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Abstract: In this paper we describe the functionality of a decision support modelling approach to select appropriate 
biomaterial blends depending on their mechanical/chemical properties on the one hand, and their 
biodegradation behaviour, on the other. Firstly, a Case Based Reasoning (CBR) approach is applied to predict 
expected biodegradation behaviour over time, based on historical examples and using a weighted distance 
metric on the material properties in order to calculate the trend curve of the new case. Secondly, a Multi-
Agent System (MAS) is applied to dynamically simulate the biodegradation curve, in which the two main 
agents, bacteria and plastic, interact to reproduce the biodegradation kinetics over time. The results of the 
interpolation are very promising with a good approximation to the real curve time series and % biodegradation, 
and the Multi-Agent System successfully simulates the different trend curves over time. The system has been 
confirmed as useful by materials expert end-users, who participated in the project, in order to evaluate a priori 
new blends “in silico”, and identify and select the most promising, before conducting the long duration 
biodegradation experiments in the real environment.

1 INTRODUCTION 

Developing biodegradable materials which are fit for 
purpose in the future circular economy is a critical 
task if we wish to make the transition from fossil fuel 
plastics. However, finding an equilibrium between 
mechanical properties of the different potential bio-
material blends and their biodegradation 
requirements can be a complex, trial and error, and 
lengthy process (due to the long experimental time 
required for biodegradation testing). 

Hence, it is of great interest to be able to 
accurately model and predict the biodegradation 
process of potential material blends, in order to focus 
on  the  most  promising  and   reduce   experimental 
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testing time. 
In this paper, we show that Case Based Reasoning 

and Multi-Agent System modelling approaches can 
be useful to generate the biodegradation prediction of 
a new blend based on material properties, and 
simulate the corresponding biodegradation curve. 
The results are very promising, although on a limited 
set of cases, for predicting best and worst performers. 

First, the CBR obtains the closest historical cases 
to a new one, interpolates and expected trend curve, 
and then passes this information to the MAS to 
simulate in a kinetic and stochastic solution space. 

The motivation of using CBR and MAS for 
predicting and simulating the biodegradation process, 
comes from the shortcomings of existing approaches, 
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such as the need for complex representations of large 
amounts of low level chemical knowledge, and the 
lack of representation of stochastic and kinetic 
features. 

The system is defined “as a service”, where 
material designers and testers provide the material 
characteristics and the system returns the predicted 
biodegradation behaviour (curve over time). 

The paper is organized as follows: in Section 2 
related work is presented, in Section 3 the data used 
and pre-processing is summarized, in Section 4 the 
Case Based Reasoning processing and matching 
approach is described with examples, in Section 5 the 
Multi-Agent System based simulation is described 
and Section 6 summarizes the work. Also, a Dynamic 
System Model definition of the biodegradation 
process is given in the Annex. 

2 RELATED WORK AND 
BACKGROUND 

There is an extensive literature of chemical based 
biodegradation modelling, using traditional statistical 
techniques together with detailed chemical 
knowledge (Pavan and Worth, 2006;2008), as well as 
more recent approaches based on kinetic 
modelling(Farzi et al., 2019; Sonwani et al., 2020; 
Sable et al., 2019). However, data modelling using a 
simple set of descriptive parameters including 
chemical and mechanical properties and using 
artificial intelligence techniques is more difficult to 
find in the literature. Hence, this is one of the key 
motivations and advantages for our current work. 

Purely chemical based approaches for the 
biodegradability of material require highly 
specialized parameterisations, such as in (Alalayah, 
2017) (Dragomir et al, 2021),  which require deep 
chemical knowledge. 

Furthermore, sets of ordinary differential 
equations (ODEs) have limitations when representing 
problems which involve spatial interactions or 
emerging properties (Borshchev and Filippov, 2004), 
and present difficulties for embodying emergent and 
stochastic behaviour. (Pavan and Worth, 2006;2008) 
consider QSAR (Quantitative Structure-Activity 
Relationship) which is an important family of models 
for chemical modelling. QSARs are mathematical 
models that can be used to predict different properties 
of compounds from the knowledge of their chemical 
structure. 

