
value, session ID length, cipher suites length, a list of 
cipher suites and extension data.  

The processing time is the time taken to process 
the message at the other end. Precisely, it is the time 
taken between receiving a message and deciding what 
to do next in the state machine. For a ClientHello 

message, that includes parsing the raw ClientHello 
message into ClientHello_MSG structure that has 
fields and variables to store each component of the 
message. Tables 2 and 3 compare the message 
construction time and processing time of the three 
implementations. 

Table 2: Comparison of message construction time. 

 Construction Time (Microseconds)

Type of Message ECDH Built-in ext. Custom ext.

ClientHello 337 116 582 

ServerHello 91 107 304 

ServerKeyExchange 1238 834 1540 

ClientKeyExchange 1953 1748 1762 

Table 3: Comparison of message processing time. 

 Processing Time (Microseconds) 
Type of Message ECDH Built-in ext. Custom ext.

ClientHello 56 44 195 

ServerHello 94 267 331 

ServerKeyExchange 34 26 37 

ClientKeyExchange 943 532 819 

As seen in Tables 2 and 3, the proposed key 
exchange algorithm implemented using built-in 
extension performed well compared to the ECDH 
algorithm. The use of built-in extensions for 
implementing a new key-exchange algorithm 
certainly limits the overall performance of the 
protocol because it is designed to work well with a 
particular algorithm. With that in mind, we also 
implemented the new protocol using custom 
extensions, and it showed a good performance. 

7 CONCLUSION 

In this paper, we proposed a novel key exchange 
protocol, which use logical algebra to solve the 
factorization problem, in order to greatly alleviate 
common attacks and deal with the challenges of 
cryptography brought by the rapid development of 
technology. We generated commutative groupoids 
based on different logical algebras by using two 
factorization functions, Similar-Signature 
Factorization and Orient-Skew Factorization, and 
used the diamond operation to perform operations on 
groupoids. We analyzed the brute force attack and 
man-in-the-middle attack on the proposed protocol 
and proved that it is secure against them. We also 
implemented a groupoid generation algorithm using 

ICISSP 2022 - 8th International Conference on Information Systems Security and Privacy

402



Java language and evaluated its efficiency. Finally, 
we implemented our key exchange protocol on the 
open-source OpenSSL platform and evaluated its 
runtime performance. Experimental results 
demonstrated our proposed protocol has comparable 
performance with the built-in ECDH key exchange 
algorithm in the OpenSSL platform.  

For the future work, we plan to improve the 
algorithm of groupoid generation by increasing the 
size and optimizing its structure. We also plan to 
continue to verify the possibility of generating 
groupoids based on different logic algebras. 
Moreover, we intend to optimize the code of our 
built-in extension and custom extension on the 
OpenSSL platform and aim to apply it to real-world 
network applications. 

REFERENCES 

Bharathi, M. B., Manivasagam, M. G., & Kumar, M. A. 
(2017). Metrics For Performance Evaluation of 
Encryption Algorithms. In International conference on 
emerging trends in engineering, science and 
management. 

Bhavani, Y., & Krishna, B. J. (2021). Security 
Enhancement Using Modified AES and Diffie–
Hellman Key Exchange. In Advances in Computational 
Intelligence and Communication Technology (pp. 173-
183). Springer, Singapore. 

Chen, C. M., Wang, K. H., Yeh, K. H., Xiang, B., & Wu, T. 
Y. (2019). Attacks and solutions on a three-party 
password-based authenticated key exchange protocol 
for wireless communications. Journal of Ambient 
Intelligence and Humanized Computing, 10(8), 3133-
3142. 

de Ruiter, J. (2016, November). A tale of the OpenSSL state 
machine: A large-scale black-box analysis. In Nordic 
Conference on Secure IT Systems (pp. 169-184). 
Springer, Cham. 

Diffie, W., & Hellman, M. (1976). New directions in 
cryptography. IEEE transactions on Information 
Theory, 22(6), 644-654. 

Ezhilmaran, D., & Muthukumaran, V. (2016). Key 
exchange protocol using decomposition problem in 
near-ring. Gazi University Journal of Science, 29(1), 
123-127. 

Fayoumi H F. (2020). Groupoid Factorizations in the 
Semigroup of Binary Systems. Scientiae Mathematicae 
Japonicae Online, e-2020-13 and to appear (2022) 
Scientiae Mathematicae Japonicae, Vol.84-3. 

Gentile, G., & Migliorato, R. (2002). Hypergroupoids and 
cryptosystems. Journal of Discrete Mathematical 
Sciences and Cryptography, 5(2), 119-138. 

Grigoriev, D., & Shpilrain, V. (2014). Tropical 
cryptography. Communications in Algebra, 42(6), 
2624-2632. 

Grigoriev, D., & Shpilrain, V. (2019). Tropical 
cryptography II: extensions by homomorphisms. 
Communications in Algebra, 47(10), 4224-4229. 

Kader, H. M., & Hadhoud, M. M. (2009). Performance 
evaluation of symmetric encryption algorithms. 
Performance Evaluation, 58-64. 

Li, N. (2010, April). Research on Diffie-Hellman key 
exchange protocol. In 2010 2nd International 
Conference on Computer Engineering and Technology 
(Vol. 4, pp. V4-634). IEEE. 

Megrelishvili, R. (2018). New asymmetric algorithm for 
fast message transmission and tropical cryptography. In 
Proceedings of the eleventh international scientific-
practical conference INTERNET-EDUCATION-
SCIENCE-2018, Vinnytsia, 22-25 May, 2018: 175-178. 
ВНТУ. 

Pal, O., & Alam, B. (2017). Diffie-Hellman Key Exchange 
Protocol with Entities Authentication. International 
Journal Of Engineering And Computer Science, 6(4). 

Rudy, D., & Monico, C. (2021). Remarks on a tropical key 
exchange system. Journal of Mathematical Cryptology, 
15(1), 280-283. 

Shpilrain, V. (2008, June). Cryptanalysis of Stickel’s key 
exchange scheme. In International Computer Science 
Symposium in Russia (pp. 283-288). Springer, Berlin, 
Heidelberg. 

Thayananthan, V., & Albeshri, A. (2015). Big data security 
issues based on quantum cryptography and privacy with 
authentication for mobile data center. Procedia 
Computer Science, 50, 149-156. 

Vidhya, E., & Rathipriya, R. (2020). Key Generation for 
DNA Cryptography Using Genetic Operators and 
Diffie-Hellman Key Exchange Algorithm. Computer 
Science, 15(4), 1109-1115. 

Yusfrizal, Y., Meizar, A., Kurniawan, H., & Agustin, F. 
(2018, August). Key management using combination of 
Diffie–Hellman key exchange with AES encryption. In 
2018 6th International Conference on Cyber and IT 
Service Management (CITSM) (pp. 1-6). IEEE. 

A Novel Key Exchange Protocol using Logic Algebra for the Factorization Problem

403


