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Maximum-Likelihood Seauence Estima tion of 
Digital Sequences i&he Presence of 

Intersymbo l Interference 
G. DAVID FORNEY, JR., MEMBER, IEEE 

Abstract-A maximum-likel ihood sequence estimator for a  digital 
pulse-ampli tude-modulated sequence in the presence of finite intersymbol 
interference and  white Gaussian noise is developed.  The  structure cbm- 
prises a  sampled linear filter, called a  whitened matched filter, and  a  
recursive nonl inear processor,  called the Viterbi algorithm. The  outputs 
of the whitened matched filter, sampled once  for each  input symbol, are 
shown to form a  set of suillcient statistics for estimation of the input 
sequence,  a  fact that makes obvious some earlier results on  opt imum 
linear processors. The  Viterbi algorithm is easier to implement than 
earlier opt imum nonl inear processors and  its per formance can be  straight- 
forwardly and  accurately estimated. It is shown that per formance (by 
whatever criterion) is effectively as  good  as  could be  attained by  any  
receiver structure and  in many  cases is as  good  as  if intersymbol inter- 
ference were absent.  Finally, a  simplified but effectively opt imum 
algorithm suitable for the most popular part ial-response schemes is 
described. 

INTRODUCTION 

I NTERSYMBOL interference arises in pulse-modulation 
systems whenever the effects of one  transmitted pulse 

are not al lowed to die away completely before the trans- 
m ission of the next. It is the primary impediment to reliable 
high-rate digital transmission over high signal-to-noise 
ratio narrow-bandwidth channels such as voice-grade tele- 
phone  circuits. Intersymbol interference is also introduced 
deliberately for the purpose of spectral shaping in certain 
modu lation schemes for narrow-band channels, called 
duobinary, partial-response, and  the like [ l]-[3]. 

The  simplest mode l of a  digital communicat ion system 
subject to intersymbol interference occurs in pulse amp litude 
modu lation (PAM), illustrated in F ig. 1. A sequence of real 
numbers x, drawn from a  discrete alphabet passes through 
a  linear channel  whose impulse response h(t) is longer than 
the symbol separation T, and the filtered signal 

s(t) = c x,h(t - kT) 
k 

(1) 
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is corrupted by white Gaussian noise n(t) to give a  received 
signal 

r(t) = s(t) + n(t). (2) 

In this paper  we shall restrict ourselves to finite impulse 
responses h(t). 

This mode l dates back to Nyquist and  is so simple that 
it would seem unlikely that at this late date anything new 
could be  said about it. However, no  serious attention seems 
to have been  given to this problem until the last decade, 
when practical requirements for h igh-speed digital trans- 
m ission over telephone circuits have begun  to become 
important. 

Wh ile lip service has long been  paid to the idea that sym- 
bol decisions ought to be  based on  the entire received 
sequence, the fact that straightforward likelihood calcula- 
tions grow exponentially with message length [4] has 
justified a  retreat to simple symbol-by-symbol decisions 
in most theoretical and  practical work. Early work analyzed 
and  optimized linear transmitter and  receiver filters subject 
to various criteria [5]-[l l]. In this work the opt imum 
receiver filter always turned out to be  a  combination of a  
matched filter and  a  transversal filter, the general  reason 
for which is explained below. 

More recently, nonlinear receivers have been  investigated. 
Several authors [12]-[16] have developed “opt imum” or 
approximately opt imum nonlinear receiver structures, again 
subject to a  variety of criteria. The  intimidating complexity 
of these structures has led to interest in subopt imum non- 
linear structures such as decision feedback [17], [18]. In- 
variably, the complaint is made  that it is difficult to estimate 
the performance of nonlinear receivers analytically and  
resort is made  to simulation. 

In this paper  we introduce a  receiver structure (Fig. 2) 
consisting of a  linear filter, called a  whitened matched 
filter, a  symbol-rate sampler, and  a  recursive nonlinear 
processor, called the Viterbi algorithm. This structure is a  
maximum-likel ihood estimator of the entire transmitted 
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NOISE 
n(t) 

where d,$,, is the minimum energy of any nonzero signal, 0’ 
SNEENCE r cF”gg- SlGtiAL- + + RECEIVED SIGNAL is the spectral density of the noise, Kz is a small constant . 
%%X2”’ h,t, s(t)= Zxkh(t-kT) ” r(t)=s(t)+n(t) independent of 02, and Q( *) is the probability of error 

Fig. 1. PAM communications channel. function 

s 
co 

Q(x) A (2n)-“’ dy e-y2J2. (4) 
x 

We observe that for any estimator, 

Fig. 2. Maximum-likelihood sequence estimator. (5) 

sequence; furthermore, it can be implemented and 
analyzed. 

The whitened matched filter has the following properties. 
I) Simplicity: The transition from continuous to discrete 

time does not require a bank of filters, or oversampling, but 
merely a single sample for each input symbol. There is some 
freedom in specifying the response w( - t); when h(t) is 
finite, w( - t) can be chosen to be causal and hence realizable. 
(It can also be chosen to be anticausal, which is more natural 
in principle.) 

2) Suficiency : The filter is information lossless, in the 
sense that its sampled outputs are a set of sufficient statistics 
for estimation of the input sequence. 

3) Whiteness: The noise components of the sampled 
outputs are independent identically distributed Gaussian 
random variables. (This and the sufficiency property follow 
from the fact that the set of waveforms w(t - kT) is an 
orthonormal basis for the signal space.) 

The Viterbi algorithm was originally invented to decode 
convolutional codes [19]-[21] and later shown to be a 
shortest-route algorithm of a type long known in operations 
research [20]-[27], which in turn can be expressed as a 
variant of dynamic programming [26]-[28]. Its applic- 
ability to partial-response systems was noticed by Omura 
and Kobayashi at U.C.L.A. [29]-[33] independently of and 
about the same time as the present work, and Kobayashi 
independently determined its performance for discrete-time 
responses of the form 1 + D” [33]. It has the following 
properties. 

1) Implementability: Like the best of the earlier “opti- 
mum” nonlinear processors, the Viterbi algorithm is a re- 
cursive structure that does not grow with the length of the 
message sequence, and that has complexity proportional to 
mL, where m is the size of the input alphabet and L is the 
length of the impulse response h(t) in units of T. In detail, it 
is superior in not requiring any multiplications, but only mL 
additions and mL-l m-ary comparisons per received symbol, 
which greatly simplifies hardware implementation; it also 
requires only mL- ’ words of memory (of the order of 
IO-30 bits per word). 

2) Analyzability: The ease with which performance can 
be analyzed is in marked contrast to all earlier work with 
nonlinear processors. We show that at moderate-to-high 
signal-to-noise ratios the symbol-error probability is ac- 
curately overbounded and estimated by 

Pr (4 5 JGQ[4,d2~1~ (3) 

where K, is another constant typically within an order of 
magnitude of K2. When, as usually happens, d&, is equal 
to the energy llh11’ in a single pulse, then the probability 
of error is approximately equal to Q[ llhlj/2a], which is 
what it would be for one-shot communication (no inter- 
symbol interference). When d,$,, < llhl12, if we can insert 
a partial-response-type preemphasis filter at the trans- 
mitter, we get a similar result (Appendix II). 

3) Optimality: Our structure is optimum for maximum- 
likelihood estimation of the entire transmitted sequence, 
provided unbounded delay is allowed at the output, and is 
effectively optimum in the same sense for reasonable finite 
delays. This implies that it also minimizes the error-event 
probability Pr (E) (maximizes the mean time between error 
events), which is more significant than the symbol-error 
probability in many applications. As for the symbol-error 
probability Pr (e) itself, while examples can be constructed 
[34] in which the Viterbi algorithm does not minimize 
Pr (e), the bounds of (3) and (5) show that at moderate- 
to-high signal-to-noise ratios the estimator that minimizes 
Pr (e) cannot improve substantially on the performance 
of our structure. 

Finally, in the last section we shall describe a practical 
embodiment of these ideas: a simple approximation to the 
preceding structure that has been implemented in a com- 
mercially available partial-response modem and that 
reduces error rates by one to two orders of magnitude on 
typical channels. 

DEFINITIONS 

We shall use the PAM model of Fig. 1. The inputs x, 
are assumed to be equally spaced and scaled and biased 
to be integers in the range 0 < x, < m - 1; they are 
assumed to start at time k = 0 and to continue until 
k = K, where K may be infinite. With the input sequence 
we associate the formal power series in the delay operator 
D (D-transform) 

x(D) p x,, + x,D + x2D2 + . . . . G-3 

which will itself frequently be referred to as the input 
sequence. 

