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Abstract: The goal of this study is to determine variable relationships and a computational workflow that yield the 
highest quality of three-dimensional reconstructions in neutron imaging applications with reduced number of 
projections angles.  Neutrons interact with matter primarily through the strong nuclear force providing unique 
image contrast modes.  Accessing many of these contrast modes requires defining the energy of the neutron 
beam, resulting in long exposure times for a single two-dimensional projection image.  To collect of order 
100 tomograms at different neutron wavelengths within a reasonable time frame (less than 1 week) suggests 
the use of dose reduction tomography reconstruction algorithms.  We identified and evaluated the main factors 
affecting the quality of the 3D tomographic reconstruction in the computational image workflow: the 
projection number, the reconstruction method, and the post-processing method. This study reports several 
relationships between 3D reconstruction quality metrics and acquisition time. Based on the established 
relationships, the performance of a seeded simultaneous iterative reconstruction technique (SIRT) yielded 
improved image quality and more accurate estimates of the reconstructed attenuation values compared to a 
SIRT without a priori information or a trained neural network based on a mixed scale dense network. 

1 INTRODUCTION 

The properties of the neutron, a massive, neutral spin-
1/2 particle that interacts primarily through the strong 
nuclear force, enable one to create images with 
unique sources of contrast compared to other 
penetrating probes.  From the de Broglie relationship, 
a massive particle can be thought of as a wave, whose 
wavelength is inversely related to its kinetic energy 
(Rauch & Werner, 2015).  The diverse set of neutron 
image contrasts include quantitative imaging of 
magnetic and electric fields with polarized neutron 
imaging (Hilger et al., 2018; Jau et al., 2020), 
characterizing the porosity with sub-pixel resolution 
through dark-field or phase imaging (Brooks et al., 
2017; Strobl, 2014), and crystal phase mapping with 
Bragg-edge imaging (Vitucci et al., 2018; Woracek et 
al., 2014).  Common to these sources of image 
contrast is the need to define the neutron wavelength 
and to acquire image data sets at many (on order of 
100) different instrument settings, which we refer to 
as a scan parameter.  Several of these scan parameters 
contribute to extended neutron image acquisition 

times which affect image quality and measurement 
throughput of samples under scientific investigations. 
Neutron sources are already about 1 billion times less 
intense than synchrotron X-ray sources. The need to 
define the neutron energy in monochromatic beams 
results in a factor of 10 to 1000 loss in neutron fluence 
rate compared to the full polychromatic beam. Thus, 
the exposure time for a single two-dimensional image 
is on the order of 1 minute. To acquire 100 
tomograms with reasonable experimental 
measurement time (beam time at a user facility is 
typically about 1 week) thus requires one to sacrifice 
spatial resolution, temporal resolution, wavelength 
resolution and/or acquiring a reduced number of 
angular projections. This work is motivated by 
minimizing the acquisition time while maximizing 
the quality of 3D tomographic reconstructions. 

Another common feature of the wavelength-
selective image contrasts is that the image contrast 
varies somewhat slowly for each successive scan 
parameter setting.  We postulate that it will be 
possible to obtain quantitative multiscale data by 
proper choice of a dose reduction tomography 
reconstruction algorithm using a priori data from a 
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tomography data set with sufficient angular 
projections (that is, the outer edge of the object 
traverses about one pixel for a rotation step).  To test 
this, we will use Bragg-edge imaging to identify the 
crystal phases in samples of well-known 
composition. There are many dose reduction 
algorithms in the literature, as a first step we have 
chosen to compare the simultaneous iterative 
reconstruction technique (SIRT) as implemented in 
the ASTRA Toolbox (Palenstijn et al., 2011b; Van 
Aarle et al., 2015a; van Aarle et al., 2016) and a 
machine learning algorithm that uses a trained mixed 
scale dense convolutional neural network (MS-D) 
(Pelt & Sethian, 2017).  Our goal is to establish 
models and rankings among the factors that affect 3D 
reconstruction image quality and acquisition time in 
order to guide neutron imaging experimentalists in 
maximizing image quality and minimizing 
acquisition time. Our approach is to design a 
metrology for quantifying the trade-offs between 
several image quality metrics and different dose 
reduction approaches (acquisition time reduction).   

In our experimental design, we varied the number 
of projections (60, 80, 360, 600, and 800) and a 
chosen 3D tomographic reconstruction method 
(SIRT, SIRT + seed). For each combination of these 
two variables, the MS-D Neural Network (NN) 
training was performed as a post-processing step with 
the input training sets consisting of 2D frames. First, 
accuracy of reconstructed tomographic volumes is 
related to the number of acquired 2D projections via 
a theoretical relationship (Kak, A. C., Slaney, M., & 
Wang, G., 2002). Next, accuracy by the MS-D NN 
was measured using the root mean square error 
(RMSE) metric between the training low projection 
number input and the training high projection number 
output (2400). Finally, quality of 3D reconstructions 
was measured by 24 blur metrics per image and by 
the signal to noise ratio (SNR) per manually 
segmented reference object. The combination of 
minimum RMSE, optimal blur, and maximum SNR 
metrics defines our evaluation framework for 
minimizing the imaging acquisition time (i.e., 
proportional to the number of 2D projections) and 
maximizing the quality of 3D tomographic 
reconstructions. 

