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Abstract: In this paper, the systematic model-based design of a reinforcement learning-based neuronal adaptive cruise 
control is described. Starting with an introduction and a summary of current fundamentals, design methods 
for intelligent driving functions are presented. The focus is on the first-time presentation of a novel design 
methodology for artificial neural networks in control engineering. This methodology is then applied and fully 
validated using the example of an adaptive cruise control system. 

1 INTRODUCTION 

The innovation alliance autoMoVe (Dynamically 
Configurable Vehicle Concepts for Use-Specific 
Autonomous Driving) (Raulf et. al., 2020), funded by 
the European Regional Development Fund (ERDF) 
(European Commission, 2014), aims to develop an 
autonomous, modular and electric vehicle concept. 
By exchanging application-specific modules at 
runtime, a wide range of applications from internal 
freight transport to passenger transport in road traffic 
is to be realized autonomously. Within the framework 
of this research project, the Ostfalia autoEVM sub-
project (Holistic Electronic Vehicle Management for 
Autonomous Electric Vehicles) focuses on the 
model-based development of innovative intelligent 
algorithms and functions for autonomous driving. 

With a higher degree of automation in driving, the 
requirements for the vehicle or the automated driving 
functions also increase. Current functions and 
algorithms based on methods of control theory or 
classical information processing can no longer fully 
meet these requirements (Milz and Schrepfer, 2020). 
Artificial intelligence (AI) therefore represents a key 
technology for many domains involved in the 
development and usage of intelligent, automated 
vehicles (Fayjie et. al., 2018). 
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Modern vehicles and driving functions are, 
regardless of the type of information processing, 
complex mechatronic systems with a high degree of 
internal and external networking. To master this 
complexity in the development and validation 
process, a systematic design approach is essential. On 
one hand, a verification-oriented and simulation-
based design methodology established in 
mechatronics research is used. (Liu-Henke et. al., 
2021) AI algorithms, especially artificial neural 
networks (ANN) used in this work, are very different 
from control theory approaches in their functionality 
and design process. Therefore on the other hand, a 
novel design methodology for ANNs is applied and 
presented for the first time in this paper. 

As a sub-goal of the above mentioned research 
project, the present work applies the mentioned 
design methodologies for ANNs and mechatronic 
systems on a function for automated longitudinal 
guidance in terms of intelligent adaptive cruise 
control. The term intelligent refers on the one hand to 
the use of ANNs, which are modeled according to the 
functioning of the human brain, and on the other hand 
to the self-learning or experience-based training 
approach of reinforcement learning. 
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2 STATE OF THE ART 

2.1 Intelligent Driving Functions for 
Automated Longitudinal Guidance 

With an increasing number and interconnection of 
advanced driver assistance systems (ADAS), the 
human driver successively delegates driving tasks to 
the vehicle until he finally becomes a passenger in 
autonomous driving. At that point, one no longer 
speaks of ADAS, but of (automated) driving 
functions. One example of such an automated driving 
function is adaptive cruise control (ACC). In contrast 
to simple cruise control, in which only a comparison 
between the set speed of the driver and the actual 
speed of the vehicle takes place, ACC can overwrite 
the set speed downwards by evaluating 
environmental sensors. The vehicle then maintains a 
speed-dependent safe distance to vehicles and objects 
in front by specifying reference values to subordinate 
systems of the longitudinal dynamics (drive, brake, 
transmission). (Lin, Nguyen and Wang, 2017) 

Radar sensors are typically used for detecting 
obstacles ahead and the subsequent determination of 
relative speed and distance (Abdullahi and Akkaya, 
2020). Modern systems often additionally use camera 
and lidar sensors for object detection. Another 
approach is the use of wireless vehicle-to-everything 
(V2X) communication to realize cooperative driving 
operation (Anayor, Gao and Odekunle, 2018).  