The channel is characterized by a finite impulse response 
h(t) of length L symbol intervals; i.e., L is the smallest 
integer such that h(t) = 0 for t 2 LT. The response h(t) 
is assumed square-integrable, 

Ilhl12 4 ~- J 
h2(t) dt < 00. 

-CB (7) 
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We define 
h’k)(t) A h(t - kT) 

and  use inner-product notation in which 

s 

00 
[4tMt)l A a(t)b(t) dt. 

-a, 

and  pulse autocorrelation function 
(8) &dD) = f (D)f CD- ‘P’,,(D). (19) 

THE MATCHED FILTER 

(9) The  signal s(t) is defined as 

Then  the pulse autocorrelation coefficients of h(t) are s(t) & i x,h(t - kT) = f x,hck’(t). (20) 
k=O k=O 

&-,. &  [h’k’(t),h’k”(t)] 
The  received signal r(t) is s(t) plus white Gaussian noise 

i 

s 

n(t). 
m h(t - kT)h(t - k’T) dt, It is well known (see, for example, [35]) that in the 

= -co detection of signals that are linear combinations of some 
Ik - k’J I L  - 1  finite set of square-integrable basis functions hCk’(t), the 

0, Ik - k’l 2 L. (10) outputs of a  bank of matched filters, one  matched to each 

We  define the pulse autocorrelation function of h(t) as 
basis function, form a  set of sufficient statistics for estimat- 
ing the coefficients, Thus the K + I quantities 

R(D) A i RkDk, (11) 
k=-v 

where v = L - 1  is called the span of h(t). We  shall also 
write R&D) when it is necessary to distinguish different 
autocorrelation functions. 

The  response h(t) may be  regarded as a  sequence of L  
chips h,(t), 0 < i I v, where h,(t) is a  function that is 
nonzero only over the interval [O,T); i.e., 

h(t) = h,(t) + h,(t - T) + . . . + h&t - VT). (12) 

Then  it is natural to associate with h(t) the chip D-transform 

W ,t) & i hi(t)D’, (13) 
i=O 

which is a  polynomial in D of degree v with coefficients in 
the set of functions over [O,r). It is easy to verify that the 
chip D-transform has the following properties. 

1) The  pulse autocorrelation function is given by 

R(D) = [h(~,t),h(~-l,t)] = 
s 

T 

h(D,t)h(D-‘,t) dt. (14) 
0 

2) A transversal filter is a  filter with response 

g(t) = c gicyt - iT) (15) 

for some set of coefficients gi. This response is not square 
integrable, but we assume the coefficients gi are square 
summable,  xi gi2 < cc. We  say a  transversal filter g(t) 
is characterized by g(D) if 

g(D) = c giDi. (16) I 
The  chip D-transform g(D,t) of a  transversal filter is 

g(DJ) = g(D)@+ (17) 

3) The  cascade of a  square-integrable filter with response 
g(r) and  a  transversal filter characterized by a  square- 
summable j’(D) is a  filter with square-integrable response 
h(t), chip D-transform 

WA = .f(DldD,f> (181 

ak Q [r(t>,h’k’(t>] 

s 
m  

= r(t)h(t - kT) dt, 0  I k I K (21) 
-03 

form a  set of sufficient statistics for estimation of the xk, 
0  < k _< K, when K is finite. But these are simply the 
sampled outputs of a  filter h(-t) matched to h(r). Hence 
we have the following proposition. 

Proposition 1: When  x(D) is finite, the sampled outputs 
uk [defined by (21)] of a  filter matched to h(t) form a  set of 
sufficient statistics for estimation of the input sequence 
x(D). 

It is obvious on  physical grounds that this property does 
not depend  on  x(D) being finite, but the corresponding 
result does not seem to be  available in the literature. If 
x(D) is infinite the signals have infinite duration, so that the 
Karhunen-Loeve expansion is not applicable, and  infinite 
energy, so that the generalization of Bharucha and  Kadota 
[36] cannot be  applied. We  leave the proof to the reader, 
using his favorite definition of white Gaussian noise, which 
as usual is the only technical difficulty. (The Alexandrian 
method of dealing with this Gordian knot would be  to 
de$& white Gaussian noise as any noise such that Prop- 
osition 1  is valid for infinite x(D) and any square integrable 
40) 

In view of the obviousness of Proposition 1, it is remark- 
able that it has not been  much exploited previously in the 
intersymbol interference literature. (It does appear  as a  
problem in Van Trees [37], attributed to Austin.) Some 
authors make the transition from continuous to discrete 
time  by a  sampler without a  matched filter, with no  explicit 
recognition that such a  procedure is information lossy in 
general, or else gloss over the problem entirely. O thers 
express the signal waveform in each symbol interval as a  
linear combination of chips and  sample the outputs of a  
bank of filters matched to all the chips. 

Furthermore, there is a  whole series of papers (see [l I] 
and  the references therein) showing that the opt imum 
linear receiving filter under  various criteria can be  expressed 
as the cascade of a  matched filter and  a  transversal filter. 
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But since the matched filter is linear and its sampled outputs 
can be used without loss of optimality, any optimal linear 
receiver must be expressible as a linear combination of 
the sampled matched filter outputs a,. Hence Proposition 1 
has the following corollary. 

sequently we may write (24) as 

a(D) = x(D)f(D)f(D-‘) + n(D)f(D-l). (29) 
This suggests that we simply divide out the factor f(D-I) 
formally to obtain a sequence 

Corollary: For any criterion of optimality, the optimum 
linear receiver is expressible as the cascade of a matched 
filter and a (possibly time-varying) transversal filter. 

z(D) = a(D)/f(B-‘> = x(D)f(D) + n(D) 

in which the noise is white. 
(30) 

(If the criterion is the minimization of the ensemble 
average of some quantity per symbol and x(D) is long 
enough so that end effects are unimportant, then it is easy 
to show that the optimum transversal filter is time in- 
variant.) 

THE WHITENED MATCHED FILTER 

Define the matched-filter output sequence as 

When f(D-‘) has no roots on or inside the unit circle, 
the transversal filter characterized by l/f(D- ‘) is actually 
realizable in the sense that its coefficients are square 
summable. Then the sequence z(D) of (30) can actually be 
obtained by sampling the outputs of the cascade of a 
matched filter h( - t) with a transversal filter characterized 
by l/f(D-‘) (with whatever delay is required to assure 
causality). We call such a cascade a whitened matched filter. 

More generally, we shall now show that for any spectral 
factorization of the form (27), the filter w(t) whose chip 
D-transform is 

K 

a(D) A c akDk. 

Since 
k=O 

ak = [r(t),h’k’(t)] 

= ; xk.[hck’)(t),hck)(t)] + [n(t),!~‘~‘(t)] 

= c xkrRkmkp + nk’ 
k’ 

we have 
a(D) = x(D)R(D) + n’(D). 

(22) 

(23) 

(24) 
Here n’(D) is zero-mean colored Gaussian noise with auto- 
correlation function 0 2R(D), since 

nk’nkp’ = 
ss 

dt d7 n(t)n(z) h(t - kT)h(z - k’T) 

= c2Rkmk., (25) 
where a2 is the spectral density of the noise n(t), so that 
“on(z) = a28(t - 7). 

Since R(D) is finite with 2v + 1 nonzero terms, it has 
2v complex roots; further, since R(D) =1 R(D-‘), the in- 
verse b- ’ of any root /? is also a root of R(D), so the roots 
break up into v pairs. Then if f’(D) is any polynomial of 
degree v whose roots consist of one root from each pair 
of roots of R(D), R(D) has the spectral factorization 

R(D) = f’(D)f’(D-‘). (26) 

We can generalize (26) slightly by letting f(D) = D”f’(D) 
for any integer delay n; then 

ND) = WMD- 9. (27) 
Now let n(D) be zero-mean white Gaussian noise with 

autocorrelation function a 2 ; we can represent the colored 
noise n’(D) by 

n’(D) = n(D)f(D-‘) (28) 

since n’(D) then has the autocorrelation function 
a2f(D- ‘)j(D) = a2R(D) and zero-mean Gaussian noise 
is entirely specified by its autocorrelation function. Con- 

is well defined, and its time reversal w( - t) can be used as a 
whitened matched filter in the sense that its sampled outputs 

r 

m 

Zk = r(t)w(t - kT) dt (32) 
J-m 

satisfy (30) with n(D) a white Gaussian noise sequence. 
We writef(D) as 

f(D) = CD” iQ (1 - Pi- ‘0) (33) 

for some constant c, integer n, and complex roots pi. 
Since realizability is not our main concern, we make the 
definitions 

Definition 1: If IpI > 1, 

(1 - p-lD)-’ p 1 + /I-ID + B-‘D’ + .*a. 