In terms of AI techniques applied specifically to 
biodegradation modelling, neural networks and rule 
induction are two examples. (Gamberger, et al., 1996) 

used a rule induction technique and chemical feature 
sets as inputs. The biodegradation data from both 
data-bases are discrete values, i.e. those chemicals are 
classified as biodegradable or non-biodegradable. 
The work of (Baker et al., 2004), uses rule induction 
and as input includes complex low level chemical 
information. Binary output variables are assigned to 
each chemical with a 1 for fast biodegradability and 0 
for slow biodegradability. (Arranz, et al., 2008) used 
neural networks to model biodegradation processes, 
requiring a high number of samples to train the 
network. Note that in the case of (Gamberger et al., 
1996) and (Baker et al., 2004), their models are 
limited to producing a binary classification as output. 
In contrast, our solution produces the trend curve with 
quantified values for % biodegradation and time. 

In their review paper, (Baker et al., 2004) 
indicated the use of multiple linear regression and 
artificial neural networks, Partial least squares 
discriminant analysis and Inductive machine learning 
(rule based), among others, however the focus was on 
a lower level chemical analysis. Also from (Baker et 
al., 2004), a Knowledge-based learning system was 
described as a method using machine learning 
techniques to determine relevant descriptors 
mathematically from data on activity and basic 
chemical structure. Furthermore, Multi-Agent based 
systems (MAS) (Ferber and Weiss, 1999) and 
Dynamic System Models (DSM) (Radzicki and 
Taylor, 2008) have been used for stochastic system 
modelling in different fields. As recent examples, 
(Nettleton et al., 2020) and (Estivill-Castro et al., 
2021) have applied and contrasted the utility of MAS 
and DSM for clinical applications, simulating 
multiple trend curves over time for modelling 
complex kinetic interactions and behaviours between 
the human immune system and cancer cells. 

The case for using MAS in preference to 
mathematical models and DSMs is supported by the 
ability of the former to more easily simulate kinetic 
and stochastic behaviour, as well as being data driven 
so requiring less theoretical know-how to be pre-
defined. 

The current work takes (Nettleton et al., 2020) and 
(Estivill-Castro et al., 2021) as starting point to apply 
the MAS approach to the novel application of 
bioplastic blend biodegradation over time. Case 
Based Reasoning (CBR) (Aamodt and Plaza, 1994) is 
also an approach taken from artificial intelligence 
which essentially uses a set of historical cases as a 
reference in order to find the closest match to a new 
case. In the current work we use CBR as pre-
processing for the MAS, in order to match the 
material properties of a new blend to find the closest 
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historical blends, and hence their corresponding 
biodegradation trend curves. 

The EU Horizon 2020 project Biontop, of which 
the current work forms a part, is aimed at developing 
novel packaging films and textiles with tailored end 
of life and performance based on bio-based polymers. 
In the framework of the project bioplastics blends 
based on biobased and industrially compostable 
Poly(lactic acid) (PLA) were considered (Narancic et 
al., 2018). The blending with other bio-polyesters 
resulted successful for modulating the mechanical 
properties of this polymer in a wide range of values 
(Aliotta et al., 2021;2021).  One key aim of the project 
is to find bioplastics which are ‘home-compostable’, 
which means they are biodegradable at a lower 
temperature and in milder conditions than those 
typical of ‘industrial composting’. 

Hence, the biodegradation testing of blends was 
performed for home-composting conditions, 
executed according to ISO 14855 but at ambient 
temperature (28°C). The tests were carried out using 
pellets produced by twin screw extrusion in a Comac 
EBC 25 HT extruder (Comac, Milan, Italy). 

In the Appendix can be found a dynamic system 
model (DSM) simplified representation of the 
bioreactor set-up. A DSM typically consists of a stock 
and flow diagram (Figure 7), a set of differential 
equations to represent the behaviour of the stocks 
over time (Table 6), a set of algebraic equations to 
define the flows (Table 7), and a set of control 
parameters used by the system (Table 8). In Figure 7, 
five stocks are defined: bioplastic, compost, Reactor, 
O2 and CO2. The flow on the top right indicates the 
bioplastic formulation (blend) which is input at the 
process start as a batch. The flows below are O2 which 
oxygenated the Reactor and compost, which is input 
at the process start as a batch and is the source of the 
bacteria. On the right is the CO2 stock produced as 
output (by the biodegradation process) inside the 
Reactor stock which is located in the middle. The 
degree is biodegradation is quantified from the CO2 
readings. 