From a control engineering point of view, ACC is 
a cascaded system in which the inner cascade controls 
a speed given by the outer cascade to regulate the 
safety distance. In practice, however, some driving 
functions exist that switch between distance keeping 
and pure speed control. But for highly automated 
driving, higher-order and holistic functions are 
advantageous. (Abdullahi and Akkaya, 2020) In the 
current literature, many approaches, such as a 
classical PI (Kiencke and Nielsen, 2005), non-linear 
model predictive (Shakouri and Ordys, 2014), or even 
neuro-fuzzy control (Lin, Nguyen and Wang, 2017) 
can be found for an ACC, each with specific 
advantages and disadvantages. In this paper, a novel 
holistic approach for an ACC using ANNs and 
reinforcement leaning will be investigated. 

2.2 Basics of Artificial Neural 
Networks and Machine Learning 

The term AI covers a large number of different 
methods and algorithms that deal with the 
autonomous and automated solving of problems 

(Fayjie et. al., 2018). ANNs and ML form a subfield 
of AI that has proven to be suitable for numerous 
problems in a wide variety of domains, including 
autonomous driving. Therefore, this paper focuses on 
this subfield. The numerous positive properties of 
ANNs and ML, such as adaptability, error resistance, 
versatility and above all learning ability, can be traced 
back to their similarity to the structure and 
functioning of the human brain. 

Analogous to biology, (artificial) neurons are 
processing units that accumulate input stimuli via 
weighted connections and compute an output using an 
activation function. The interconnection of several 
neurons in at least two layers creates the ANN. 
Combinations of up to several hundred neurons in up 
to more than one hundred layers are common. Not 
only arbitrary forward but also time-feedback 
connections are possible in the ANN. The optimal 
architecture of an ANN cannot be determined 
analytically so far (Tirumala, 2020). Therefore, 
besides experience and test series, a systematic design 
methodology is necessary to find a suitable 
architecture in the trade-off between computational 
effort and performance capability. The number, 
interconnection and weighting of the connections 
characterizes the "intelligence" of an ANN. Generally 
speaking, more neurons and connections mean a 
higher performance of the ANN, while at the same 
time the computational effort increases. 

Just like a human brain, the ANN must first learn 
or train a task. These terms refer to the adaptation of 
the connection weights. In the environment of 
autonomous driving, supervised learning (SL) and 
reinforcement learning (RL) are relevant for this. In 
SL, the ANN is presented with input data and the 
associated output. The ANN iteratively learns the 
relationship between these two quantities (Duriez, 
Brunton and Noack, 2017). This learning procedure 
is particularly suitable for image-based object 
recognition, for example (Lyu et. al., 2019). In RL, 
the ANN successively learns the optimal strategy 
from the experience of past sequences in terms of a 
given reward function (Duriez, Brunton and Noack, 
2017). This method is used when no training data is 
available, e.g. in automated vehicle guidance (Huang 
et. al., 2019). SL and RL are upper categories of 
learning methods, with diverse training algorithms. 
Just like the ANN architecture, the optimal training 
algorithms as well as their parameters cannot be 
determined analytically. Thus, experience and 
experimentation are required here as well. 
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3 DESING METHODOLOGY 

3.1 Model-based Controller Design 

The complexity of modern vehicles is constantly 
increasing due to the higher degree of internal and 
external interconnection and the growing number of 
intelligent and powerful hardware and software 
components. In order to master the system 
complexity and to avoid errors at an early stage in the 
design of information processing, a holistic design 
methodology is indispensable. Therefore, the holistic, 
verification-oriented, model-based design 
methodology based on Rapid Control Prototyping 
(RCP) and Model-in-the-Loop (MiL), Software-in-
the-Loop (SiL) and Hardware-in-the-Loop (HiL) 
simulations has become established. (Liu-Henke et. 
al., 2016) 