Definition 2: If jfll < 1, 
(1 - p-‘D)-’ = -PO-‘(1 - /jD-‘)-’ 

p -(PO-’ + b2D-2 + . a.). 

Then if there are no roots Bi on the unit circle, l/f(D) can 
be represented as a cascade of v square-summable trans- 
versal filters and (31) makes sense. 

To handle roots on the unit circle, we introduce the fol- 
lowing useful lemma. 

Lemma I: If h(t) is a finite square-integrable impulse 
response of span v and the corresponding pulse autocorrela- 
tion function R,,,,(D) has a root fi with IpI = 1, then h(t) 
may be represented as the cascade of a transversal filter 
characterized by (1 - p- ‘0) and a filter with impulse re- 
sponse g(t), where g(t) has pulse autocorrelation function 

R,,(D) = &SD) 
(1 - /I-‘D)(l - p-‘0-l) 

and is finite with span v - 1. 

(34) 
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Proof: Let h(D,t) and  g(D,t) be  the corresponding chip 
D-transforms; the lemma asserts that 

R,,(D) = Rhh(D) 
f@lf(D-‘> = l 

(42) 

g(D,t)(l - p-‘0) = h(D,C). 

This suggests that we define g(D,t) formally as 

(35) so that the set of functions w(t - kT) is orthonormal. 
F inally, the set is a  basis for the signal space since the 
signals s(t) have chip D-transforms 

s(W ) = W ,t) 
(1 - fl-'0) 

= h(D,t) 2  ,VkDk, 
k=O 

s(D,t) = x(W @ ,t) 
= eawwO4~) 

(36) so that 
s(t) = c YkW(t - kT), 

where the chips gi(t) are defined in terms of the chips 
h,(t) and  /I as 

gi(t) B ~ B’-‘hj(t), i 2  0. (37) 
j=O 

For i 2  v, 

where h@t) is the chip 

h(P,t) = i ajhj(t)s 
j=O 

(39) 

But, using an  asterisk to represent complex conjugation, 

IVW ) II2  = bWUM*(P,~)l 
= CwJMP*,~)l 
= [w-vMP-l,ol 
= R(P) = 0 , (40) 

where we have used (14) and  the fact that p* = ,K ’ since 
I/?1 = 1. Consequently h(/?,t) = 0  and  gi(t) = 0  for i 2  v. 
Hence the filter of span v - 1  defined by 

g(D,t> A 2  gi(t>D’, (41) 
i=O 

where gi(t) is given by (37), is the required filter. The  expres- 
sion for the autocorrelation function follows from combina- 
tion of (35) with (19). Q .E.D. 

Since the spectrum S(w) of h(t) in the Nyquist band  is 

z(D) = -4DlW’) + n(D) (47) 

in which n(D) is a  white Gaussian noise sequence with 
variance nk -3 = g2 , and  which is a  set of sufficient statistics 
for estimation of the input sequence x(D). 

A factorization R(D) = f,(D)f,(D-') is said to be  
canonical if f,(D) is a  real polynomial of degree v that 
contains all the roots of R(D) outside the unit circle. 
Correspondingly there are two canonical choices for w(t): 

given by S(w) = R[exp (j2noT)], 0  < w I 1/2T, Lemma 
1  has the interesting interpretation that any filter with nulls 
in its Nyquist spectrum can be  regarded as the cascade of a  
null-free filter and  a  transversal filter that inserts the nulls 
at the appropriate places. For example, a  filter with nulls 
at the upper  and  lower band  edges is the cascade of a  null- 
free filter and  the transversal filter characterized by 1  - D2 
(assuming the nulls are simple). 

Wd)  
w,,W) = f,(D> 

wc2(D,t) = ‘:;‘-9,’ . 
c 

The  first choice seems more natural and  yields a  causal 
wcl(t); however, in the latter case wc2(t) is purely anticausal, 
so that the whitened matched filter response wc2(-t) is 
purely causal and  thus corresponds to a  realizable filter. 
The  corresponding signal sequences y(D) are 

In view of Lemma 1, the following definition makes VI(D) = x(D)fc(D) 

(43) 

(44) 
where the signal sequence y(D) is defined as 

AD) LI NW(D). (45) 

We  note that only K + v + 1  of the yk are nonzero. That 
the set of sampled outputs zk = [r(l),w(l - /CT)] is a  set 
of sufficient statistics for y(D) and hence for x(D) follows 
immediately from this observation, or alternately from the 
fact that the sufficient statistics a(D) can be  recovered by 
passing z(D) through the finite filter f(D- '). 

We collect these results into the following theorem. 
Theorem 1: Let h(t) be finite with span v and  let f(D) 

f(D-') be any spectral factorization of Rhh(D). Then  the 
filter whose chip D-transform is w(D,t) = h(D,t)/f(D) has 
square-integrable impulse response w(t) under  Definitions 
1-3, and  the sampled outputs z, of its time  reverse 

zk = 
s 

m  
r(t)w(t - kT) dt (46) 

-CX 
form a  sequence 

(49) 

sense. 
DeJinition 3: If IpI = 1  and  Rhh(/?) = 0, then (1 - YZ(D) = x(W’“LP- ‘1 (50) 

P-ID)-lh(D,t) is the filter g(D,t) whose existence is implied so that one  impulse response f,(D) is the time  reversal of 
by Lemma 1  [defined by (37) and  (41)]. the other, D”‘JD- ‘). 

W ith this interpretation, (31) is well defined for any Wh ile we have developed these ideas only for finite 
finite h(t). Furthermore, from (19) and  Lemma 1, R(D), they extend practically without change to rational 



368 IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 1972 

R(D) (except that there will in general be no purely causal 
whitened matched filter) and appear to apply in much more 
general situations whenever R(D) has any kind of spectral 
factorization. 

DISCRETE-TIME MODEL 

We have now seen that by use of a whitened matched 
filter we may confine our attention to the following discrete- 
time model, without loss of optimality. The signal sequence 

t t t t t + 
I y(D) 

Fig. 3. Finite-state machine model. 

Y(D) = xVW-(9 (51) 

is the convolution of the input sequence x(D) with the finite 
impulse response f(D), whose autocorrelation function is 
R(D) = f(D)f(D-I). Without loss of generality we assume 
that f(D) is a polynomial of degree v with f. # 0. The 
received sequence z(D) is the sum of the signal sequence 
y(D) and a white Gaussian noise sequence n(D) with auto- 
correlation function (T 2. 

x(D) to state sequences s(D) and thence to signal sequences 
y(D) are obviously one-to-one and hence invertible. In 
fact, two successive states uniquely determine an output 

yk = YbkTsk+ 1) (57) 

i.e., given a transition from s, to s~+~, the corresponding 
output y, is determined. 

The output signal-to-noise ratio is defined to be 

SNR A (ry2/a2 

= ox2 Ilf l12/02, 
where 6, 2 is the input variance [(m’ - 1)/12] and 

(52) 

An allowable state sequence s(D) or signal sequence 
y(D) is defined as one that could result from an allowable 
input sequence. 

MAXIMUM-LIKELIHOOD SEQUENCE ESTIMATION 

Maximum-likelihood sequence estimation is defined as 
the choice of that x(D) for which the probability density 
p[z(D) I x(D)] is maximum. Since we have permitted 
sequences to be semi-infinite, so that p[z(D) I x(D)] may 
be zero for all x(D), some sort of limiting operation is 
implied; we shall see below that the estimate 2(D) can be 
determined recursively in a way that gives sense to this 
definition. 

Ml2 B i$oL2 = Ro 

is the energy in the impulse response f(D). (If f(D) is 
derived from a continuous-time response h(t), then 
Ilf II2 = llhl12 = Ro.1 

In some contexts the channel itself is discrete time rather 
than continuous time and such a model arises directly. 
For example, in a partial-response system the spectral 
shaping may be achieved by passing the input sequence 
x(D) through a discrete-time filter such as 1 - D2 to give 
the signal sequence 

y(D) = x(D)(l - D2) (54) 

whose Nyquist spectrum has nulls at the upper and lower 
band edges. 

However the model arises, it is crucial to observe that the 
signal sequence y(D) may be taken to be generated by a 
finite-state machine driven by the input sequence x(D). 
We may imagine a shift register of v m-state memory 
elements containing the v most recent inputs, with y, 
formed as the weighted sum of the shift register contents 
and the current input xk as pictured in Fig. 3. Clearly the 
machine has my states, the state at any time being given 
by the v most recent inputs: 

sk g (xk-l,xk-2; ’ ‘,xk-v), (55) 

where by convention xk = 0 for k < 0. We define the state 
sequence s(D) as 

s(D) p so + s,D + s2D2 + . . . . (56) 

where each state Sk takes on values from an alphabet of 
my states Sj, 1 I j I my. The maps from input sequences 

Since the maps from x(D) to s(D) and to y(D) are one 
to one, maximum-likelihood sequence estimation can 
equivalently be defined as choosing from the allowable 
s(D) that which maximizes p[z(D) 1 s(D)], or from the 
allowable y(D) that which maximizes p[z(D) I y(D)]. We 
feel that it is most illuminating to consider the problem 
to be the estimation of the state sequence of a finite-state 
machine from noisy observations. 

