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Abstract: An intrinsic bi-directional gated recurrent neural network for recognising human physical activities from 
intelligent sensors is presented in this work. In-depth exploration of human activity data is significant for 
assisting different groups of people, including healthy, sick, and elderly populations in tracking and 
monitoring their level of healthcare status and general fitness. The major contributions of this work are the 
introduction of a bidirectional gated recurrent unit and a state-of-the-art nonlinearity function called rectified 
adaptive optimiser that boosts the performance accuracy of the proposed model for the classification of human 
activity signals. The bidirectional gated recurrent unit (Bi-GRU) eliminates the short-term memory problem 
when training the model with fewer tensor operations, and the nonlinear function, a variant of the classical 
Adam optimiser provides an instant dynamic adjustment to the adaptive models’ learning rate based on the 
keen observation of the impact of variance and momentum during training. A detailed comparative analysis 
of the proposed model performance was conducted with long-short-term-memory (LSTM), gated recurrent 
unit (GRU), and bi-directional LSTM. The proposed method achieved a remarkable landmark result of 99% 
accuracy on the test samples, outperforming the earlier architectures. 

1 INTRODUCTION 

With the rapid advancement of sensors and wearable 
devices, recently, detecting and classifying human 
physical activities from diverse sensor data has 
attracted enormous interest in computer vision and 
digital health. From the healthcare perspective, the 
current and well-known pressure on healthcare 
coupled with technological advancements shifted the 
focus from on-hospital services to home-based 
services at patients’ homes.   

This field has drastically grown with the ever-
demanding societal need for elderly care, telehealth, 
and telerehabilitation (Tun, Madanian, & Mirza, 
2021; Tun, Madanian, & Parry, 2020) preventive 
medicine, human-computer interface, sport and 
fitness, and intelligent surveillance. This makes the 
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integration of sensors and computer vision suitable 
for everyday lives’ workout monitoring and general 
healthcare directly related to physical activity 
recognitions driven by wearable sensors (Casale, 
Pujol, & Radeva, 2011; Ordóñez & Roggen, 2016). 

However, despite all the advancements in the 
sensors, challenges in Human Physical Activity 
Recognition (HPAR) abound, and information 
representation is a prominent issue that inhibits 
sensor-driven HPAR. Traditional machine learning 
classification techniques rely on feature engineering 
and traditional information extraction from kinetic 
signals (Bevilacqua et al., 2018). Heuristic methods 
are employed to pick these features regarding tasks 
under process. However, they have created several 
issues in developing and deploying HPAR systems.  

Therefore, a profound understanding of the 
application domain or expert guide is necessary for 
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the feature extraction process (Bengio, 2013). Also, 
motions with complex patterns are not scalable with 
HPAR and, in most instances, yield abysmal results 
in dynamic data obtained from continuous streams of 
activities. Achieving an intrinsic high recognition 
accuracy with low computational demand is another 
crucial issue and obstacle in the wide deployment of 
such systems for healthcare. These challenges, 
recently, have given significant growth to deep 
learning methods for the HPAR.  

The adoption of deep learning models for human 
signal detection and other classification tasks has 
become widespread thanks to the development and 
availability of smart and wearable devices, along with 
their collected data (Stephen, Maduh, & Sain, 2021). 
Deep learning models are capable of detecting and 
recognising spatial and temporal dependencies 
between signals and model scale-invariant features in 
them (Moya Rueda, Grzeszick, Fink, Feldhorst, & 
Ten Hompel, 2018; Zeng et al., 2014).  

In this work, we deploy a bidirectional Gated 
Recurrent Unit (Bi-GRU), an advanced Recurrent 
Neural Network algorithm (RNN) with a rectified 
RAdam optimiser for the HPAR classification tasks. 
The RAdam stabilises the model training, improving 
the model convergence and generalisation using 
learning rate warmup heuristics (Liu et al., 2019). The 
GRU uses fewer Tensors to speed up its training and 
learning process, maximising resources, and reducing 
computational requirements. All these aim to make 
this model more suitable for real-life scenario 
applications and implementations.  

2 RELATED WORKS 

Human activity recognition (Figure 1) is an area of 
artificial intelligence (AI) application with 
continuous research interests and various studies 
focusing on recognising daily human activities, 
including sports, workouts, and sleep monitoring.  

 
Figure 1: A cross-section of human activity points. 

In the human activity recognition task, extracting 
discriminative features (Hernández, Suárez, 

Villamizar, & Altuve, 2019) to recognise the activity 
type is a vital yet challenging task. Different 
classifications and deep learning approaches have 
been used for human activity recognition most of 
which increased the models’ complexity and the 
computational cost. 