The methodology builds on function-oriented 
physical models of a controlled system. The control 
function is then simulatively designed depending on 
the system behavior and validated in MiL simulations 
at an early stage. To avoid manual programming, the 
model and control function are developed in block 
diagram-based programming languages (Jacobitz and 
Liu-Henke, 2020). The subsequently automatically 
generated function code is tested again against the 
plant model in SiL simulations. HiL simulations are 
used for further validation and optimization of the 
information processing with real-time capable 
simulation models and real subcomponents of the 
system to be controlled (Liu-Henke et. al., 2016). The 
verification-oriented and iterative approach of this 
methodology also supports the development process 
in the challenging task of validation. The 
methodology addresses the weaknesses of classical 
validation based on physical prototypes, such as high 
resource requirements or safety risks for humans, 
machines and the environment. Due to their virtual 
character, MiL, SiL and HiL simulations save time 
and costs (Yarom et. al., 2020). They enable feasible 
and reproducible tests at any time without direct 
dependency on physical prototypes, day times or 
human experts. Thus, simulation runs can be 
automated for different functional variants or 
scenarios. This makes this methodology particularly 
suitable for training ANNs. This is because, with a 
few exceptions, machine learning is always iterative. 

Virtual design methods like this form the basis for 
many intelligent systems, such as highly automated 
vehicles. With prototype-based testing, the hundreds 
of thousands of test miles required cannot be 
accomplished with reasonable time and cost. It should 
be noted that despite the use of this methodology, 

prototype-based tests cannot be completely 
eliminated, for example for certification tests. 
However, the number and the effort as well as the 
associated disadvantages can be reduced to a 
minimum. (Yarom et. al., 2020) 

3.2 Systematic Design of ANNs 

The design methodology for model-based controller 
design presented in the previous section 2.1 is a 
superordinate methodology. The design of an ANN 
can be considered as a part of this methodology, 
analogous to a controller design with dynamic 
compensation. ANN design is a complex process 
consisting of many design decisions, which 
individually or in combination have a major impact 
on the design outcome. These decisions are 
distributed over the entire development process of the 
ANN and concern e.g. the system structure (end-2-
end function / combination of sub-functions), the 
learning method (SL / RL), the network architecture, 
the parameterization of the training algorithm or the 
evaluation of the ANN.  

The special characteristic lies in the fact that in 
contrast to the very systematic-analytical design 
procedures of classical and modern control 
engineering, the decisions and their effects in ANN 
design are usually not mathematically-logically 
understandable for the human mind. As a result, there 
is no systematic design procedure for ANNs 
(Tirumala, 2020). Although one can find many 
applications of ANNs in current literature, 
information on the respective design processes is rare. 
When information is provided, the authors often 
follow a result-oriented empirical approach based on 
experience with low systematics. 

The procedure model shown in Figure 1 presents 
a first approach to systematize the design process of 
ANNs. The starting point is the control problem 
specification. It hardly differs from the classical 
control theory. For example, especially in the case of 
RL, the work is typically model-based. The special 
feature is the choice of the system structure and 
interfaces. While these are often determined by 
physical conditions in classical controllers, they can 
theoretically be freely selected for ANNs. 
Subsequently, a suitable learning approach or a 
concrete learning algorithm must be chosen for the 
respective problem. There are many learning 
algorithms, with specific advantages and 
disadvantages, which have to be selected for each 
application. In RL, a basic distinction is made 
between gradient-based and gradient-free algorithms. 
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Figure 1: Procedure model for the systematic design of 
ANNs 

The selection of the network architecture is the 
most complex part of the ANN design and has 
become a modern field of research in its own right. It 
is attempted to formulate the architecture selection as 
a search problem and to solve it automatically by 
means of a higher-level optimization technique. This 
is called Neural Architecture Search (NAS). (Rock et. 
al., 2021) After the network architecture has been 
determined, one can continue with the training, which 
is the actual core of the design. In this process, the 
behavior of the ANN is optimized with respect to the 
original purpose. In this step, especially the 
hyperparameters of the training algorithms have to be 
set. The last step is the evaluation of the ANN with 
respect to the original requirements and considering 
its application purpose, e.g. on a real-time system. 