To construct the recursive estimation algorithm known 
as the Viterbi algorithm, we first use the fact that the noise 
terms nk are independent. Then the log likelihood 
lnp[z(D) I s(D)] breaks up into a sum of independent 
increments : 

In dz(D) I s(D)1 = F In dZk - Y(sk,sk+l)l, (58) 

where p,( *) is the probability density of each noise term 
n,+. For notational convenience we define the partial sums 

kz-1 

rb(D)],,k2 Li c 
k=k, 

Suppose for the moment that we knew that the state 8, 
at time k was Sj. Then for any allowable state sequence 
s(D) that starts with the known initial state so = 0 and 
passes through the state Sj at time k, the log likelihood 
would break up into two independent parts: 

In dZk - Y@kpsk+ l>l? 0 I k, < k2. 

(59) 

rb(D)loK = rb(D)]ok + r[@)]?. WV 
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Let S,(D) be the allowable state sequence from time  0  to k 
that has m inimum log likelihood T[s(D)lok among  all 
allowable state sequences starting with so = 0  and  ending 
with sk = Sj. We  call 3j(D) the survivor at time  k corre- 
sponding to state Sj. Then  we assert that S,(D) must be  the 
initial segment of the maximum likelihood state sequence 
s(D); for we can replace the initial segment s’(D) of any 
allowable state sequence passing through Sj with the initial 
segment 3,(D) and obtain another allowable sequence with 
greater log likelihood T[s(D)]oK, unless r[s’(D)lok = 
r[3j(D)lok. 

In fact, we do  not know the state s, at time  k; but we 
do  know that it must be  one  of the finite number  of states 
Sj, 1  I j < my, of the shift register of F ig. 3. Consequently, 
while we cannot make a  final decision as to the identity 
of the initial segment of the maximum-likel ihood state 
sequence at time  k, we know the initial segment must 
be  among  the my survivors 3j(D), 1 I j < my, one for 
each state Sj. Thus we need  only store my sequences S,(D) 
and their log likelihoods r[sj(D)lok, regardless of how 
large k becomes. To  update the memory at time  k + 1, 
recursion proceeds as follows. 

1) For each of the m allowable continuations sjS(D) to 
time  k + 1  of each of the my survivors S,(D) at time  k 
compute 
r[sj'(D)]kg+l = r[3j(D)]ok + In p,[ zk - Yk(sj,sj’>l* (61) 

This involves rn” ’ = mL additions. 
2) For each of the states S,,, 1  < j’ _< my, compare the 

log likelihoods r[sjP(D)lo k+l of the m continuations termin- 
ating in that state and  select the largest as the corresponding 
survivor. This involves my m-ary comparisons, or (m - 1) 
my binary comparisons. 

In principle the Viterbi algorithm can make a  final 
decision on  the initial state segment up  to time  k - T  
when and  only when all survivors at time  k have the same 
initial state sequence segment up  to time  k - z. The  
decoding delay r is unbounded but is generally finite with 
probability 1  [34]. In implementation, one  actually makes 
a  final decision after some fixed delay 6, with 6  chosen 
large enough  that the degradat ion due  to premature 
decisions is negligible. Although, as we shall see later, 6  
may have to be  much larger than v, it is typically of the 
order of 20  symbols or less. Parenthetically, our analysis 
following shows that the capability of deferring decisions 
is essential, in the sense that any receiver that does not have 
the capability of deferring decisions for the appropriate 
6  cannot approach opt imum performance. 

We  further note that in the derivation of the algorithm 
we have used only the finite-state machine structure and  the 
independence of the noise, so that the technique can be  
adapted to account for Markov context dependence in the 
input and  other Markov-modelable statistics of the source 
and  channel, as recounted by Hilborn [16], for example. 
Omura [30] has considered the situation in which the 
input sequence x(D) is a  code word from a  convolutional 
code. 

369 

ERROR EVENTS 

We now begin our analysis of the probability of error 
in the estimated state sequence 3(D) finally decided upon  
by the Viterbi algorithm. We  let A(D) and j(D) stand for the 
corresponding estimated input sequence and  signal sequence. 

In the detection of a  semi-infinite sequence there will 
generally occur an  infinite number  of errors. The  idea of 
error events (see also [20] and  [28]) makes precise our 
intuitive notion that these errors can be  grouped into 
independent finite clumps. An error event d is said to 
extend from time  k, to k, if the estimated state sequence 
3(D) is equal  to the correct state sequence s(D) at times 
k, and k,, but nowhere in between (sk, = d,, ; sk2 = s*,,; 
Sk #  dk, k, < k < k2). The  length of the error event is 
defined as n B k, - k, - 1. Clearly n 2 v, with no  
upper  bound;  however, we shall find that n  is finite with 
probability 1. 

When  the channel  is linear, in the sense that y(D) = 
x(D)f(D), we can say more about an  error event. Since 
%  = Sk, and  Sk2 = $k2) we have 

xk = gk, k,-v<k<k,-1 

k,-vIkIk2-1 

from the definition of s,. However, xk, #  
xkl-v-l #  j2kl-v-l since skl+l #  3kl+l and  sk2-l 
We  define 

E,(D) A cxk, - ak,> + cxk, + I - fk,+ N  + ’ ’ ’ 

(62) 
2 and  
&,,-1. 

+ (xk2-,,-l - &2-v-1)D"-v (63) 

as the input error sequence associated with the error event. 
It is a  polynomial with nonzero constant term .sXO and  
degree n - v and  contains no  sequence of v consecutive 
zero Coefficients (Since then sk would equal  $k for some 
intermediate k and we would have two distinct error events). 
Furthermore, since the xk are integers, the coefficients of 
E,(D) are integral. 

Correspondingly, we define the signal error sequence 
associated with the error event as 

E,@) ii (yk, - Pk,) + (yk,+ I - $k,+ IV’ + ’ ’ ’ 

+ (Yk,-1 - $kz-l)D”. (64) 
Since y(D) = x(D)f(D) and j(D) = ,?(D)f(D), it follows 
that 

&y(D) = GW-(D). (65) 
Thus E,,(D) is a  polynomial with nonzero constant term 
and  degree n. 

We define the Euclidean weight d2(6) of an  error event 
as the energy in the associated signal-error sequence 

d’(~) ~ lleyJ12 = ~ Eyi2 
i=O 

= by(D)-@- ‘110 
= C @ M W W  lMD- ‘>I0 
= C M W W M D  - ‘>I 0. 
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We note that the energy depends only on a%(D) and R(D) 
and is therefore independent of the factorization R(D) = 
f(D)f(D-I). In fact, when the received sequence is derived 
from a continuous-time received signal via a whitened 
matched filter, d’(E) is identifiable as the energy of the 
signal that results from passing the sequence E,(D) through 
h(t): 

= 1 [I$: E,ih(t - i7)12 dt. (67) 

The number of errors in the associated input error 
sequence is defined as the Hamming weight ~~(8) of the 
event; that is, 

w,(b) P number of nonzero coefficients in E,(D). 
(68) 

PROBABILITYOFA PARTICULAR ERROR EVENT the Euclidean distance between y(D) and j(D). But since 
We now calculate the probability that a particular error 

event identified by a starting time k, and an associated 
input error sequence E,(D) of degree 12 - v will actually 
occur. Three subevents must occur. 

8,: At time k, we must have sk, = gkl. 
8,: Between k, and k, + n - v the input sequence 

x(D) must be such that x(D) + E,(D) is an allowable 
sequence J(D). For example, if E,(D) = 1, then xkl must 
not equal m - 1, since then Akl would equal m, which is 
not an allowable level. 