In a study that dealt with the adaptation of triaxial 
accelerometer data features, kernels of Convolutional 
Neural Networks (CNN) were altered to build a 
model to learn how to recognise human activities 
(Chen & Xue, 2015). Unlike digital image data that 
possess spatial connections in their pixels, sensor data 
are time series, and thus time series models are 
broadly used in human activity recognition. In 
another research, a long-short-term memory (LSTM) 
based deep learning neural network model was built 
to predict human activities on data collected from 
mobile sensors (Inoue, Inoue, & Nishida, 2018). In 
the same area, a Bi-directional LSTM model was used 
for human activity recognition (Edel & Köppe, 2016). 
In a healthcare monitoring research, wearable sensors 
were attached to people to collect data on their speed, 
heart rate, blood pressure level, and walking gait 
(Hammerla et al., 2015). These data were collected to 
detect Parkinson’s disease in participants. Among 
these studies, a study involved space and time 
characteristics extraction (Ordóñez & Roggen, 2016) 
combing four layers of CNN and two layers of LSTM 
achieved a superior result compared to CNN only.  

Recognition and monitoring of activity for sports 
is also an important area. Multiplayer confrontations 
(Subetha & Chitrakala, 2016) or individual 
movements data were collected from athletes using 
wearable devices (Ermes, Pärkkä, Mäntyjärvi, & 
Korhonen, 2008; Nguyen et al., 2015) data to explore 
and predict their shooting capability (Nguyen et al., 
2015). Activity detection from videos is not left out 
as combined CNN and RNN approaches (Srivastava, 
Mansimov, & Salakhudinov, 2015) were deployed to 
recognise video-based activity tasks, and a landmark 
result was recorded, although due to high 
computational demands, the model training was 
extremely difficult. The proposed model will usher in 
a more compact and rapid method of recognising vital 
human daily activities. 

3 THEORETICAL 
BACKGROUND AND METHOD  

RNN, LSTM, GRU, and Bi-GRU are a family of deep 
learning models mainly used for sequential data 
training and inferencing due to their ability to handle 
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recurrent patterns. The LSTM model is an advanced, 
RNN architecture built with a set of memory blocks 
or repeatedly connected subnets. It aims to solve the 
long-term dependency problems prevalent in the 
conventional RNNs caused by exploding or vanishing 
gradients resulting from the backpropagation process. 
Every memory block in the architecture comprises 
one or more self-connected memory cells and the 
input (three multiplicative units) (Graves, 2012). The 
forget gets 𝑓௧  in LSTM architecture, determines what 
information to be kept or eliminated from memory, 
the input gate 𝑖௧ is a channel where new information 
flows to the cell state. The memory update is a cell 
state vector 𝐶௧ , which sums the previous memory 
through the forget gate and the new memory through 
the input gate. Finally, the output gate 𝑂௧ 
conditionally decides which information from the 
memory should be released.  

GRU is a compacted form of an LSTM in the 
RNN family (Cho et al., 2014). GRU operates with 
lesser parameters, unlike LSTM, because of the 
absence of output gates in its architecture. It has been 
confirmed that GRU can produce superior accuracy 
in some smaller datasets, such as the one we used in 
this work. Initialising 𝑡 and the vector of the output at 
0 in equation 1, the GRU operations are expressed as:  𝑧௧ =  𝜎(𝑊௭𝑥௧ + 𝑈௭ℎ௧ିଵ + 𝑏௭)  (1) 

 𝑟௧ =  𝜎(𝑊𝑥௧ + 𝑈ℎ௧ିଵ + 𝑏) ℎ௧ =  𝑧௧ ∗ ℎ௧ିଵ + (1 − 𝑧௧) ∗ ∅(𝑊𝑥௧ + 𝑈(𝑟௧ ∗ ℎ௧ିଵ) + 𝑏)  (2) 

The update gate 𝑧௧  (1) performs a similar 
function, on like the input gate and the forget gate 
found in the LSTM architecture by determining 
which information to be ignored or to be added. The  
eset gate 𝑟௧, is responsible for determining the amount 
of information to discard. ℎ௧   in equation (2), is an 
output vector that releases the recurrent operations’ 
outcome. The GRU is faster to train and inference 
because it uses fewer tensor operations than a typical 
RNN or LSTM model.  