As already indicated for the NAS, each block in 
the process model from Figure 1 forms a higher-level 
process step and each contains further complex 
processes and decisions. Since this paper focuses on 
the application of an ANN as an ACC, only some of 
these will be taken up in more concrete terms later in 
this paper. 

4 SYSTEMATIC MODEL-BASED 
DESIGN OF NEURAL 
ADAPTIVE CRUISE CONTROL 

The aim of this paper is the systematic model-based 
design of a reinforcement learning-based neural 
adaptive cruise control system. This process is now 
presented according to the design methodology 
presented in Figure 1. 

4.1 Control Engineering Problem 
Specification 

4.1.1 Requirements Definition 

The automated longitudinal guidance function 
presented and developed here is intended to meet the 
following requirements: 
 Maintain a speed set by the driver and in no case 

exceed it 
 Maintain a 2-second safety distance to a vehicle 

that may be driving ahead 
 Do not fall below the safety distance, or only 

slightly and for a short period of time 
 Follow any speed profile, even when 

maintaining the safety distance 
 Maintain speed and distance without 

oscillations if possible 

•Training Data
•Collect
•Preprocess

•Reward Function
•Set up Function
•Determine Termination Conditions

•Parameterize the Algorithms
•Consideration of Constraints

Training

•Requirements Definition
•Interface Definition
•Modeling
•Analysis
•System Structure

Control Engineering 
Problem Specification

•Determine and Check Evaluation 
Criteria

•Computational Effort
•Real-Time Capability
•Control Deviation, Stability...
•Restrictions
•Generalization Capability / Robustness

Evaluation

•Network Type
•Number of Layers
•Interconnection of the Layers
•Layer Size
•Tapped Delay Lines
•Activation Functions

Network Architecture

•Supervised
•Unsupervised
•Reinforced
•Concrete Algorithm

Learning Mode and 
Training Algorithm

Further complex processes 
and decisions
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 The ego vehicle should realize accelerations in 
the range -3 m∙s-2 to 2 m/s2 

 Be based on ANNs and RL 

4.1.2 System Structure and Interface 
Definition 

Figure 2 schematically shows the system structure of 
the neural adaptive cruise control designed here, 
including the system environment. The starting point 
is a lead car, which moves with an arbitrary velocity 
vlead and thus changes its position xlead The actual 
center of the structure, however, is the ego vehicle 
model, which calculates the velocity vego and position 
xego of the ego vehicle based on acceleration forces FA 
and braking forces FB. These positions and velocities 
of the ego and lead car, are used by the radar sensor 
with "built-in" preprocessing to determine, within its 
range of 150 m, the input variables for the ANN. 
These are: 

 The velocity error verr, i.e. the difference 
between the velocity vset specified by the driver 
and the actual ego velocity 

 The integral of the speed error over time ∫ verr  
 The ego speed vego 

 
Figure 2: Functional structure of the reinforcement 
learning-based neural adaptive cruise control system. 

 The distance error derr, i.e., the difference 
between the safe distance dsafe and the actual 
distance between the vehicles d. 

Using these input variables, the ANN then 
calculates a command value for the driving and brake 
pedal position p ∈ {-1 ≤ p ≤ 1 | ℝ}, which is 
converted into the above-mentioned longitudinal 
forces by a subordinate vehicle dynamics control 
system. 

These are all components that the system uses in 
the application phase, i.e. after training. During 
training, two additional components are needed. The 
reward function, specified or to be worked out by the 
developer, which calculates a reward based on data 
of the system components in order to evaluate the 
ANN during training. The RL algorithm is an 
optimization technique that adjusts the weights wi,j of 
the ANN to maximize the expected reward in the 
upcoming episode (one simulation run). 