The Contributions of Our Work Lie in: 

(1) a factorial experimental design to understand 
trade-offs between acquisition time and image 
quality of 3D tomographic reconstructions from 
neutron imaging data,  

(2) evaluating (a) reference material-based image 
quality such as SNR, (b) imaging quality focused 
metrics such as blur, (c) reference 3D 

reconstruction acquired for oversampled 2D 
projections such as RMSE, and (d) theory for 
circularly symmetric objects and the relationship 
between intensity variance and the number of 2D 
projections. 

(3) including the MS-D NN model-based denoising 
as a postprocessing step to leverage previously 
acquired high quality dataset. 

The novelty of this work is in establishing model-
based and ranking relationships between 3D 
reconstruction accuracy and acquisition time 
represented by intensity variance, SNR, RMSE, blur, 
number of 2D projections, number of iterations and 
seeding of 3D tomographic reconstruction (SIRT), and 
supervised postprocessing denoising model (MS-D Net 
model). The relationships are summarized in Table 4. 

2 RELATED WORK 

Related work to our approach can be found in the 
literature about 3D tomographic reconstruction 
algorithms and about image quality metrics. 

3D Tomographic Reconstruction Algorithms: The 
two main computed tomography (CT) reconstruction 
algorithms that reconstruct the raw 2D projections 
into 3D space are Filtered Back Projection and 
Iterative Reconstruction. The mathematical theory for 
these algorithms are beyond the scope of this work 
but are detailed in (Kak et al., 2002). In simple Back 
Projection (BP), a slice is reconstructed by ‘smearing 
out’ the line integrals for each angle and summing 
them together. The Filtered Back Projection (FBP) 
corrects this process by applying a spatial frequency 
filter to account for the oversampling in certain areas 
(Schofield et al., 2020).  

In recent years, improvements in computer 
processing have made Iterative Reconstruction (IR) 
techniques popular for dose and noise reduction. 
There are several types of IR algorithms, but the most 
complex algorithms forward-project a reconstruction 
image (either initialized with a blank image or a 
reconstruction image) and creates a simulated 
sinogram (Tayal et al., 2019). The simulated 
sinogram is then compared to the sinogram of the raw 
data and corrections to the reconstruction image are 
made. The algorithm iterates through this process a 
set number of times. In the SIRT, the projection 
differences and sinogram differences are weighted. 
Additional details can be found in (Kak et al., 2002; 
Tayal et al., 2019; Van Aarle et al., 2016a). For both 
the FBP and SIRT algorithms, the image quality and 
accuracy increase with an increasing number of 
projections. 
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Image Quality in 3D Neutron Imaging: The quality 
can be assessed after a 3D tomographic 
reconstruction is calculated. The quality metrics can 
evaluate (a) the reconstruction against a priori known 
reconstruction using the root mean square error 
(RMSE), (b) foreground vs. background 
discrimination using signal-to-noise ratio (SNR) over 
calibration regions, (c) optical focus of imaging on an 
object of interest in a camera field of view using blur 
metrics, and (d) the reconstruction accuracy as a 
function of the number of 2D projections following a 
theoretical model. Each quality evaluation requires 
some assumptions about a priori knowledge. RMSE 
assumes co-registered ground truth 3D 
reconstruction. SNR quantification requires known 
foreground and background masks. Blur metrics are 
derived from intensity histograms using multiple 
mathematical models that must be empirically 
chosen.  In our work, the ground truth 3D 
reconstruction is established from over-sampled 
angular 2D projections (2400 projections). Next, 
foreground and background masks are created 
manually for two reference cylindrical objects filled 
with known material. Finally, an optimal blur 
mathematical model is chosen by maximizing blur 
coefficient of variation over 24 models and by 
including human assessment (Crete et al., 2007a; 
Petruccelli et al., n.d.). 

3 MATERIALS AND METHODS  

Figure 1 shows an overview of the key components 
in evaluating the trade-offs between acquisition time 
(dose reduction) and 3D reconstruction quality. These 
key components hide the relationships among 
variables, such as number of 2D projections (or 
acquisition time), number of iterations during 3D 
reconstruction, variance of intensities in 3D 
reconstructed dataset, SNR, RMSE, blur, and 
availability of highly accurate seed for a 3D 
reconstruction algorithm and supervised 
postprocessing model. Following figure 1, this 
section describes each component in our assessment 
of dose reduction strategies. 

 

Figure 1: An overview of assessing dose reduction 
strategies.  