8,: The noise terms nk, k, I k < k, + n, must be such 
that over this segment a(D) has greater likelihood than 
x(D) or, in terms of the earlier notation of (59), 

r[qD)];; +lz+ l 2 I-[s(D)]:: +“+I. (69) 
When n(D) is white and Gaussian with variance a2, 

we have 

In p,(zk - yk) = -3 In 27co’ - (z, - yk)2/2a2 (70) 

so that 

[F - I-]::+n+l = $ I$” [(Zk - y/J2 - (Zk - $&“I 1 

= & [IW) - Y(~)I12 

- IW) - 9ml121~:+” (71) 
in obvious notation. In words, j(D) is more likely than 
y(D) if j(D) is closer to z(D) than is y(D) in the (n + l)- 
dimensional Euclidean space corresponding to times k, to 
k, + 12. (The decision rule is thus independent of signal- 
to-noise ratio.) The three points 

Y(D) I ;: + “7 P(D) I !4:+7 z(D) I ::+” 

QD) = [Y(D) - P<D)lt:+” 
this distance squared is just the Euclidean weight d’(&‘) of 
cy(D). Hence 

m Pr (g3) = 
s 

dn(2x02)-1/2 exp - n2/2a2 
d(Ql2 

= 'Q[d<~>P~l, (72) 

where Q(x) is defined in (4). We recognize this as the error 
probability when a binary signal of amplitude &d(b)/2 is 
sent through a Gaussian channel with noise variance 02. 
It depends only on c,,(D) and 0. 

The subevent 6, is independent of 8, and d,, being 
dependent only on the message ensemble. Clearly when 
lsxil = j only m - j values of xk+ i are permissible, so that 

(73) 

assuming the inputs to be independent and equiprobable. 
Error events with any l&xi1 2 m are impossible. 

The subevent 8, is possibly dependent on the noise terms 
involved in 8, and the joint probability is not easily 
calculable. However, the probability that 8, is not true is 
of the order of the error probability, so that in the normal 
operating region Pr (8, 1 8,) is closely approximated as 
well as overbounded by 1. In sum, therefore, the prob- 
ability of the particular error event d is given by 

Pr (E) = Pr (8,) Pr (g2) Pr (6, 1 8,) 

5 Q[d(S)/2c] ;n; ” -m’“xi’] . (74) 

define a two-dimensional subspace illustrated in Fig. 4. PROBABILITYOFERROR 

Since our Gaussian noise has equal variance in all dimen- From the probabilities of individual error events we 
sions, it is spherically symmetric and by coordinate rotation obtain a simple and, for moderately low error probabilities 
we can see that the probability of 8, is simply the probability like 10w3, rather tight bound on overall probability of error 
that a single Gaussian variable of variance a2 exceeds half through the union bound, which simply says that the prob- 
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ability of a  union Ff events is not greater than the sum 
of their individual probabilities. 

Let E be the set of all possible error events &’ starting at 
time  k,. Then  the probability that any error event starts 
at time  k, is bounded  by 

Pr (El I JE Pr (0 (75) 

Let D be the set of all possible d(b) and for each d E D 
let Ed be the subset of error events for which d(b) = d. 
Then  from (74) 

Pr (E) I C Q[d/2a] C [IDi ssi’] . (76) 
dsD ICEEd 

Because of the exponential decrease of the Gaussian 
distribution function, this expression will be  dominated at 
moderate signal-to-noise ratios by the term involving the 
m inimum value dmin of d(b): 

where 
(77) 

1 (78) 

is a  constant independent of CF. Since this expression is 
independent of k,, it may be  read as the probability of an  
error event per unit time, and  its reciprocal l/Pr (E) as 
the mean  time  between error events. The  size of the signal- 
to-noise ratio at which this expression becomes a  good  
estimate depends on  the coefficients of Q[d(&‘)/2o] for 
larger d(b), which in all cases we examine are of the order 
of magn itude of Ki. 

A true bound  with the same asymptotic behavior can be  
obtained by generating-function methods similar to those 
used by Viterbi [21]. Let Nd be  the coefficient mu ltiplying 
Q[d/2a] in (76) and  let the generat ing function g,,,(z) be  
defined as 

&V(Z) 6  c NdZd2. (79) 
dsD 

As suggested by Viterbi in [21], we use the fact that 
Q(x) exp x2/2 is a  monotonically decreasing function of x 
for x 2  0  to obtain the bound  

Q[d/20] 5 Q[dmiJ20] exp (d&n - d2)/802, (80) 

which can be  substituted in (76) to obtain the upper  bound  

Pr (E) I C NdQ[d,i”/2a] exp (d&n - d2)/802 
dsD 

= Q[dm~n/2~]{~dm~n2’80z~~(~~1’8u2)}. (81) 

As r~ + 0  the expression in brackets approaches Nd-.- = K, . 

Pr (e) < C w,(b) Pr (8) 
8sE 

I d;D QCdPl c  w,(b) 
dEEd 

(82) 

where 

K24 c 
wHc8j “fi m  -ml&~il 1 (83) 

8  E f&in i=O 

is another constant independent of CT. The  quantity K,/K, 
may be  interpreted as the average number  of symbol errors 
per error event at high signal-to-noise ratios. 

Obviously the average of any variable that is a  finite 
function of error events (e.g., the average length of error 
events, the bit error probability, etc.) can be  calculated in 
the same way. In each case we can approximate the result 
by a  constant mu ltiplied by Q[d,,J2a] for sufficiently high 
signal-to-noise ratios. Strict upper  bounds like (81) can also 
be  obtained by the f low-graph techniques of [21] as we 
indicate in Appendix I. 

The  obvious lower bound  shows that these bounds and  
estimates are very tight. Let Edmin be the set of error events 
E,(D) of Euclidean weight dmi, and let K. I 1  be  the prob- 
ability that the input sequence x(D) will be  such that 
A(D) = x(D) + ok&,(D) is an  allowable input sequence 
for at least one  E,(D) E Edmin. When  diin = Ilfl12, Edmin 
contains E,(D) = & 1, so Ko = 1. The  probability that 
such an  a(D) will be  closer than x(D) to the received 
sequence z(D) is Q[d,,,,,/2g]. Hence, with probability K,, 
the probability of an  error event starting at time  k for any 
k is at least Q[d,,,J2g], so 

Pr (El 2 &Q[4ninP~I 
Pr (4 2 KoQ[4nin/2~I* (84) 

Thus the upper  estimate and  lower bound  differ only in 
their constant coefficient. Applications of this lower bound  
are given in [38]. 

If the channel  were used for only one  pulse, i.e., xk = 0  
for k # 0, then intersymbol interference would be  absent, 
the signal sequence would be  of the form 

Y(D) = xof(D) (85) 

and  the symbol-error probability would be  very nearly 

Pr (4 = &Q< Ilf W W 3  (86) 

where K3 = 2(m - 1)/m. This gives a  slightly tighter 
version of the lower bound  above when 1lflI” = dzi”. 

It also suggests that we define the effective signal-to-noise 
ratio as 

SNR,,, & rsx2d;,Jo ‘, (87) 
....ll 

Evaluation of this bound  involves finding the generat ing where again ox2 = (m’ - 1)/12, for (82) and  (86) then 
function, which in general  can be  done  through flow-graph show that the probability of error of an  m-level PAM 
techniques [21], illustrated in Appendix I. system with intersymbol interference differs at most by the 

The  symbol probability of error Pr (e) may be  similarly ratio K2/K3 from that of an  m-level system without inter- 
computed by weighting each error event & by the number  symbol interference and  output signal-to-noise ratio SNR,,,. 
of decision errors w,(b) it entails: In decibels such a  difference is small and  goes to zero as 
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SNR,,, goes to infinity. But in the common case when 
Ilf II” = &in, SNR equals SNR,,,, so that the degradation 
due to intersymbol interference is negligible. This result, 
while conjectured in [ 151, seems effectively unanticipated 
in the intersymbol interference and partial-response 
literature. In particular, partial-response techniques had 
been thought to cost at least 3 dB in output SNR, whereas 
we see in the following (see also [33]) that for f(D) = 
1 + D” the penalty in SNR with the Viterbi algorithm is 
a small fraction of a decibel. 

Upon a little reflection, we are not surprised that when 
the only constraint is on the output signal-to-noise ratio’ 
no degradation need be suffered because of intersymbol 
interference; for we could simply choose the output se- 
quences y(D) to suit our purposes within the constraint 
and let x(D) = y(D)/‘(D). That the inputs xk would 
become very large if f(D) had an unstable inverse’ m ight 
bother us physically, but not mathematically. The surpris- 
ing result is that under the rigid constraint that the inputs 
xk be m  equally spaced amplitudes, we can do nearly as well 
when llj” 11” = d&. 

When llfl12 > d,$,, which tends to happen when inter- 
symbol interference is severe, the ratio SNRJSNR is 
d~i”/Ilf 11’ and measures the degradation due to intersymbol 
interference. We show in Appendix II that even in this case 
degradation can be avoided if it is permissible to insert a 
certain type of partial-response preemphasis filter at the 
transmitter. 