4.1.3 Modeling 

The overall system shown in Figure 2 is modeled, 
simulated and trained in the simulation environment 
for the automated model configuration for the design 
and validation of AI-based driving functions from 
(Yarom and Liu-Henke, 2021). A classical 
longitudinal dynamics model is used to represent the 
behavior of the Ego and Lead vehicles: 𝑚 ∙ 𝑥ሷ ൌ 𝐹 െ 𝑐௪ ∙ 𝐴 ∙ 𝜌2 ∙ 𝑥ሶ ଶᇣᇧᇧᇧᇤᇧᇧᇧᇥ ௦. െ 𝑚 ∙ sinሺ𝛼ሻᇣᇧᇧᇤᇧᇧᇥௌ ௦.െ 𝑚 ∙ cosሺ𝛼ሻ ∙ 𝑓ோᇣᇧᇧᇧᇤᇧᇧᇧᇥோ ௦. െ 𝐹. (1)

The variable for the driving and brake pedal 
position p is scaled to the corresponding forces FA and 
FB. In order to be able to simulate a standstill and 
reversing, further mechanisms were implemented in 
the simulation environment, which will not be 
discussed in this paper. 

The radar sensor with preprocessing is activated 
as soon as the distance between the vehicles falls 
below the range of the sensor. Here, on the one hand, 
situation-dependent reference values for distance and 
speed are calculated. For example, min(vset,vego ) 
applies to the desired speed of the ego car if the ego 
car is in the range of dsafe to the lead car or below. On 
the other hand, the calculated set points are also 
compared with the actual values and deviations are 
calculated for the distance and the ego speed. Thus, 
this function component not only provides the input 
variables for the ANN, but also basic variables for the 
reward function. 
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4.1.4 Learning Mode and Training 
Algorithm 

In principle, only RL algorithms can be used for this 
application. In order to create an optimal ACC 
function on the one hand and to gain further 
experience for the systematic design of ANNs on the 
other hand, different training algorithms will be used 
and compared. In preliminary tests with lower 
requirements the following training algorithms were 
used: 
 Genetic Algorithm (GA) 
 Particle Swarm Optimization (PSO) 
 Deep Deterministic Policy Gradients (DDPG). 

The first two methods are gradient-free, 
evolution-based algorithms. This class of algorithms 
usually evolves steadily toward a higher reward, but 
does not always converge to a true optimum. Their 
advantage is that you usually get to a good result 
fairly quickly. A special feature of the GA is that it is 
quite random and tends to find the global optimum 
rather than other algorithms if the parameters are set 
correctly. The DDPG, on the other hand, is a gradient-
based algorithm that converges fairly reliably to a 
local optimum. However, it usually takes more time 
to do so. Moreover, it rarely reaches the global 
optimum. 

The series of experiments showed that the DPPG 
achieves the best results with high probability. To 
make the results comparable, the same rudimentary 
reward function was used for all algorithms. While 
this series of experiments was already used to 
optimize the hyperparameters of the algorithms, the 
reward function was designed in detail at a later point. 

4.2 Network Architecture 

By choosing DDPG as training algorithm, two ANN 
architectures have to be chosen. This is because an 
actor and a critic network are required here. The actor 
network is the ANN that performs the actual control 
task. The critic network serves as a translator between 
the reward function and the algorithm for updating 
the connection weights. It is only needed during the 
training phase.  

The critic network can usually be chosen as a 
simple feedforward network with rectifier functions 
as activation. Therefore, such an ANN with five 
layers was specified here as the critic network. The 
input variables are its output in addition to those of 
the actor network. The architecture of the actor 
network was automatically optimized using a NAS 
based on a GA. The result is a feed forward with four 

layers. In each of the first three layers there are 48 
hidden neurons as well as rectifier functions for 
activation. In the last layer there is only one neuron 
with a tanh activation. 