3.1 Samples 

The test sample set consisted of four geological 
samples to analyze. The first two samples were a 
meteorite of unknown origin and a 1 cm diameter core 
of Westerly Granite, which has been extensively 
analyzed in (Bingham et al., 2013; Gates et al., 2018). 
The other two samples were standard reference 
powders obtained from National Institute of 
Standards and Technology (NIST) Standard 
Reference Material (SRM) collection. Several grams 
of these powders were placed in separate 6061-
aluminum tubes, with 316 stainless steel ferrules 
around them, and sealed on both ends with polyimide 
tape. The powders were not compacted or leveled off 
and aluminum tape was used to secure all the samples 
in place. Figure 2A shows an image of the samples 
before they were placed in the beam. 

The SRM powders were used as reference objects 
for all the subsequent metric evaluations. The first 
powder, SRM 691 – Reduced Iron Oxide, was an iron 
powder consisting of 90 % by mass of iron and trace 
amounts of oxides and other metals. The second 
powder, SRM 70b – Potassium Feldspar, was 
prepared from a high-purity feldspar obtained from 
pegmatite deposits in the Black Hills of South 
Dakota. The material is a mixture of alkali feldspar, 
plagioclase feldspar, quartz, and a small amount of 
mica. The SRM was blended and bottled at NIST. 

3.2 Beam, Detector and Image 
Acquisition  

Neutron tomography datasets were measured at the 
NG-6 Cold Neutron Imaging Instrument at the NIST 
Center for Neutron Research (NCNR) (Hussey et al., 
2015). A dataset with many projection angles was 
collected, representing the maximum number of 2D 
projections for this study, 2400, evenly spaced over 
360 degrees (2399 unique projections).  This data set 
is referred below as the “high-quality” data set and 
serves as ground truth. Figure 2B shows an example 
projection image. The dataset was collected using a 
polychromic neutron beam that can be approximated 
from a kinetic molecular theory as a Maxwell-
Boltzmann distribution with characteristic 
temperature of about 50 K (Gavin D. Peckham and 
Ian J. McNaught, 1992). An Andor NEO scientific 
complementary metal oxide semiconductor (sCMOS) 
camera operating in 12-bit mode (Oxford 
Instruments, n.d.) was used to collect images from a 
P43 scintillator detector (i.e. gadolinium oxysulfide 
doped with terbium, Gd2O2S:Tb also known as 
GadOx ) with a Nikon Nikkor 50 mm f1.2 lens.  

Each image was acquired over 4 seconds and the 
median of 5 images was taken for each projection, 
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leading to maximum intensity around 3500 grey 
levels. The pixel pitch of the images was 51.35 µm 
(resolution about 100 µm) and the field of view was 
2560 pixels by 2160 pixels (~13 cm by 11 cm). This 
scan took approximately 16.5 hours to complete. 
From this original dataset, several sub-sets were taken 
to simulate smaller projection numbers: 60, 80, 360, 
600, and 800. Angles from these sets were evenly 
taken throughout the 2400 projections in order to span 
the same 360-degree sample space. If these datasets 
were collected on the beamline, they would take 0.4 
hours, 0.6 hours, 2.5 hours, 4.2 hours, and 5.5 hours, 
respectively. 

Two additional separate datasets using a 
monochromatic beam were obtained to validate and 
analyze. The first dataset consisted of 720 projections 
collected over 360 degrees. Two highly oriented 
pyrolytic graphite crystal monochromators were used 
to select the wavelength of 0.37 nm and the Δλ/λ was 
about 1%.  The same camera and lens as above were 
used to collect images from a zinc sulfide/lithium 
fluoride (ZnS:LiF) scintillator. For this data to be 
consistent with the polychromatic datasets in terms of 
maximum intensity, the lower incident beam intensity 
required each projection image to be acquired over 10 
seconds with a median of 3 images (maximum 
intensity ~3500 counts). The pixel pitch of the images 
was 51.35 µm (resolution about 250 µm) and the field 
of view was 2560 pixels by 2160 pixels (about 13 cm 
by 11 cm). This scan took approximately 7 hours to 
complete. Using this same set up, another scan was 
taken with only 80 projections taking approximately 
0.8 hours to complete (exposure time is 20 s for the 
polychromatic and 30 s for the monochromatic 
beam). 

 

Figure 2: Photo of the samples before they were placed in 
the beam (A) and a raw neutron projection image (B). 

3.3 Computational Workflow 

Image Pre-processing: As stated, the images from 
each projection angle were combined by taking the 
median to remove non-statistical noise such as 
gamma streaks and hot spots.  An image with the 
beam off was used to subtract the additive noise.  An 
image of the open beam was used to normalize the 
projections, and a region of the image that did not 
contain a sample was used to correct for any small 
drift in beam intensity.  The normalized projections 
were formed into sinograms, correcting for rotation 
axis title.  Ring artifacts were removed from the 
sinograms by the algorithm developed by Vo et al (Vo 
et al., 2018).   

