|
For Full-Text PDF, please login, if you are a member of IEICE,
or go to Pay Per View on menu list, if you are a nonmember of IEICE.
|
SOM-Based Vector Recognition with Pre-Grouping Functionality
Yuto KUROSAKI Masayoshi OHTA Hidetaka ITO Hiroomi HIKAWA
Publication
IEICE TRANSACTIONS on Information and Systems
Vol.E101-D
No.6
pp.1657-1665 Publication Date: 2018/06/01 Publicized: 2018/03/20 Online ISSN: 1745-1361
DOI: 10.1587/transinf.2017EDP7198 Type of Manuscript: PAPER Category: Biocybernetics, Neurocomputing Keyword: SOM, vector recognition, position identification, parallel classifiers,
Full Text: PDF(1.8MB)>>
Summary:
This paper discusses the effect of pre-grouping on vector classification based on the self-organizing map (SOM). The SOM is an unsupervised learning neural network, and is used to form clusters of vectors using its topology preserving nature. The use of SOMs for practical applications, however, may pose difficulties in achieving high recognition accuracy. For example, in image recognition, the accuracy is degraded due to the variation of lighting conditions. This paper considers the effect of pre-grouping of feature vectors on such types of applications. The proposed pre-grouping functionality is also based on the SOM and introduced into a new parallel configuration of the previously proposed SOM-Hebb classifers. The overall system is implemented and applied to position identification from images obtained in indoor and outdoor settings. The system first performs the grouping of images according to the rough representation of the brightness profile of images, and then assigns each SOM-Hebb classifier in the parallel configuration to one of the groups. Recognition parameters of each classifier are tuned for the vectors belonging to its group. Comparison between the recognition systems with and without the grouping shows that the grouping can improve recognition accuracy.
|
open access publishing via
|
|
|
|
|
|
|
|