3 DATA AND PRE-PROCESSING 

The data used for prediction and modelling is based 
on the materials properties (chemical and 
mechanical) as shown in Table 1, and the 
biodegradation results of each material, as shown in 
Table 2 and Figures 1 and 2. Eight material blends 
were used for biodegradation testing, as part of the 
Biontop project (see background Section). Note that 

for confidentiality reasons and intellectual property 
protection of the Biontop project, the data has been 
normalized or rescaled, and the material names 
anonymized. However, this has been done in a way 
so as to maintain the relative values and 
interpretability of the data with the results. 

Table 1 shows a summary of the chemical and 
mechanical properties of the eight main bioplastic 
materials, named as blends 1 to 8. For confidentiality 
reasons, all material property values are normalized 
in a range between 0.5 and 1.5, and the 
biodegradation times are scaled between 0 and 1. It 
can be seen that in terms of chemical properties, blend 
7 has a low molecular weight and medium polarity 
and crystallinity; in terms of mechanical properties, it 
has a low Young’s Modulus, a low elongation at 
break and a high tensile strength. 

Table 2 shows a summary of the biodegradation 
results for the eight material blends whose 
characteristics were given in Table 1. It can be seen 
that blend 7 gives the best biodegradation results, 
reaching 100% biodegradation in a scaled time of 0.6. 
On the other extreme, the blend 5 material gives the 
worst biodegradation results, achieving only 1.2% 
biodegradation in a scaled time of 1.0 (highest value).  

From the material characteristics of Table 1 and 
the biodegradation results of Table 2, a strong 
correlation is evident between the two. For example, 
a low molecular weight and high crystallinity give a 
propensity for the material to biodegrade. 

We note that only eight cases (i.e. blends) were 
available from the Biontop project with their full 
material properties data and biodegradation results. 
However, they were chosen, by the materials experts 
involved in the project, to cover a realistic and 
representative distribution of scenarios from good 
biodegradation (blends 4 and 6 to 8), medium (blend 
3) and poor (blends 1, 2 and 5). 

Figures 1 and 2 show all the biodegradation trend 
curves for the eight blends which were empirically 
tested. 

 

 
Figure 1: Biodegradation curves for blends 1 to 4. 
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Table 1: Chemical and mechanical properties of blends 1 to 8*. 

Chemical and 
Mechanical 
Properties 

Blend1 Blend2 Blend3 Blend4 Blend5 Blend6 Blend7 Blend8 

Polarity 0.7 0.7 1.4 1.5 0.8 1.3 1.2 1.1 
Molecular weights 1.5 1.4 0.9 0.7 1.3 0.6 0.6 0.5 
Crystallinity 1.5 1.2 0.9 0.7 1.5 0.7 0.8 0.5 
MFR 0.5 0.6 0.6 0.7 1.3 1.4 1.4 1.5 
Impact strength 0.7 0.8 0.9 1.5 0.7 1.4 1.4 1.5 
Tensile strength 1.2 1.1 0.5 0.9 1.5 0.5 0.6 0.8 
Young's Modulus 1.5 1.3 1.0 0.8 1.5 0.5 0.5 0.6 
Elongation at break 0.5 0.7 1.1 1.5 0.5 1.2 1.2 1.2 

*All values are normalized to a range between 0.5 and 1.5. 

Table 2: Biodegradation results of blends 1 to 8*. 

Biodegradation 
Criteria Blend1 Blend2 Blend3 Blend4 Blend5 Blend6 Blend7 Blend8 

Time to 50%   0.8 0.3  0.2 0.2 0.2 
Time to 100% or 
MAX 0.6 1.0 1.0 0.5 1.0 0.6 0.6 0.7 

Max% 3.5 4.2 73 88 1.2 97.7 100 90.3 
Rank biodegradability 6 7 5 4 8 2 1 3 

*All values (except max%) are scaled to a range between 0 and 1.0. 

 
Figure 2: Biodegradation curves for blends 5 to 8. 

4 CASE BASED MATCHING 

In this section we explain how the Case Based 
Matching approach with an appropriate distance 
metric, is applied to the material properties and 
biodegradation data in order to predict the 
biodegradation of new blends.  