Tomographic Reconstruction: We use the SIRT 
algorithm, assuming a parallel beam geometry, in the 
ASTRA toolbox (Palenstijn et al., 2011b; Van Aarle 
et al., 2015a; van Aarle et al., 2016) using the 
MATLAB bindings, on a single Nvidia Quadro 
RTX5000 GPU card to reconstruct all the of the data 
presented (NIST Disclaimer Statement | NIST, n.d.).  
The output of the tomography reconstruction is the 
average value of the neutron total macroscopic 
scattering cross-section, Σ, with units inverse length, 
and is analogous to the attenuation coefficient in X-
ray-based measurements.   

Image Post-processing: A machine learning post-
processing method was applied to the reconstructions 
generated with SIRT. The Mixed-Scale Dense (MS-
D) neural network was trained and validated with 
high/low image quality pairs using a Nvidia Quadro 
RTX5000 GPU. A total of 5 networks were trained, 
varying the low image quality datasets (SIRT60pro, 
SIRT80pro, SIRT360pro, SIRT600pro, SIRT800pro) 
and using the SIRT2400pro reconstruction for the 
high-quality dataset throughout. The MSD net was 
run for each network until the root mean square error 
(RMSE), computed as the difference from the high-
quality dataset, was below at least 0.00014, taking 
anywhere from 1 hour (MS-D Net800) to 288 hours 
(MS-D Net80). Each network was then applied to all 
the low-quality datasets.  We refer to these data as 
MS-D NetTT_FFpro, where TT is the number of 
projections used to generate the volume used to train 
the network, and FF is the number of projections used 
to generate the volume that is filtered.  

Figure 3 shows an example of the process using 
the SIRT-80pro data as the training and validating 
dataset (MS-D Net80_80pro).  
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Figure 3: An example of the MSD-Net Post-Processing 
Method using the SIRT 80pro/SIRT 2400pro datasets as 
high/low quality pairs (MS-D Net80_80pro). After the 
neural network was trained, it was applied to all the low-
quality datasets. 

3.4 3D Reconstruction Quality versus 
Acquisition Time  

Accuracy and Number of 2D Projections: To assess 
the accuracy of each reconstruction method as a 
function of projection number (aliasing distortions; 
Kak, A. C., et. al.., 2002), we evaluated the standard 
deviation of the reconstructed values of the SRM 
powders, as shown in Figure 5  As discussed in Kak 
and Slaney (2002), for a circularly symmetric object, 
the variance of the reconstruction is approximated as  var൛fመሺ0,0ሻൟ = 	 πଶ	τM	N න ݄ଶሺݐሻdwஶ

ିஶ  (1)

൛ݎܽݒ መ݂ሺ0,0ሻൟ = 	 	ܯ߬	ଶߨ ܰ න ఛ/ଶݓሻ|ଶ݀ݓሺܪ|
ିఛ/ଶ  (2)

M the number of projections, N0 the number of 
neutrons detected in the center of the object, τ is the 
sampling width, and h(t) and its Fourier transform 
H(w) the filtering window, which is the ramp function 
for the SIRT algorithm used in this work.   

SNR and RMSE Metrics: RMSE and SNR metrics 
were computed by leveraging reference data cons-
tructed via a tomographic reconstruction from 2400 
projections and manual annotation of image regions 
delineating standard reference materials in the field of 
view – see Figure 4. We calculated RMSE and SNR 
using common definitions shown in equations below:  

ܧܵܯܴ = ඨ∑ ݕ| െ ො|ଶୀଵݕ ݊  (3)

ܴܵܰ = (4) ݏߤ̅

where ݕ  is the reference value, ݕො  is the measured 
value, ݊  is the number of values in a tomographic 

reconstruction,  ̅ߤ is the average intensity and ݏ is the 
sample standard deviation.  

Blur Metrics: Blur mostly affects structure and detail, 
which are absent in the reference powders. For this 
reason, the blur metrics were analyzed for the whole 
image over the entire volume, including the meteorite 
and granite. To determine the optimal blur metric for 
our datasets, we evaluated 24 different blur/focus 
metrics from (Crete et al., 2007a; Petruccelli et al., 
n.d.).  We evaluated the metrics based on two 
different assumptions: (1) that the optimal metric had 
the highest coefficient of variation over a set of 
diverse image qualities and (2) that the optimal metric 
is one that is verified by a human quality assessment. 
For Assumption 1, we investigated if the optimal blur 
metric selection was dependent on the dataset 
analyzed. We then compared the metrics determined 
for each assumption to determine if they ranked 
datasets in the same order. For Assumption 2, we used 
the no-reference perceptual blur metric developed by 
Crete et al., henceforth referred to as the CRETE 
method, which has been validated with a human 
perception test (Crete et al., 2007a), for which, the 
higher the blur metric is, the poorer the visual quality 
of the image. 