EXAMPLE : PARTIAL RESPONSE 

Let f(D) = 1 - D. (Everything that follows also holds 
with the obvious modifications for any partial response 
of the form 1 + D”.) 

The finite-state machine realizing f(D) has only one 
m-state memory element. Thus the maximum-likelihood 
detector needs to keep in m ind only m  survivors at any time. 
Fig. 5 shows the trellis representing the state transition 
diagram spread out in time when m  = 2, with the asso- 
ciated output signal attached to each branch. Fig. 6 displays 
the progress of a maximum-likelihood sequence estimator 
through a typical received sequence. If all zeros were sent, 
we recognize an error event extending from time 1 through 
time 4. 

It is easy to show that the Lee weight, defined as 

WL@Y P j. IQI (88) 

of all signal error sequences cy(D) is even when f(D) = 
1 - D, hence that d& = Ilfl12 = 2 and d’(6) 2 4 if 
d2(8) # 2. Consequently only the signal error sequences 
of Euclidean weight 2 need be considered even for very 
modest signal-to-noise ratios. By inspection these sequences 
are the set of sequences of the form -l-(1 - D”), n 2 1, 
which result from the input error sequences E,(D) = 
+(l + D + *.a + D.-l). The error-event probability is 

1 In filter optimization problems one usually constrains the input 
signal-to-noise ratio; this makes no sense here since the input waveform 
x(t) is a train of delta functions. 

Fig. 5. State-diagram trellis for m  = 2,f(D) = 1 - D. 

I:0 I 2 3 4 5 

&  -- \ n \ 

Fig. 6. Survivors of successive recursions of maximum-likelihood 
sequence estimator. 

then estimated by (77) and (78) as 

Pr (E) N Q[l/a&] 2 2 (v)” 
n=l 

= 2(m - l)Q[l/o&]. (89) 
The probability of symbol error in the estimation of x(D) 
is, from (82) and (83), 

Pr (e) N Q[l/a&] 2 2n (5 
n=l 

= 2m(m - l)Q[l/o&]. 

As an example of the generating-function 
have for m  = 2 

gN@) = c NdZd2 
deD 

2z2 
1 - z4 

(90) 
approach, we 

= 2(z2 + z6 + z10 + *em) (91) 
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as is shown by f low-graph techniques in Appendix I. This 
means  that there are error events of Euclidean weights 
2,6,10, * * *, and  that the coefficient of each weight is 2. 
We  obtain the strict upper  bound  

(92) 

The  accuracy of approximating the series (76) by its first 
term even for r~ of the order of 1  is evident. 

Preceding is a  technique that has been  used in partial 
response systems to prevent infinite error propagat ion in 
recovery of the transmitted sequence. As we have seen, 
with maximum-likel ihood sequence estimation error events 
are quite finite; even so, preceding is useful in reducing 
symbol-error probability when m > 2. The  idea [I], [3] 
is to take the original m-ary sequence, which we now call 
d(D), and let the input sequence be  another m-ary sequence 
defined by 

x(D) 4 d(D)/f(D) modu lo m, (93) 

which is well-defined when f(D) = 1 If: D” (or more 
generally when f0 and  m are relatively prime). Then  if we 
could take the output sequence modu lo m we would obtain 

y(D) = x(D)f(D) = d(D) modu le m. (94) 

In fact, we obtain the estimated data sequence d(D) by the 
zero-memory modu lo-m operation on  p(D) : 

d(D) b E(D) modu lo m. (95) 

The  number  of symbol errors in d(D) is therefore the same 
as the number  of nonzero coefficients in cy(D). Forf(D) = 
1  rf: D”, this number  is 2  for all the E,,(D) of weight 2, which 
is to say that with preceding all the likely error events 
result in 2  symbol errors in the estimation of d(D). Hence 

Pr (e) N 2  Pr (E) N 4(m - l)Q[l/oJZ]. (96) 

In F ig. 7, we plot the predicted symbol-error probability 
as a  function of output signal-to-noise ratio with m = 2 
and m = 4  for the three cases of 1) no  intersymbol inter- 
ference; 2) a  partial response of the class f(D) = 1 _+ D” 
with preceding and  maximum likelihood sequence estima- 
tion; and  3) the same partial response with preceding and  
with symbol-by-symbol decisions. (Bit-error probability is 
half the symbol-error probability for m = 4, assuming 
Gray coding.) Simulation results (10 000  symbols) for the 
maximum-likel ihood sequence estimator at low signal-to- 
noise ratios are also given. 

A PRACTICAL ALGORITHM 

In this section we show that simple suboptimal approx- 
imations to maximum-likel ihood sequence estimation can 
perform nearly as well. We  shall describe an  algorithm 
suitable for the class of partial responses f(D) = 1 + D”, 
with f(D) = 1 - D again the particular illustrative ex- 
amp le. We  shall introduce the algorithm from a  different, 
more concrete viewpoint than before, corresponding to the 
way it was actually invented; such an  explanation may 

0 5 IO 15 20 25 
SNR in dB 

Fig. 7. Probability of error versus output signal-to-noise ratio for 
m = 2  and  m = 4. P-perfect response;  ML-partial response 
f (0) =  1  I!Z D” with maximum-likel ihood sequence estimation and  
preceding; C-partial response f(D) =  1  f D” with conventional 
sample-by-sample decisions and  preceding; black dots-results of 
10  000-sample simulations of ML. 

appeal  to the more practical reader more than the previous 
abstractions. The  scheme involves making tentative 
decisions that are then corrected by a  single-error-detecting 
and  correcting decoder.  We  shall show in the end  that the 
two schemes perform nearly identically. 

W ith m-level inputs xk, the output signals yk = xk - xk- 1  
take on  2m - 1  different levels. Tentative decisions j$ 
may be  made  from the noisy outputs zk = yk + nk as to 
which output signal level is most probable. Since there are 
more (2m - I)-ary sequences than m-ary sequences, cer- 
tain sequences of tentative decisions can be  recognized as 
impossible, in the sense that no  allowable input sequence 
could have caused them. That this redundancy can be  used 
to detect errors in the tentative decisions has been  recognized 
by previous authors [1], [2], [39]. 

A general  method of determining whether the tentative 
decision sequence J(D) is allowable is to pass it through an  
inverse linear filter with impulse response l/f(D) and  see 
whether an  allowable input sequence a(D) comes out. In 
this case such a  filter is realized by the feedback circuit in 
which & = j& + $  _  1, illustrated in F ig. 8. 

Whenever  a  single error is made,  say J$ = yk + I, the 
output 12, at that time  will be  one  unit higher than the 
corresponding input xk. Because of the feedback, the error 
continues to propagate in the circuit and  raises all sub- 
sequent 5~~ by one  unit as well. At the first time  k’ 2 k 
for which xk, = m - 1, we will observe the unallowable 
level R,, = m and detect the error. At this time  we can 
reset jz,, to m - 1  and  error propagat ion ceases. Similarly, 
negative errors are detected when & < 0. To  frustrate the 
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Fig. 8. Inverse linear filter with response l/(1 - 0). 

8 -UNIT STORAGE 

TENTATIVE 
DECEIONS 

9, &  
CORRECTIONS 

CORRECTION CIRCUIT 

Fig. 9. Error-correction algorithm block diagram. 

detection circuit takes a second error in the opposite 
direction; all single errors are eventually detected. 

The error-detection circuit yields additional information 
beyond simply detecting the error. First, the direction of the 
excursion obviously tells us the polarity of the error. 
Second, observe that whenever II, = 0 it is certain that no 
positive error is circulating in the circuit, since that would 
imply x, < 0; similarly R, = m  - 1 implies no negative 
error. When we detect a positive error we can therefore 
be sure that it occurred in the finite time span since the last 
time Rk = 0 and likewise for a negative error. 

To localize the error in this time span requires informa- 
tion about the reliability of each tentative decision. Let the 
apparent error R, be defined as Ak = z, - j&; for any 
reasonable noise distribution the tentative decision most 
likely to be in error is that for which Ak has the largest 
magnitude with the appropriate polarity. We therefore 
correct in that place. (The scheme resembles Wagner de- 
coding of a distance-2 block code [40]. It is an improvement 
over the null-zone scheme of Smith [41], to which it bears 
the same relation as Wagner decoding does to single- 
erasure-correction with block codes.) 

Fig. 9 shows the circuit that generates JJ,, Ak, and &, 
and stores tentative decisions for S time units awaiting 
correction, Fig. 10 gives the decision logic in flow-chart 
form; we use four storage registers NMIN, KMIN, NMAX, 
and KMAX to store the magnitude and location of the 
largest positive and negative apparent errors. To implement 
an equivalent algorithm for m  = 2 or 4 with f(D) = 
1 - D* with modestly integrated resistor-transistor logic 
(RTL) circuits (2 flip/flops per IC) took about 50 integrated 
circuits, including all control logic. 