4.3 Training 

Now that the network architectures have been 
determined, the reward function that determines the 
final behavior of the ANN or Ego Car must be 
designed. This consists of four terms: 
 -0.1∙(verr)2: Penalizing speed errors to maintain 

the target speed. 
 -(a)2: Penalization of accelerations, so that 

oscillations and abrupt velocity changes are 
avoided 

 -0.1∙(derr)2: Penalization of distance errors so 
that the target distance is maintained. 

 +verr for verr ≤ 0.25 m/s: Reward of small 
speed errors so that the target speed is 
maintained. 

In an iterative process, the ego car now runs 
through several episodes in which the actor network 
is used again and again as a longitudinal dynamics 
controller and receives a corresponding reward for its 
behavior. Figure 3 shows the course of the rewards 
over the episodes as well as the average reward. The 
reward is very negative at the beginning of the 
training, since the ANN does not yet behave well 
without prior knowledge. The reward quickly 
improves to the range of about -600 and then slowly 
increases until the ANN reaches about -91 reward 
points in the best episode at the end. In between there 
are occasional dips, which indicate a wrong weight 
change, but can be compensated by the algorithm. 
The fact that the best reward is -91 does not mean that 
the behavior of the ANN is bad. This is only caused 
by the design of the reward function. The course of 
the reward is therefore more crucial than its absolute 
value. Therefore, the evaluation after the training is 
essential. 

 
Figure 3: Course of the reward during training. 
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4.4 Evaluation 

The evaluation is the final step in the design of the 
ANN for neural adaptive cruise control. A special 
aspect that must be considered in the evaluation is the 
so-called generalization capability. This means that 
the ANN should apply the learned knowledge to new, 
previously unknown problems. In order to be able to 
rate the generalization capability, the numerous 
necessary test scenarios for evaluation must therefore 
differ from the training situation.  

During training, vset was at 100 km/h and the lead 
car was driving ahead with an acceleration sine wave. 
In the one exemplary test situation shown here, vset is 
increased to 108 km/h and the vehicle dynamics 
model of the Lead Car is replaced by a "hard" speed 
profile to further complicate the situation for the 
ANN. The speed profile of the Lead Car is shown in 
red in the upper part of Figure 4, vset in blue. The 
yellow curve shows the speed of the Ego Car. In the 
lower part of the figure, the distances dsafe and d are 
plotted versus time. At the beginning, the Ego Car 
was deliberately placed very close (d < dsafe) behind 
the Lead Car, so that it must first maintain its speed 
to keep the safe distance. Subsequently, the Ego Car 
follows the speed curve of the Lead Car very well and 
stably until the Lead Car accelerates to 120 km/h, i.e., 
above vset, at about 24 s. As desired, the ego car does 
not exceed vset and the distance increases. Then, the 
Lead Car brakes abruptly and the Ego Car also brakes 
hard to maintain the safety distance without violating 
the acceleration requirement (section 4.1). Finally, 
the lead car accelerates again. The Ego Car controls 
vset in a stable manner. 

 
Figure 4: Simulation result of the neural adaptive cruise 
control system. 

This means that the ANN has learned the adaptive 
cruise control and satisfies all requirements as 
expected. Further simulation results, which could not 
be presented here, have shown that the designed 
function is generalization capable. Thus, the novel 
methodology for systematic design of ANNs (in the 
first phase) can also be considered validated. 

5 CONCLUSION AND OUTLOOK 

In this paper, the systematic model-based design of a 
reinforcement learning-based neural adaptive cruise 
control system was presented. Starting with an 
introduction, the state of the art and the underlying 
design methodology were summarized. This relates to 
model-based controller design and systematic design 
of ANNs. The latter was presented as a novelty for 
the first time in this paper. 

Subsequently, the application and validation of 
this methodology was carried out on the example of a 
neural adaptive cruise control system. The design 
process was described in detail and the resulting 
function was intensively evaluated and validated 
against the requirements. 

Future work steps include the further validation of 
the design methodology as well as the design of 
further automated driving functions. 
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