4 EXPERIMENTAL RESULTS  

To compare the under-sampled data sets with ground 
truth (2400 projections), we took samples at a regular 
interval from the polychromatic data set to form data 
sets with 60, 80, 360, 600, and 800 projections, we 
also refer to these data sets as “low-quality”. From 
each of these under-sampled data sets we computed 
two reconstructed volumes. We formed the SIRT 
estimate of the volume using no prior estimate, and 
 

 
Figure 4: Left - A cross-section of the reference powders 
with the mask overlain on top. The powder regions are 
labeled. Right – A cross section of 3D tomographic 
reconstruction from 2400 projections which was considered 
as a reference. 
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Figure 5: Observed standard deviation for the two 
cylindrical regions of interest (SRMs denoted as 1 and 2) 
and reconstruction method as a function of number of 
projections M. To highlight the linear relationship of the 
SIRT data set, the standard deviation is plotted as M-1/2 In 
contrast to SIRT data sets, the SEED and MS-D Net data 
sets show approximately constant standard deviations as a 
function of M. 

we designate these as SIRT-Xpro (where X = 60, 80, 
360, 600, 800, or 2400). The second set of volumes 
seed the SIRT with a prior estimate from the highly-
quality (SIRT-2400pro) reconstruction, and we 
designate these as SIRT+seed-Zpro (where Z = 60, 
80, 360, 600 or 800). The 2400 projection dataset was 
used to determine the best approaches to evaluate the 
metrics for image quality. In addition, we created a 
validation dataset reconstructed using the SIRT 
function in the ASTRA toolbox from 720 projections 
acquired using a monochromatic beam and by using 
500 iterations (Palenstijn et al., 2011a; Van Aarle et 
al., 2015b, 2016b). 

4.1 3D Reconstruction Time  

Reconstruction of the 2400 projection dataset took 
about 15 hours, while reconstruction of only 80 
projections took 0.7 hours. Time to reconstruct an 
example volume using the SIRT + seed 
reconstruction method TimeRec as a function of the 
SIRT iterations was linear with the model parameters 
in Equation below. 

TimeRec [s] = 2.1089 [s] * x + 131.85 [s] (5) 

where x is the number of SIRT iterations. Here the 
SIRT 2400pro dataset was used as a seed and the 80 
projection, 3.7 Å monochromatic dataset was 
reconstructed. The impact on image quality is 
discussed below, however we note that for when using 
a prior estimate, only 3 iterations were required to 
achieve significant image clarity, and larger number of 
iterations exhibited the well-known behavior of over-
fitting of the noise (Chen et al., 2016).   

4.2 Acquisition Time and Estimated 
Accuracy of 3D Reconstruction 

Acquisition time is directly proportional to the 
number of acquired 2D projections M. Following the 
Equations (1) and (2), the number of 2D projections 
M influence the value of N0, the number of neutrons. 
This is shown in Figure 5 by different slopes and 
intercept of the fit of the standard deviation as a 
function of M-1/2. The standard deviation for the 
seeded and MSD-Net reconstructions do not possess 
the standard deviation dependence on projection 
number, but instead are approximately that of the 
SIRT-2400pro data set, which is used as the seed or 
ground truth -see Figure 5. The slightly suppressed 
standard deviation for the MS-D Net data sets 
indicates there is strong smoothing occurring.  For the 
SIRT+seed data, the a priori information, which is in 
part derived from the projections used in the under-
sampled data, reduces the overall variance.  

4.3 SNR and RMSE based 
Comparisons 

For the SNR evaluations, we isolated the standard 
reference powders to try and determine if there was a 
relationship between the average SNR and the 
projection number as a function of the reference 
powder regions (SNR=f(region, projection)). 
Isolation was realized by manually establishing a 2D 
mask in the SIRT-2400pro dataset that defined the 
reference powders for each 2D cross-sectional z-
frame and then determined the frame z-range that 
corresponded to the reference powders. We then 
computed the SNR for each reference powder per z-
frame. We could then rank the datasets based on their 
average SNR values and try to determine the 
predictive relationship among the data. 

 

Figure 6: Reconstructed slices using 3, 50, and 1000 
iterations. Visual quality decreases with increasing 
iterations. 
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Figure 7: The average SNR as a function of the reference 
powder region and the projection number. 

Region 1 contained the silicate powder and 
Region 2 contained the iron powder. Figure 4(left) 
shows a cross-section of the powders with the 
corresponding mask overlain on top of the data. To 
determine the height of powders in two cylinders, we 
assumed that the derivative of the average intensity of 
each region per frame in the SIRT-2400pro dataset is 
close to zero since the powders are homogeneous 
along z-axis (corresponding to the cylinder height 
dimension). The choice of a threshold for the derivate 
to be close to zero was visually verified (SNR 
threshold=0.000389) and resulted in defining the 
powder z-slices to be in the [447, 514] range. Finally, 
we calculated the signal-to-noise ratio (SNR) using 
the definition in Equation (4). 