4.1 Modus Operandi and Example 
Applying CBM to Material 
Properties and Blend 
Biodegradation Data 

The data processing of  the CBM  approach  has  the 

following four steps, with reference to Table 3, Figure 
3 and Equation (1): (i) choose one blend as “new 
blend” (e.g. blend8); (ii) calculate “distance” between 
new blend and all remaining historical blends using 
only material properties data (i.e. only a priori 
information); (iii) identify two “closest” historical 
blends in terms of distance (e.g. blends 6 and 7); (iv) 
use the two “closest” historical blends to interpolate 
curve of “new blend” (Figure 3). 

The distance D is calculated by applying a 
Euclidean metric to the respective material properties 
(Table 1) and summing over n, the number of 
properties, which are previously normalized and have 
equal weighting: 

 D ൌ  ∑ |ሺ𝑝ଵ െ 𝑝ଶሻ|ୀଵ     (1) 
             

    where  𝑝ଵ  is property i of material 1 and 𝑝ଶ  is 
property i of material 2. 

Table 3 shows the seven blends used as the 
historical case base and blend 8 considered as a “new” 
blend (but whose biodegradation results are known). 
Blends 6 and 7 are found to be the “closest” to blend 
8 (from all 7 available historical blends) using the 
distance metric calculation. This gives a distance of 
0.7 and 0.6, respectively for blends 6 and 7. 
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Table 3: Blends selected as historical examples and new 
blend. 

Historical examples Distance to Blend 8 
Blend1 1.5 
Blend2 1.5 
Blend3 1.0 
Blend4 0.8 
Blend5 1.5 
Blend6 0.7 
Blend7 0.6 

 
Now, using the curve points 𝑦ଵ and 𝑦ଶ of existing 

blends 6 and 7, respectively, the corresponding curve 
point approximation 𝑦ᇱ for the new blend is obtained:  
first the distances of Table 3 are normalized and then 
the two smallest values used as weights 𝑤ଵ and 𝑤ଶ to 
interpolate. From this, the polynomial equation is 
estimated which best fits the curves 𝑌ଵ and 𝑌ଶ and the 
individual points 𝑦ᇱ  (% biodegradation over time) 
are calculated thus: 

 ∀𝑦  0,𝑤 ∈ ሾ0. .1ሿ  
 𝑦′ଵ  ൌ  𝑦ଵ  𝑤ଵ 

     (2) 𝑦′ଶ  ൌ  𝑦ଶ  𝑤ଶ 
 𝑦ᇱ ൌ  𝑦′ଵ   𝑦′ଶ 

        

Hence, the overall result of the case matching of a 
new blend with historical blends, is to obtain a new 
interpolated biodegradation trend curve over time. In 
Figure 3 it is shown that blends 6 and  7 are identified 
as the closest blends to the “new” blend 8, based on 
chemical and mechanical properties. Also in Figure 3 
is seen how the blend 8 curve is interpolated from the 
curves of blends 6 and 7, using the weighted distance 
metric (Equation 2) to generate the points. In the case 
of blend 8, the fit of the interpolated curve to the real 
blend 8 curve is relatively lower (0.75, see Table 4).  

 

 
Figure 3: Closest historical curves and new curve 
interpolation. 

This is because the trend of the real curve for blend 8 
flattens out from time 0.3 onwards, diverging from 

the trends of blend curves 6 and 7. However, at this 
point it has already reached almost 80% 
biodegradation (Figure 2). 

4.2 Results of Applying CBM to Predict 
Biodegradation Curve of Blends 

The process described in Section 4.1 with blend 8 as 
the “new blend”, was repeated for blends 1 to 7. Table 
4 shows the results of comparing the trend curves 
predicted by CBM with the real curves, for each of 
the blends. It can be seen that all the R2 values of the 
matches were over 0.81, with the exception of blends 
3 and 8, with R2 values of 0.68 and 0.75, respectively. 
The lower performance for blends 3 and 8 was 
expected as they have intermediate biodegradation 
performance with respect to the best blends for 
biodegradation and the worst ones (see Figures 1 and 
2). In summary, estimated blend curves 1, 2 and 5 are 
fitting closely together, also blends 4, 6 and 7, while 
blends 3 and 8 are relative ‘outliers’. This is 
supported by the R2` values shown in Table 4. 

Table 4: Matching of simulated data trend curve (simulated 
data) with real trend curve - R2 value. 