The Bidirectional GRU (Bi-GRU) works on the 
assumption that the outcome at the time 𝑡 may or may 
not rely on the previous information and the 
subsequent information (Yang, Ng, Mooney, & 
Dong, 2017). At the beginning of its operation, it 
combines the cell state, the 𝑞 − 𝑡ℎ hidden unit and 
creates the reset gate 𝜏  (3) computed as shown 
below in (3): 𝜏 = 𝜎([𝑊𝑥] + [𝑈ℎ(𝑡 − 1)])  (3) 

Where 𝜎 denotes the sigmoid function, [.] is the 𝑞 − 𝑡ℎ  element of a vector, 𝑥  and ℎ(𝑡 − 1) are the 

input vector and pre hidden state, 𝑊 𝑎𝑛𝑑 𝑈  
representing the weight matrices, respectively. 
Subsequently, it merges the forget gate and input gate 
into a single update gate. The update gate 𝜇 is shown 
in the formula: 𝜇 =  𝜎([𝑊ఓ𝑥] + [𝑈ఓℎ(𝑡 − 1)]) 

Then, the actual computation of the generated 
activation unit ℎ is shown in equation (4) below: ℎ(𝑡) = 𝜇ℎ(𝑡 − 1) + (1 − 𝜇)(ℎ෨)(𝑡)  (4) 

where, ℎ෨(𝑡) = tanh ([𝑊𝑥] + [𝑈(𝑝 ⊙ h(t − 1))] ⊙  represents the element-wise multiplication. 
We then use the element-wise sum to summate the 
forward and backward states generated by the Bi-
GRU as the product of the 𝑞𝑡ℎ signal (5).  ℎ(𝑡) = [(ℎ(𝑡))ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ⊕  (ℎ(𝑡))ሬ⃖ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ]    (5) 

4 EXPERIMENT AND RESULTS  

This section presents the details of our data pre-
processing and experiments. The experiments’ results 
are also explained in this section. 

4.1 Data Pre-processing and 
Experiment 

For our research, we obtained the dataset from 
(Shoaib, Bosch, Incel, Scholten, & Havinga, 2014). 
The dataset comprises seven human physical 
activities, including biking, walking, sitting, running, 
jogging, standing, and walking upstairs/downstairs. 
All these activities are the everyday rudimentary daily 
human motion activities. Ten males, in the 25-30 age 
range, participated in the data collection exercise, and 
each participant performed three to four minutes of 
each of the activities. The data collection was 
performed in a university indoor building, excluding 
biking which was done outdoor. Five smartphones 
were fixed on each participant on five body parts 
(right arm, right wrist, right hips, left and right legs – 
check  Shoaib et al. (2014)).  

 During the data pre-processing stage, the 
collected data was split into small segments solely for 
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extracting critical features with the sliding window 
method.  

In the data pre-processing phase, it was of utmost 
importance to select the appropriate sliding window 
size so that an exact value could be affixed to it. Since 
it has been proven from previous works that a window 
size of two seconds was appropriate for obtaining a 
meaningful performance in activity recognition 
(Hernández et al., 2019), only a window size of two 
seconds was used. Also, fifty sliding window steps 
and one-hundred-time steps for the sliding window 
length were used. For the feature extraction process, 
only twelve feature extractors were used to extract 
features from the experimental data frame. 

From each participant, one thousand eight 
hundred activity segments were extracted for a single 
activity performed at a position. In some cases, data 
from three positions were fused together, resulting in 
obtaining 5400 segments of each activity for the total 
of the three positions.  

We concatenated the pre-processed data and split 
them into train, validation, and test sets in this work. 
We assigned 80% to the train set and 10% each to the 
validation and test sets, respectively. During the 
model building process, a total of 32 hidden units, 
0.000001 L2 regularizer (for both the kernel and bias 
parameters), 0.0001 learning rate and RMSprop 
optimiser were set across the compared models for 
consistency. Also, a SoftMax classifier was used in 
the dense classification layer with categorical cross-
entropy as the loss function. Finally, 1024 was set as 
the batch size with 50 epochs. 

4.2 Result Analysis 

We compare our experimental result with models 
such as LSTM, GRU and Bi-directional LSTM. The 
result of this comparison is presented in Table 1.  

Table 1: The results of different models. 

Model MSE MSLE Accuracy 

LSTM 0.2392 0.0164 0.98 

GRU 0.2432 0.0169 0.98 

Bi-LSTM 0.2396 0.0165 0.98 

Bi-GRU 0.1804 0.0113 0.99 

From the experimental results, it can be concluded 
that our proposed model produced an overall 0.99 
accuracy on the test samples, while the rest of the 
models yielded approximately 0.98 accuracies each. 

In our calculations, MSE and MSLE estimate 
Mean Square Error (MSE) and MSLE (Mean Square 
Log Error) respectively, of the results obtained in the 
proposed model. MSEs and MSLEs in LSTM, GRU 
and Bi-LST are relatively negligible; however, MSE 
between the LSTM and Bi-GRU is 0.0588, GRU, and 
Bi-GRU are 0.0628, then between Bi-LSTM and Bi-
GRU is 0.0592. With a total of 106,983 LSTM 
trainable parameters, learning rate (𝑙𝑟)  of 1𝑒 − 4, 1𝑒 − 6 kernel regularizer, 1024 batch size, 40 epochs 
and a hidden unit of 32, we achieved a test accuracy 
of 98.1% and loss of 0.0697 as shown in Table 2 and 
Figure 2. 