To determine how long the storage time 6 should be, 
we note that the probability that an error at time k will not 
have been detected before time k + 7 is [l - (i/m)]‘, the 
probability that z consecutive input symbols are not equal 
to m  - 1 or 0, as the case may be. For m  = 4 and 6 = 20, 
[l - (l/m)]” = 0.003; thus if 6 = 20, one out of 300 
errors will not be detected in time. This is satisfactory if 

NO -I ERROR 
c N  MAX=0 

CORRECT + I 

CORRhT-1 

. . . . . . . 

k=ktl 

Fig. 10. Flow chart for error correction with partial response 
f(D) = 1 - D. 

and only if we are looking for not more than about two 
orders of magnitude of error rate improvement. That final 
decisions must be deferred for so long even though v 
equals one may be surprising; yet any scheme with shorter 
delay is condemned to significant suboptimality. 

We now show the equivalence of this simplified algorithm 
to maximum-likelihood sequence estimation under two 
assumptions. 

Assumption 2: No noise of magnitude InkI 2 1 occurs. 
Assumption 2: After any single tentative decision error 

l$klc~~~n no second error occurs before the error is 

Under these assumptions a decoding error can occur in 
the simplified algorithm only if for some k, the following are 
true. 

1) nk 2 (4) and nkP I nk - 1 for some k’ such that 
a) if k’ < k, Xj # 0, k’ 5 j < k; or b) if k < k’, Xj # 
m  - 1, k I j < k’ ; that is, if x,, falls within the time 
span in which the error could have occurred when the 
error in x, is detected. 

2) Similarly, if nk I -(JJ and n,, 2 1 + nk for some 
k’ such that a) if k’ < k, xi # m  - 1, k’ I j < k; or 
b) if k < k’, Xj # 0, k I j < k’. 
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In F ig. 11  we plot the error-causing regions in the 
nk - &’ plane, as well as the regions excluded by Assump- 
tions 1  and  2. By comparison with F ig. 4  we see that a  
maximum-likel ihood sequence estimator would make 
exactly the same decisions. 

Conversely, under  Assumptions 1  and  2, a  maximum- 
likelihood sequence estimator has at most three survivors 
at any time, regardless of the number  of states: the state 
sequence corresponding to the tentative decisions g(O) (if 
allowable), that corresponding to a  single positive error 
in the most unreliable past symbol [j’(O)], and  that to a  
single negative error [j-(O)]. F ig. 12  shows a  typical 
sequence for m = 4; the reduction to a  single survivor at 
time  4  corresponds to an  error correction in our simplified 
algorithm. Since any two sequences containing a  tentative 
decision error differ in only one  place from the tentative 
decision survivor and  since likelihoods of two competing 
paths can be  compared on  the basis of the magn itude of 
fik in the Single-error place, each single-error survivor can 
be  completely identified by the location and  magn itude of 
its sole apparent error, a  fact of which we have taken 
advantage in our algorithm. 

11  

KEY: 
0 POSSIBLE SIGNAL SEOUENCES 

22 REGION EXCLUDED BY ASSUMPTIONS 1  AND 2  
m  ERROR-CAUSING REGION, EITHER ALGORITHM 

Fig. 11. Decision regions. 

It follows that the probability of error of our simplified 
algorithm is bounded by the probability of error for 
maximum-likel ihood sequence estimation plus the prob- 
ability that Assumption 1  or 2  does not hold. The  prob- 
ability of Assumption 1  is 2Q[l/a], and  of Assumption 2  
&@Cw~lK where K4 is again a  constant. In the 
region of error probabilities of the order of 10m3 to lo-‘, 
Q [l/c] is two or more orders of magn itude less than 
Q[l/~h] and (Q[W a ])’ an order of magn itude less, 
so that the probability that Assumption 1  or 2  does not 
hold is much less than the probability of error for maximum- 
likelihood sequence estimation. Hence our simplified algo- 
rithm gives effectively the same performance. 

The  algorithm has been  incorporated in a  commercially 
available 9600  bit/s telephone-l ine modem with 4800  
inputs/s, m = 2  or 4, and  a  partial responsef(l)) = 1  - D2. 
Despite the quite non-Gaussian and  nonwhite character of 
te lephone line disturbances, performance improvements 
rather similar to the predictions of F ig. 7  have been  ob- 
served-for error rates in the 1O-3-1O-5 range, we typically 
see an  order of magn itude or so improvement in error 
rate with a  tendency to less improvement at the higher 
error rates and  more at the lower. 

CONCLUSION 

We have shown that a  maximum-likel ihood sequence 
estimator for a  PAM sequence perturbed by finite inter- 
symbol interference and  white Gaussian noise can be  
constructed from a  whitened matched filter and  the Viterbi 
algorithm. The  combination is simpler to implement than 
previous “opt imum” nonlinear algorithms and  is practically 
feasible if the channel  impulse response is not too long. 
Its performance can be  accurately estimated and  is shown 
to be  effectively as good  as can be  attained by any estimator, 
regardless of the criterion of optimality. Furthermore, in 

k 1 2 3 4 5 6 

yk: 18 01 -04 2.0 -1.2 -0.9 

Fig. 12. Maximum-likel ihood sequence estimation algorithm under  
Assumptions 1  and  2. 

many cases performance is effectively as good  as if inter- 
symbol interference were absent. 

We  have shown that for impulse responses of the type 
that arise in partial response systems a  simple error- 
correction algorithm approximates the performance of a  
maximum-likel ihood sequence estimator and  gives a  3-dB 
gain in effective signal-to-noise ratio over symbol-by- 
symbol decisions. The  construction of similar practical 
subopt imum algorithms for other simple responses ought 
to be  a  fruitful activity. 

In a  practical situation, a  near-opt imum procedure is to 
use a  linear equalizer to shape the channel  to some desired 
channel  whose impulse response f(o) is short and  whose 
spectrum is similar to the channel  spectrum and  then use a  
Viterbi algorithm that is appropriate for f(o). The  desired 
responsef(D) should at least reflect the nulls or near-nulls 
of the channel’s Nyquist spectrum since these cannot be  
linearly equal ized without excessive noise enhancement.  
From Lemma 1, a  channel  with v nulls or near-nulls is 
approximately equal  to the cascade of an  equalizable 
(null-free) channel  and  a  transversal filter characterized 
by a  polynomialf(D) of degree v. For example, if there is 
severe attenuation only at the band  edges, it is reasonable 
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to choose f(D) = 1 - D2. Analysis of how close one can 
come to optimal performance with this approach would be 
useful. 

Another practical problem is that the channel response 
h(t) is usually unknown, so that the receiver must be 
adaptive. In the approach of the previous paragraph, one 
can obviously make the linear equalizer the adaptive 
element. It would be of interest, however, to devise an 
adaptive version of the maximum-likelihood sequence 
estimator itself. 

On the theoretical side, the greatest deficiency in our 
results is their reliance on a finite channel response. It can 
be shown that the brute-force approach of approximating 
an infinite response by a truncated response of length L 
and then using the appropriate sequence estimator gives 
performance that is accurately estimated by (77) and (82) 
as L + cc, where d,$,, is still defined as min Ils,(D)f(D)l12 
for the true (infinite) f(D). There must be a better way, 
however, of dealing with simple infinite responses like 
h(t) = e --f/1, t 2 0. 

These results can be extended in a number of directions. 

where .a is an indeterminate. Then with any particular path (error 
event) from the initial node to the final node is associated the transfer 
function 

We recognize I: eYr2 as d”(l), the Euclidean weight of the error event. 
Hence the total transfer function of the flow graph, which is the sum of 
the transfer functions of all paths, is simply 

Extension to quadrature PAM, where phase as well as 
amplitude is modulated, is achieved straightforwardly by 
letting the input sequence x(D) be complex, although the 
analysis is slightly complicated by having to deal with 
complex E,(D). Colored noise can be handled by pre- 
whitening. The possibility of extensions to handle context- 
dependent x(D) and other Markov-modelable constraints 
has already been mentioned. Finally, the use of similar 
techniques outside digital communications (for example, 
in magnetic-tape reading [32]) will no doubt be extensive. 
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Clearly, from the linearity of PAM, the input errors eXl govern the 
state-error transitions and the signal errors ey, are functions of gXl and 
Q, or eqmvalently of E,~ and a.,r+ r. 

An error event starts and ends with an all-zero state error. From 
the input error sequence E@) we can determine the path taken through 
the nonzero state error sequences during the error event. Each possible 
error event thus corresponds to a unique such path. 