Composition
/Blend 

Trend curve (simulated data) vs trend 
curve (real data) – R2 value 

Blend1 0.9440 
Blend2 0.9379 
Blend3 0.6830 
Blend4 0.8174 
Blend5 0.9373 
Blend6 0.9002 
Blend7 0.8907 
Blend8 0.7506 

 
Furthermore, two aspects are of interest to the 

material experts: what is the % degradation at time 
0.6 (or less) and how long does it take to reach a given 
biodegradation %. In general, the estimated curves 
provide a good approximation of this information. 
Note that for blends 3 and 8, the matching is with 
curves of shorter duration (0.6) and so the estimated 
curves get truncated at this limit. Hence, in 
conclusion, special attention has to be made to 
defining similar experimental conditions (time 
duration) for blend testing and having sub-groups of 
similar blends for comparison proximity. The 
accuracy for % at time 0.6 was generally within 15% 
for blends 3 and 8, 10% for blends 4, 6 and 7, and 
within 5% for blends 1,2 and 5. For the former, this 
was more dependent on the cut-off time of the closest 
blends chosen.  
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5 MULTI-AGENT SIMULATION 

In this section we use a Multi-Agent System (MAS) 
to simulate the blend biodegradation behaviour, based 
on the trend curves. This requires the adjustment of 
the MAS control parameters (biodegrade chance, 
biodegrade distance, detect distance, speed) which act 
in a 2D solution space during the process.  

As a starting point, the control parameters are 
assigned as a generic “predator-prey” model (Bădică 
et al., 2018; Karsai et al., 2016) which is interpreted 
in the current context as a kinetic model where the 
predator is the bacteria and the prey is the plastic. 
Furthermore, a plastic agent remains fairly static 
whereas a bacterium is more mobile, performing a 
random walk at a given “speed” (SP) until a plastic 
agent comes within its “detect distance” (DD). Once 
this happens the bacteria agent moves directly 
towards the plastic agent until it reaches the 
“biodegrade distance” (BD), and then, depending on 
the “biodegrade chance” (BC), it will biodegrade the 
plastic agent (i.e. the plastic agent is consumed and 
disappears). This apparently simple individual 
behaviour can give rise to a complex collective 
system, and more advanced interaction rules can be 
programmed into the agents. Figure 4 illustrates the 
concept of the two dimensional state space and 
respective action distances between the agents. 
 

 
Figure 4: State space definition for agent interactions. 

5.1 Modus Operandi 

It is recalled that the CBM processing approach 
applied in Section 4 obtains the polynomial trend 
curve for the new blend. Now, we provide the trend 
curve (polynomial equation) to the MAS, and as it 
runs the agent system control parameters adapt in 
order to keep the population (of plastic) as close as 
possible to the trend curve. A weighting is also used 
for each control parameter. 

The process is repeated ad-hoc for several trend 
curves, until a historical of results (trend curves with 

their corresponding agent control parameters) is 
accumulated. Once sufficient historical examples are 
available, the agent control parameter initial values 
and weighting can be automatically estimated for a 
new trend curve, without having to perform ad-hoc 
testing (thus significantly reducing the testing and 
refinement cycles to obtain the settings). 

The control parameters are updated as follows: let 
P1 be the expected plastic biodegradation percentage 
calculated from the trend curve and P2 the current 
plastic agent population percentage in the MAS. 
Then, the percentage difference 𝑃∆ between the two 
will be: 

 

 𝑃∆ ൌ ሺభିమሻభ    . 
 

Next, a multiplier coefficient is defined as: 
 𝑚𝑢 ൌ 1.0   𝑃∆ 
 

Then, the update rules are defined as:  
 𝐵𝐶 ൌ 𝑚𝑖𝑛ሺ1,𝐵𝐶 ൈ  𝑚𝑢ሻ 
    𝐵𝐷 ൌ 𝐵𝐷 ൈ𝑚𝑖𝑛ሺ1,𝑚𝑢ሻ 
 𝑆𝑃 ൌ 𝑆𝑃 ൈ𝑚𝑢 
 𝐷𝐷 ൌ 𝐷𝐷 ൈ𝑚𝑢     (3) 

  

where BC = biodegrade chance, BD = biodegrade 
distance, SP = speed and DD = detect distance. 