SIRT-Xpro Dataset: The SNR method described 
above was applied to the polychromatic datasets 
reconstructed with the SIRT algorithm. The 
differences in SNR values for Region 1 and Region 2 
shown in Figure 4 (left) are due to the difference in 
the average attenuation intensity of the regions, a 
function of the properties of the reference powders, 
and will vary depending on the homogenous material 
being analyzed. Ranking both datasets from worst to 
best quality we get: SIRT-60pro, SIRT-80pro, 
SIRT-360pro, SIRT-600pro, SIRT-800pro, and 
SIRT-2400pro. This ranking from lowest to highest 
projection number was expected due to the Poisson 
noise detailed below and helps validate the use of 
SNR based evaluations for the other datasets.  

As with most neutron imaging datasets, the noise 
in the data is dominated by Poisson counting 
statistics. Without any interaction with a sample, the 
SNR is governed by the counting statistics according 
to:  

 ܴܵܰ = √ܰܰ (6)

where ܰ  is the number of incident neutrons 
(Lewandowski et al., 2012). Thus, the increased 
counting statistics with increasing number of 
projections will increase the SNR value 
exponentially. The application of the Beer-Lambert 
Law in Equation below due to interaction with the 
sample, transforms this into a logarithmic 
relationship. ܶ = ܫܫ = ݁ିఓ௧ (7)

where ܫ is the measured intensity, ܫ the incident 
intensity, ܶ is the transmission, ݐ is the thickness, and ߤ is the attenuation, a product of the neutron cross 
section and the atom density (dependent on the 
material). A predictive relationship between SNR and 
the number of 2D projections can be derived from the 
data shown in Figure 7.  

 
Figure 8: The average SNR value on a single frame as a 
function of the number of SIRT iterations with a seed. 

SIRT+seed-Zpro Dataset: Applying the SIRT + seed 
reconstruction method requires a trade-off between 
accuracy, time, and image quality as in Fig. 6, Fig. 8 
and Fig. 9 show the dependency of SNR and RMSE on 
the SIRT iterations. Fig. 9 indicates that (a) the ground 
truth 3D volume we compare against has lower image 
quality with respect to RMSE error than the seed 
volume, and (b) for the increased number of iterations, 
the resulting 3D volume is deviating more from the 
seed and converging closer to the 3D reconstruction 
from the input projection images without the seed. 
Thus, quality of the 3D reconstructed volume will vary 
between the quality value of the seed and the quality 
value of the input data as a function of the number of 
iterations. However, utilizing this method would 
dramatically decrease the time required to reconstruct 
a dataset of similar quality. Using the SIRT + seed 
method with 20 iterations would take about 7 minutes 
for reconstruction and about 0.6 hours to collect and 
yield image quality similar to the SIRT-360pro data set 
that takes about 1.5 hours to reconstruct and 2.5 hours 
to collect, a savings of over 3 hours per dataset, 2 hours 
of which is expensive neutron acquisition time. 
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Figure 9: The Root Mean Squared Error for the reference 
powder regions as a function of the number of SIRT 
iterations with a seed. 

4.4 Blur based Comparisons  

For the choice of optimal blur metric with maximum 
variability (Assumption 1 from section 4.4), we 
calculated the coefficient of variation (CV) for the 
various blur metrics for the SIRT datasets according 
to:  

 ܿ௩ෝ = (8) ݔ̅ݏ

where s is the sample standard deviation and ̅ݔ is 
the sample mean. The blur metrics with the highest 
coefficient of variation for each dataset are selected 
to provide the highest discrimination. Out of the six 
datasets, the HELM blur metric was optimal for five 
and hence it was selected as the optimal metric for 
Assumption 1.  

 
Figure 10: The CRETE blur metrics on a single frame 
(frame index: 451) as a function of the number of iterations. 
The insert shows a zoomed in version of the graph with 
iterations from 1 to 15 and the CRETE value for the SIRT-
2400pro for the same frame (between 7 and 10 iterations). 

For the choice of optimal blur metric aligned with 
human perception (Assumption 2), we used the 
CRETE method, which has been validated with a 
human perception test (Crete et al., 2007b). As 
expected, the dataset with largest number of 

projections (SIRT-2400pro) had the lowest blur 
metric (the best quality) and the blur metric generally 
increased with decreasing projection number. The 
exception being SIRT-60pro and SIRT-80pro which, 
qualitatively, were similar throughout. Figure 10 
illustrates the relationship between CRETE metric 
and the SIRT iterations for a fixed z-frame applied to 
the 3D reconstruction using monochromatic 
SIRT+seed-Zpro dataset. 

Table 1: Ranking of Datasets According to the Blur Metric. 