In Table 2, classes 0, 1, 2, 3, 4, 5, and 6 represent 
biking, walking downstairs, jogging, sitting, standing, 
walking upstairs and conventional walking, 
respectively.  

Table 2: Confusion matrix with LSTM. 

Class Precision Recall F1-
score 

Support 

0 0.99 0.99 0.99 724 
1 0.99 0.97 0.98  722 
2 1.00 0.97 0.98  724 
3 1.00 1.00 1.00 716 
4 1.00 1.00  1.00  720 
5 0.97 0.91 0.94 716 
6 0.89 0.99 0.94 716 
Accuracy 0.981  5038 
Macro Avg 0.98 0.98 0.98 5038 
Weighted 
Avg

0.98 0.98 0.98 5038 

 
Figure 2: Model accuracy & loss with LSTM. 

As shown in Table 2, we achieved 0.99 precision, 
recall and F1-score from 724 test samples of biking 
(0) activity; 0.99 precision, 0.97 recall, 0.98 F1-score 
from 722 test samples on the walking-downstairs (1) 
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activity, respectively; 100% precision, 0.97 recall, 
0.98 F1-score from 724 test samples on the jogging 
(2) activity, respectively. We achieved 100% 
precision, recall, and F1-score on the sitting (3) and 
standing (4) activities. For the sitting (3) activity, we 
used 716 test samples while we had 720 test samples 
for standing (4).  

We obtained 0.97 precision, 0.91 recall and 0.94 
F1-score from 716 test samples of walking upstairs 
(5) activity; 0.89 precision, 0.99 recall and 0.94 F1-
score from 716 test samples of basic walking (5) 
activity and 0.98 macro and weighted average each 
on the 5038 test samples.  

To increase the training and inference speed and 
as well as the overall performance of the model, we 
swapped the LSTM with a Bi-directional LSTM and 
GRU architectures separately, and we observed no 
meaningful change in the overall performance of the 
models on the test data, as shown in Figures 3 and 4, 
respectively.  

 
Figure 3: Model accuracy & loss with Bi-LSTM. 

 
Figure 4: Model accuracy & loss with GRU. 

Consequently, we introduced the Bi-GRU model 
into the set-up with all parameters remaining 
constant. We observed a remarkable difference in 
both the MSE, MSLE and the oval accuracy, as 
shown in Figures 5 and 6, respectively. 

 
Figure 5: Model accuracy & loss with Bi-GRU. 

 
Figure 6: Matrix plot of the Bi-GRU model. 

Further analysis of the result from the proposed 
model, as shown in the confusion matrix plot of 
Figure 6, the model accurately classified 718 biking 
data samples from the test sample and misclassified 
four as walking upstairs. Also, 716 test data points 
belonging to the downstairs activity were accurately 
classified, and five were misclassified. In addition, 
the model accurately classified 697 samples as actual 
jogging activities and misclassified 13 upstairs 
activities and eight as walking. Furthermore, the 
model got all 716 test data points right as sitting and 
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719 as standing while misclassifying only one point 
as downstairs activity, respectively. 

The proposed model correctly recognised 706 
upstairs activity test data points as true and ten false. 
For the test data points belonging to the upstairs 
activity, the model appropriately recognised 706 
while misclassify two as walking, six as downstairs 
activity, and one each for biking and jogging. Finally, 
the model accurately classified 697 walking test data 
correctly while mistakenly recognising ten as upstairs 
activity and nine as downstairs activity; this is 
because of the close similarity between these 
activities.  

5 CONCLUSIONS 

Human activity recognition and classification have 
become a demanding field in different domains, 
especially for healthcare and wellbeing. Alo, 
technology integration is an approach to get 
technologies into their full potential and use them to 
address business or health challenge (Madanian & 
Parry, 2019). Our proposed model could promote 
cost-effective, rapid and efficient telehealth 
monitoring and telerehabilitation, for different 
population groups such as the elderly and athletes.  

To deploy such human activity recognition 
systems for real-life scenarios and applications, the 
system should be able to process tasks in almost real-
time with high accuracy and low computational cost.  

In this work, we presented an advanced RNN 
algorithm for human physical activity recognition 
tasks. We focused on seven distinct activities 
extracted from basic human daily activities using 
multi-sensor data point collection sources. We trained 
the proposed Bi-directional GRU architecture and 
evaluated the accuracy using separate test data 
samples. From the result of the extensive experiments 
we conducted, we discovered that the Bi-Directional 
GRU model is a good fit for solving human activity 
recognition problems when compared with 
conventional LSTM and GRU, as shown in the 
combined plots in Figures 7a & 7b. In future work, 
we plan to include more activities and scenarios and 
implement human activity detection, classification, 
and recognition in real-time. 

 
(a) 

 
(b) 

Figure 7: (a) & (b) are combined performance accuracy and 
loss of the studied models. 
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