|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
Dynamic Ensemble Selection Based on Rough Set Reduction and Cluster Matching
Ying-Chun CHEN Ou LI Yu SUN
Publication
IEICE TRANSACTIONS on Communications
Vol.E101-B
No.10
pp.2196-2202 Publication Date: 2018/10/01 Publicized: 2018/04/11 Online ISSN: 1745-1345
DOI: 10.1587/transcom.2017EBP3441 Type of Manuscript: PAPER Category: Fundamental Theories for Communications Keyword: mutual information, rough set, attribute reduction, dynamic ensemble selection, k-means,
Full Text: PDF(1.1MB)>>
Summary:
Ensemble learning is widely used in the field of sensor network monitoring and target identification. To improve the generalization ability and classification precision of ensemble learning, we first propose an approximate attribute reduction algorithm based on rough sets in this paper. The reduction algorithm uses mutual information to measure attribute importance and introduces a correction coefficient and an approximation parameter. Based on a random sampling strategy, we use the approximate attribute reduction algorithm to implement the multi-modal sample space perturbation. To further reduce the ensemble size and realize a dynamic subset of base classifiers that best matches the test sample, we define a similarity parameter between the test samples and training sample sets that takes the similarity and number of the training samples into consideration. We then propose a k-means clustering-based dynamic ensemble selection algorithm. Simulations show that the multi-modal perturbation method effectively selects important attributes and reduces the influence of noise on the classification results. The classification precision and runtime of experiments demonstrate the effectiveness of the proposed dynamic ensemble selection algorithm.
|
|
|