Projections 
Assumption 1 

HELM 
Assumption 2 

CRETE 

60 5 5 
80 6 6 
360 4 4 
600 3 3 
800 1 2 
2400 2 1 

Note: 1-6 from least blur to most blur 

Table 2: CRETE Values. 

Dataset 
CRETE 
Value 

SIRT + seed: 20 iterations 0.43 
SIRT-360pro 0.49 
SIRT-600pro 0.48 
SIRT-800pro 0.46 
SIRT-2400pro 0.38 

For both criteria for selecting optimal blur 
metrics, the datasets were ranked according to the 
average blur metric from 1 to 6, with 1 being the least 
blurry. The results are shown in Table 1 . The 
rankings for the HELM and blur metrics differed 
slightly and were consistent for all but the SIRT-
2400pro and SIRT-800pro datasets. We expected the 
SIRT-2400pro dataset to have the lowest blur metric 
due to the higher number of projections, which was 
the case for the CRETE method (see Table 2), but not 
for the HELM metric. This lends credence to the 
CRETE method of evaluating blur and will be the 
main metric considered for the rest of this work. 
Another deviation from the expected results is the 
higher ranking of SIRT-60pro compared to SIRT-
80pro. This relationship is consistent in both the 
HELM and the CRETE methods and could be due to 
a smoothing out of features and boundaries in the 
SIRT-60pro. 

4.5 SNR and Blur for MS-D Net 
Postprocessed Datasets  

Lastly, we analyzed the machine learning post-
processing method for each trained network. We then 
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calculated the average SNR per calibration region for 
each network as a function of the number of 
projections using the same procedure as before (Fig. 
11 A-C). Based on the SNR results, the network 
performance can be divided into two groups that 
show similar trends, the 60/80 MS-D Net data and the 
360/600/800 MS-D Net data.  

60/80 MS-D Net Data: The SNR results for these two 
networks demonstrate that the best SNR ratio was 
achieved when the MS-D Net was applied to the data 
set it was trained on (Fig. 11 A). In the training data, 
there were various degrees of artifacts due to the low 
projection number. Each model was trained to 
compensate for the degree of artifacts that were 
present in the samples and did not perform as well 
when the artifacts were not present or present but to a 
lesser extent than the dataset it was trained on. When 
compared to the original SIRT datasets, the maximum 
SNR values were much higher than the original SNR 
values (Table 3) and in the MS-D Net80 case, higher 
that the SIRT-2400pro dataset. Thus, these networks 
were able to improve the SNR of the original datasets. 

The blur results using CRETE are a bit more 
difficult to interpret because while the SNR 
calculation is only applied to the homogenous 
powders, the blur metric is calculated across the entire 
volume, including the heterogenous rock samples.   

Table 3: SNR Max Values, the SIRT datasets (last four 
rows) only had one SNR value, whereas, for the MSD 
networks (first three rows), the max SNR value for every 
dataset was used. 

Dataset/Network 
SNR Max Value 

Region 1 
SNR Max Value 

Region 2 

MS-D Net360 5.38 13.56 
MS-D Net600 5.99 13.25 
MS-D Net800 5.24 13.45 
SIRT-360pro 6.68 16.26 
SIRT-600pro 7.00 17.76 
SIRT-800pro 7.65 18.52 
SIRT-2400pro 8.87 21.22 

360/600/800 MS-D Net Data: The SNR results for the 
360/600/800 MS-D Nets all show consistent results. 
These networks did not perform well (low SNR 
values) when applied to the SIRT- 60pro/80pro 
datasets that contained reconstruction artifacts due to 
low projection numbers. Since the networks were 
trained with datasets that did not have many artifacts, 
they were not trained to remove them. These artifacts 
were thus still present in the data after the networks 
were applied, leading to lower SNR values. The 
networks performed best when they were applied to 
the SIRT- 360pro/600pro/800pro datasets. When 
compared to the original SIRT datasets, the maximum 

SNR value for all three networks was below the SNR 
value of the initial datasets (Table 3). Thus, these 
networks were not able to make any improvements in 
the SNR values. 

 

 
Figure 11: The average SNR values for the MS-D Net 
trained networks and 3D datasets reconstructed from 60, 
360, and 800 projections. 

5 DISCUSSION  

This paper presented (1) an experimental design to 
understand the trade-offs between acquisition time 
and image quality of 3D tomographic reconstructions 
from neutron imaging data, (2) evaluations of SNR, 
RMSE, blur metrics, and intensity variance as the 
measurements of image quality and their 
relationships to acquisition parameters, and (3) 
integration of the MS-D NN model-based denoising 
to leverage previously acquired high quality dataset. 
We have created several “ground truth” datasets and 
included assumptions, models, and methods to 
quantify several image quality metrics as listed in 
Table 4. 

Table 4 summarizes all relationships documented 
in the experimental section. We could classify them 
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into linear, non-linear (logarithmic), and content 
dependent. Due to a large spectrum of blur 
definitions, one must consider ranking the blur 
metrics, for example, based on the coefficient of 
variation (CV). The ranking order becomes the first 
step before a modelled relationship can be 
established. 