Let us then construct a flow diagram in which the initial node is the 
all-zero state error, the intermediate nodes are the nonzero state errors, 
and the final node is again the all-zero state error. Let us draw in all 
possible state-error transitions and label each with the corresponding 
.Q and Q. To each transition we assign a weight or transfer function 
equal to 

(101) 

the desired generating function. 
In simple cases, one can solve the flow graph fairly easily to obtain 

an explicit expression for g,,(z). In more complicated cases, one may 
merely solve the flow graph modulo z” for small values of n to deter- 
mine the coefficients Nd for dZ < n; or one may solve for particular 
real number values of z to determine the tightness of the asymptotic 
expressions. 

Example 1 
Let f(D) = 1 - D and m = 2. Then there are only two possible 

nonzero state errors, csl = k 1. The flow graph is illustrated in Fig. 13. 
By symmetry the transfer functions from the initial node to each of the 
nonzero nodes is the same, say q(z). We then have 

APPENDIX I 

DETERMINING WEIGHT DISTRIBUTIONS which yields 
q(z) = fz + $0 + z‘Yq(z), (103) 

The weight distribution of a particular impulse response is charac- 
terized by the generating function q(z) = + . (104) 

gn(z) = c Ncd2, (97) 
deD The transfer function from the initial node to the final node is then 

where 

I 
(98) 

is the sum over all error events of Euclidean weight d2 of the prob- 
abilities that the corresponding input error sequences E,(D) are allow- 
able. In this Appendix we indicate how a flow graph can be associated 
with an impulse response such that the transfer function of the flow 
graph is this generating function. 

Example 2 
Let f(D) = 1 - D and m = 4. Then there are six nonzero state 

errors, E,* = k 1, + 2, + 3. Again by symmetry the transfer functions 
to states differing only in sign are equal, so we need solve for three 
transfer functions qI(z), q2(z), q3(z). These satisfy the equations 

We have already seen the usefulness of considering the input error 
sequence EJD) and the signal error sequence EJD) = c,(D)f(D) asso- 
ciated with an error event 8. Similarly we can define (for finite impulse 
responses) the state error sequence es(D) by 

E ri = s!q+i - &,ff (x . (106) = kl+l-l - *k~+l-l,&,+1-2 - &,+i--2,“‘,xk~+l-v- xkl+l-” ) 

= (&.l- 1&x.i-2,‘. ‘,&c,l-” 1 . (99) Finally, gN(z) is obtained from 
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+ 
Fig. 13. Flow graph forf(D) = 1 - D  and m  = 2. 

&f(z) = 2kl(Z) + z%(z) + zPq3(z)1. (107) 

Solving these equat ions explicitly involves inversion of a  3  x 3  poly- 
nomial matrix. Evaluation of upper  bounds  for particular values of 0  
involves substitution of z =  exp  (- l/8u2) and  inversion of a  3  x 3  
real matrix. The  first few terms of gN(z) can  easily be  determined 
recursively by  hand  to give 

gpg(z) =  6z2  + 18z4  + 90z6  + 362~~ + . . . . (108) 

Through similar techniques we can obtain flow graphs and  generat-  
ing functions for the bit probability of error, average length of error 
events, and  so forth. The  general  method is to take the same flow 
graph and  multiply each  individual transition transfer function by  zip, 
where p  is the increment to the function f(g) whose average is being 
evaluated and  zi is a  second indeterminate. For instance, for symbol 
error probability without preceding we would let p  =  1  if I&xi] #  0  
and  p  = 0  otherwise, for symbol-error probability with preceding we 
would let /I =  1  if J+] #  0  and  p  = 0  otherwise, and  for error event  
length we would let p  =  1  for all transitions. W e  would then obtain 
from the flow graph a  generat ing function 

g(z,z1) = c N(d,f)ZdZ(g)Z:(g), 
8EE 

where N(d, f) is the coefficient of the error events of Eucl idean weight 
d*(e) and  f-weight f(g). The  partial derivative of this function with 
respect to z1  evaluated at z1  = 1, 

can  be  used to obtain upper  bounds  on  

j = C fN(d,.fMW~l, 
8eE 

(111) 

be  fthe bit error probability, average length of time in error events, 
or whatever. 

APPENDIX II 
IMPROVING SNR BY PREEMPHASIS 

Partial-response filters p(D) are finite polynomials with integer- 
valued coefficients. Suppose that it is permissible to pass the input 
sequence through a  filter of this type before transmission over the 
channel.  Then  the received-signal sequence is given by  

Y(D) = X(D)P(D) f (D). (112) 
The input signal power  increases by  a  factor of llpl]2, but the output 
SNR is changed  by a  factor lip(D) f (0)]12/]] f ]I*, which may be  less 
than one.  

In particular, consider the case where 6,. <  11  f l12. Since d,&. =  
min l]&,(O) f (D) ]I’, there is some input error sequence E@) such that 

d2(8) =  d:,,. This will be  a  finite polynomial with integer-valued 
coefficients and  hence  can serve as  our  partial response filter p(D). 
Then  the output SNR will decrease to SNR.o = ux2d,&,/a2. The  
probability of error can  only be  improved, since any  signal error 
sequence &@)p(D) f (D) possible on  this channel  is also possible on  
the original channel,  because all multiples of p(D) f (D) are also 
multiples off(D). Hence by  use  of the preemphasis filter we can make 
the output signal-to-noise ratio equal  to SNR.n and  thus avoid any  
significant degradat ion due  to intersymbol interference. 

For example, the partial response f (D) =  1  + 20  + 0’ has  been  
suggested [2] to obtain a  second-order  null at the upper  Nyquist band  
edge.  Here I] f ]I2 =  6, but for E*(D) =  1  - D, Ilex(D) f (D)l12 = 4. 
The  partial response &JO) f (D) =  1  + D - D* - D3 thus gives an  
improved output SNR as well as  a  null at DC, which will general ly be  
an  additional asset. 

Another striking result is obtained when  the set E,,,,, of error events 
of weight d,$, is finite. Then  there will be  at least one  signal-error 
polynomial EJD) = cx(D) f (D) of weight d,$. that does  not divide 
any  other such polynomial, except  trivially -eJD). Hence if we use 
the corresponding ~~(0) as  a  preemphasis filter, there will be  only two 
error events of weight d,$, on  the new channel,  namely those with 
EJD) = k 1. [This follows as before, from the multiples of cx(D) f (D) 
being a  subset  of the multiples off(D).] Therefore, at moderate-to- 
high signal-to-noise ratios on  the preemphasized channel,  both Pr (e) 
and  Pr (E) are approximated by  

Pr (e) N Pr (E) 2: 2(1 - (l/m))Q[d,,,,,/2~] (113) 
exactly the same as when  intersymbol interference is absent,  down to 
the coefficient K3 = 2(m - 1)/m. 
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Rate-Distortion Theory for Context-Dependent 
Fidelity Criteria 

TOBY BERGER, MEMBER, IEEE, AND WENG c. Yu 

Abstract-A lower bound R,(D) is obtained to the rate-distortion 
function R(D) of a finite-alphabet stationary source with respect to a 
context-dependent iidelity criterion. For equiprobable memoryless sources 
and modular distortion measures, R(D) = R,(D) for all D. It is con- 
jectured that, for a broad class of finite-alphabet sources and context- 
dependent fidelity criteria, there exists a critical distortion D, > 0 such 
that R(D) = R,(D) for D 5 D,. 

The case of a binary source and span-2 distortion measure is treated in 
detail. Among other results a coding theorem is proved that establishes 
that R(0) = log (2/r,), where ra is the golden ratio, (I + &)/2. 

I. INTRODUCTION 

I NFORMATION transmission systems usually are de- 
signed and analyzed with total disregard for the fact 

that the seriousness of transmission errors depends critically 
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upon the context in which they occur. For example, re- 
producing a 3 as a 7 tends to be much more serious in the 
context 368 -+ 768 than in the context 863 + 867. Also, 
it usually is more difficult to detect and correct errors in 
context when several errors occur close tOgether than when 
they are more widely dispersed. The minimum capacity 
necessary to transmit data at a tolerable level of distortion 
often can be reduced appreciably if the system is designed 
with the appropriate context-dependent fidelity criterion in 
mind. 

With a view toward taking context into account, Shannon 
[l] introduced local distortion measures defined as follows. 
Let the information source produce a sequence of symbols 
from an alphabet A, containing M distinct letters. Without 
loss of generality, we hereafter take A, = {O,l, . . . A4 - l}. 
Any function pg: Awe x AN9 + [O,co), where N need not 
necessarily equal M, is called a local distortion measure of 
span g. The number p&y) is the penalty, or distortion, 