5.2 Results of Applying MAS to Blend 
Biodegradation Data 

Figure 5 shows the results for the agent simulation 
processing the blend 3 trend curve.  On the left are the 
Multi-Agent user interface screens where the blue 
dots represent the “plastic agents” and the green dots 
represent the “bacteria agents”. The initial state is 
seen on the top left (with an equal amount of blue and 
green dots) and the final state is on the bottom left 
(with many more green and less blue). That is, the 
biodegradation process has worked, the bacteria have 
biodegraded the plastic. The right side of Figure 5 
shows the corresponding simulation over time 
(accelerated time which processes a long time period 
in just a few minutes). On the top right is the real 
biodegradation curve for the new blend 3, and on the 
bottom right (green line) is the Multi-Agent 
simulation result. It can be seen that the simulated 
curve (bottom right) is a good approximation of the 
real curve (top right) in final percentage reached 
(70%) and normalized time duration of 1.0, as well as 
the gradient and general trend of the curve.  
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Figure 5: Agent simulation (Blend 3). 

 
Figure 6: Agent simulation (Blends 1 and 4). 

Having successfully simulated blend 3, we now 
perform the same process for blends 1 and 4, as 
shown in Figure 6. These blends represent the best 
performer and the worst, respectively, in terms of 
biodegradation behaviour. On the left of Figure 6 are 
shown the real trend curves over time, where it can be 
seen that blend 4 reaches 90% biodegradation with a 
normalized time duration of 0.6, whereas the blend 1 
only achieves a max. of 5% with a normalized time 
duration of 0.8. On the right of Figure 6 it can be seen 
that the Multi-Agent system successfully models both 
trend curves over time and % end point, with the 
green curve of blend 4 shown on the top right and the 
green curve of blend 1 shown on the bottom right.  

Table 5: Multi-agent system control parameters for three 
different biodegradation simulations*. 

 Bio-degrade 
chance 

Bio-degrade 
distance 

Detect 
distance 

Speed 

Blend 1 0.08 0.8 1.5 0.03 
Blend 3 0.8 1.0 3.0 0.1 
Blend 4 2.4 1.6 8.0 0.3 

*Values have been anonymized while maintaining their relative magnitudes. 

Table 5 shows the control parameters used for the 
simulations of biodegradation for blends 1, 3 and 4, 
which are depicted in Figures 5 and 6. The four 
control parameters are given which relate to the 
bacteria and plastic agents: distance in which a 
bacteria agent can detect and “biodegrade” a plastic 
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agent, and the speed of movement for the bacteria 
agent. 

It can be seen that blend 4, which has one of the 
best biodegradation behaviours (in terms of time and 
%, see Table 2) has the highest relative values for all 
four control parameters. On the other hand, blend 1, 
which has the worst biodegradation, has the lowest 
values, also for all four control parameters. This is 
explained by the degree of “excitation” of the system 
necessary in order to replicate the biodegradation 
curves (see Figures 5 and 6) in terms of agent 
populations. It could be interpreted as a degree of 
“kinetic energy” of the bacteria and the plastic. Blend 
3, which displays an intermediate level of 
biodegradation, shows intermediate values for its 
control parameters, relative to blends 1 and 4, 
however the relation between the control parameters 
of the blends is non-linear. For example, the 
“biodegrade chance” for blend 1 is 10 times less than 
blend 3, whereas the “biodegrade chance” of blend 4 
is only three times  that of blend 3. It can be 
interpreted also in terms of the “distance” between the 
trend curves (Figures 5 and 6) and also between the 
respective material properties (Table 1). 

In each case, the MAS control parameters have 
been optimized manually for each blend. However, as 
we progressively obtain a set of historical settings, 
they can be used to approximate settings (at least as 
an initial starting point) for new blends, in a similar 
way to the CBR, based on some distance function 
related to the material properties. 

6 CONCLUSIONS 

In this paper we have explained how a Case Based 
Reasoning (CBR) approach can be used to predict a 
biodegradation trend curve over time and how a 
Multi-Agent System can be applied to simulating the 
biodegradation process.  

The CBR approach has been demonstrated to be 
able to generate a biodegradation prediction and trend 
curve for a blend, which is a good fit to real data, 
using the chemical/mechanical properties for 
matching closest historical cases, which is calculated 
using a weighted distance function. The results in 
Table 4 show all R2 fitting values of predicted vs real 
curves to be over 0.81, with the exception of outlier 
blends 3 and 8 (refer to Section 4.2 for explanation). 