This work examined three separate methods of 
improving 3D tomographic reconstructions at 
neutron imaging beamlines: (1) one baseline 
reconstruction method as a function of varying input 
numbers of projections, (2) one method as a function 
of incorporated seeds into an iterative 3D 
reconstruction algorithm, and (3) one post-processing 
method as a function of incorporated non-linear 
mappings derived from existing datasets. The first 
reconstruction algorithm (SIRT) established baseline 
metrics for analyzing neutron tomograms, including 
SNR and the CRETE blur metric. The second 
reconstruction algorithm (SIRT + seed) used a high-
quality dataset to initialize the SIRT reconstruction. 
The final approach, a post-processing method, 
applied a machine learning algorithm (MS-D net) to 
sharpen and de-noise the reconstruction images.  

Using the metrics determined when analyzing the 
SIRT datasets, we found that the SIRT + seed method 
could utilize a high-quality dataset of similar 
attenuation values and the same shape to reconstruct 
unknown datasets with trade-offs between accuracy, 
time, and image quality. As little as 20 iterations of 
an 80-projection dataset was shown to improve image 
quality comparable to a dataset with at least 360-
projections. Utilizing this method would dramatically 
decrease the time required to reconstruct and collect 
datasets, allowing more advanced neutron imaging 
methods to be utilized.  

The post-processing method using the MS-D Net 
demonstrated the benefit of using this method for 
low-projection datasets, especially if the algorithm is 
trained on a dataset with the same number of 
projections. These networks showed improvements in 
SNR values and CRETE blur metrics that indicate 
higher-quality data. However, as shown in the higher-
projection dataset, care must be taken when applying 
machine learning models across multiple 
configurations on the neutron imaging beamlines.  

6 CONCLUSIONS 

This paper presented (1) an experimental design to 
understand the trade-offs between acquisition time 
and image quality of 3D tomographic reconstructions 
from neutron imaging data, (2) evaluations of SNR, 
RMSE, blur metrics, and intensity variance as the 
measurements of image quality and their 

relationships to acquisition parameters, and (3) 
integration of the MS-D NN model-based denoising 
to leverage previously acquired high quality dataset. 
We have created several “ground truth” datasets and 
included assumptions, models, and methods to 
quantify several image quality metrics as listed in 
Table 4. 

Table 4: Summary of explored relationships and rankings. 
GT is ground truth, “A priori” refers to assumptions & 
models, and methods, M denotes the number of 2D 
projections, N is the number of SIRT iterations, RM is 
reference segmentation mask, RV is reference 2400 
projection-based 3D reconstruction, RP is reference 
powders, and MS-D is mixed-scale dense neural network 
trained model. 

Relationship
Dependent 

var. 
Independent 

var. 
A priori 

GT 
Datasets

Linear  Acq. time M   

Linear: 

Eq. (5) 

Time to 
reconstruct 

volume 
N   

Linear:  

Figure 5 
Intensity 
Variance 

1/M Cylinders RP 

Log:  

Figure 7 
SNR M 

RP & 
SIRT-Xpro 

method 
RM 

Linear:  

Figure 8 
SNR N 

RP & 
SIRT+seed

-Zpro 
method 

RM 

Ranking:  

Figure 9 

Min RMSE 
over 

powders 
N & intensity 

RP & 
SIRT+seed

-Zpro 
method 

RM & 
RV 

Log:  
Figure 10 

CRETE 
Blur 

N 

SIRT+seed
-Zpro 

method & 
MS-D 

RV 

Log: 
Figure 11 

SNR M, RP type 

SIRT+seed
-Zpro 

method & 
MS-D & 

RP 

RM & 
RV 

The paper aims at identifying trade-offs between 
3D reconstruction quality and acquisition time by 
discovering relationships among variables measuring 
several aspects of imaging, such as acquisition speed, 
imaging focus, object discrimination from 
background, 3D reconstruction method, and noise 
modelling. Once the models for relationships are 
established and parametrized, a user can choose a 
compromise between acquisition time and accuracy 
of the final measurement depending on 3D 
reconstruction quality.  Thus, the analysis completed 
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here may help users of neutron beam facilities to plan 
and carry out experiments at the neutron imaging 
beamline. The work is also intended to be an initial 
look at how the 3D reconstruction techniques could 
be used at neutron imaging facilities to improve 3D 
reconstructions with additional seeding and 
supervised model-based denoising.  

DISCLAIMER 

Certain commercial equipment, instruments, or 
materials (or suppliers, or software, ...) are identified 
in this paper to foster understanding. Such 
identification does not imply recommendation or 
endorsement by the National Institute of Standards 
and Technology, nor does it imply that the materials 
or equipment identified are necessarily the best 
available for the purpose. 
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