Furthermore, we have demonstrated how a MAS 
can be used to simulate the corresponding 
biodegradation curves, with dynamic weighted MAS 
control parameter calculation (Table 5) tuned for each 
trend curve. 

The results are clearly promising and verified as 
useful by the materials experts who design blends 
which must comply with given chemical and 
mechanical properties on the one hand, and 
biodegradation characteristics on the other.  

The choice of material properties provided a 
strong set of descriptors with a good correlation 
between chemical and mechanical properties and 
their biodegradation behaviour. However, in order to 
obtain a good predictive capability from the CBR, a 
combination of a non-trivial weighted distance 
calculation and an interpolation method were 
necessary. In the case of the MAS, the real-time 
control parameter optimization also used a set of non-
trivial updating formulas including weighting factors. 
Overall, the approaches appear to offer promising 
solutions for a variety of bioplastic blends, for their 
biodegradation trend prediction and dynamic 
simulation, respectively. 

Also, the MAS offers a simulation solution which 
is relatively easy to implement and calibrate, in 
contrast with DSM and mathematical modelling 
approaches. Furthermore, the MAS is able to embody 
stochastic and noisy features present in real systems,  

As future work, as part of the ongoing Biontop 
project, we expect to incorporate new blends into the 
modelling. Also, we plan to develop further the MAS 
modelling, by improving the induction of the MAS 
control parameters from the material properties, thus 
generating the trend curve automatically. 
Furthermore, the MAS control parameters, which 
were initially optimized manually for the different 
blends, can be used to find settings for new blends, in 
a similar way to the CBR approach. 
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APPENDIX 

The following defines the Dynamic System Model 
representation of the biodegradation process. Figure 
7 shows the overall schema of stocks and flows, 
Tables 6 and 7 show the differential and algebraic 
equations, respectively, and Table 8 shows the 
systemic variables and parameters. See Section 2 of 
the paper for further explanation. 
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Figure 7: Stocks and Flows. 

Table 6: Differential Equations. 

Equation no. Stock Differential equations Units 
1 Reactor ௗ௦௧ሺ௧ሻௗ௧  ௗ௦௧ሺ௧ሻௗ௧ ൌ 𝑟𝑒𝑎𝑐𝑡𝑜𝑟(t) kg/d 

2 Bioplastic ௗ௦௧ሺ௧ሻௗ௧ ൌ 𝑏𝑖𝑜𝑝𝑙𝑎𝑠𝑡𝑖𝑐(t) kg/d 

3 Compost ௗ௦௧ሺ௧ሻௗ௧ ൌ  compost(t) kg/d 

4 Bacteria 𝑑𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎ሺ𝑡ሻ𝑑𝑡 ൌ bacteriaሺtሻ % 

5 CO2  𝑑𝐶𝑂2ሺ𝑡ሻ𝑑𝑡 ൌ 𝐶𝑂2ሺ𝑡ሻ cm3/h 

6 O2  𝑑𝑂2ሺ𝑡ሻ𝑑𝑡 ൌ 𝑂2ሺ𝑡ሻ cm3/h 

Table 7: Algebraic Equations. 
Equation no. Flow Algebraic equations Units 

1 Biodecomposition material Biodegradation material(t) = bioplastic(t) + compost(t) + O2(t) – CO2(t) kg/h 
2 O2 O2(t) = O2  cm3/h 
3 CO2 CO2(t) = CO2 cm3/h 

Quality criteria 
4 Quality 1 Decomposition time days 

5 Quality 2 % decomposition* achieved (absolute and/or relative) % 

6 Quality 3 Time to reach a target decomposition* days 

Table 8: Systemic variables and parameters. 
Nº. Parameter Value(s) Units 
1 Amount of bioplastic c

1
 kg 

2 Amount of compost c
2
 kg 

3 Bioplastic formulation c
3
 - 

4 Average absolute humidity c
4
 g/M 

3
 

5 O2 c
5
 cm3/h 

6 CO2 c
6
 cm3/h 

7 Cut off time c
7
 days 

8 Cut off % c
8
 % 

9 Mechanical properties of bioplastics p
1 
, p

n
  

10 Chemical properties of bioplastics (DETERMINISTIC) d
1, 

, d
n
  

11 Composting conditions (ENVIRONMENTAL, less DETERMINISTIC) e
1, 

, e
n
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