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INTRODUCTION 
The traveling salesman problem (TSP) is one which has commanded much attention 
of mathematicians and computer scientists specifically because it is so easy to 
describe and so difficult to solve. The problem can simply be stated as: if a traveling 
salesman wishes to visit exactly once each of a list of m cities (where the cost of 
traveling from city i to city j is cij ) and then return to the home city, what is the least 
costly route the traveling salesman can take? A complete historical development of 
this and related problems can be found in Hoffman and Wolfe (1985), Applegate et 
al. (2006), and Cook (2011). 

The importance of the TSP is that it is representative of a larger class of problems 
known as combinatorial optimization problems. The TSP problem belongs in the 
class of such problems known as NP-complete. Specifically, if one can find an 
efficient (i.e., polynomial-time) algorithm for the traveling salesman problem, then 
efficient algorithms could be found for all other problems in the NP-complete class. 
To date, however, no one has found a polynomial-time algorithm for the TSP. Does 
that mean that it is impossible to solve any large instances of such problems? To the 
contrary, nowadays many practical optimization problems of truly large scale are 
solved to optimality routinely. From 1992 to 2006 Concorde, a software created by D. 
Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook (Applegate et al. 1995, 2006),  
solved (among many others) a traveling salesman problem which models the 
production of printed circuit boards having 7,397 holes (cities), a problem over the 
13,509 largest cities in the U.S., one over the 24,978 cities of Sweden, and, finally, a 
85,900 city problem arising from a VLSI application. So, although the question of 
what it is that makes a problem “difficult” may remain open, the computational record 
of specific instances of TSP problems coming from practical applications is optimistic.  

How are such problems tackled today? Obviously, one cannot consider a brute force 
approach (for example, for a 16 city traveling salesman problem there are 
653,837,184,000 distinct routes that would need to be evaluated). Rather than 
enumerating all possibilities, successful algorithms for solving the TSP problem have 



been capable of eliminating most of the round-trips without ever explicitly considering 
them.  

 
FORMULATIONS  
The first step to solving instances of large TSPs must be to find a good mathematical 
formulation of the problem. In the case of the traveling salesman problem, the 
mathematical structure is a graph where each city is denoted by a point (or node) and 
lines are drawn connecting every two nodes (called arcs or edges). Associated with 
every line is a distance (or cost). When the salesman can get from every city to every 
other city directly, then the graph is said to be complete. A round-trip of the cities 
corresponds to some subset of the lines, and is called a tour or a Hamiltonian cycle in 
graph theory. The length of a tour is the sum of the lengths of the lines in the round-
trip.  

Depending upon whether or not the direction in which an edge of the graph is 
traversed matters, one distinguishes the asymmetric from the symmetric traveling 
salesman problem. To formulate the asymmetric TSP on m cities, one introduces 
zero-one variables  

 
and, given the fact that every node of the graph must have exactly one edge pointing 
towards it and one pointing away from it, one obtains the classic assignment 
problem. These constraints alone are not enough since this formulation would allow 
“subtours,” that is, it would allow disjoint loops to occur. For this reason, a proper 
formulation of the asymmetric traveling salesman problem must remove these 
subtours from consideration by the addition of “subtour elimination” constraints. The 
problem then becomes  

 
where K is any nonempty proper subset of the cities 1, ..., m. The cost cij is allowed to 
be different from the cost cji . Note that there are m(m − 1) 0-1 variables in this 
formulation.  
To formulate the symmetric traveling salesman problem, one notes that the direction 
traversed is immaterial, so that cij = cji . Since direction does not now matter, one can 



consider the graph where there is only one arc (undirected) between every two 
nodes. Thus, we let xj ∈ {0,1} be the decision variable where j runs through all edges 
E of the undirected graph and cj is the cost of traveling that edge. To find a tour in this 
graph, one must select a subset of edges such that every node is contained in 
exactly two of the edges selected. Thus, the problem can be formulated as a 2-
matching problem in a graph having m(m − 1)/2 0-1 variables, that is, half of the 
number of the previous formulation. As in the asymmetric case, subtours must be 
eliminated through subtour elimination constraints. The problem can therefore be 
formulated as  

 
where J(j) is the set of all undirected edges connected to node j and E(K) is the 
subset of all undirected edges connecting the cities in any proper, nonempty subset 
K of all cities. Of course, the symmetric problem is a special case of the asymmetric 
one, but practical experience has shown that algorithms for the asymmetric problem 
perform, in general, badly on symmetric problems. Thus, the latter need a special 
formulation and solution treatment. In addition, as an ATSP instance can be easily 
turned into a symmetric one with twice the number of nodes, any algorithm for STSP 
can be used to solve an ATSP. 

 
ALGORITHMS 
Exact approaches to solving such problems require algorithms that generate both a 
lower bound and an upper bound on the true minimum value of the problem instance. 
Any round-trip tour that goes through every city exactly once is a feasible solution 
with a given cost that cannot be smaller than the minimum cost tour. Algorithms that 
construct feasible solutions, and thus upper bounds for the optimum value, are called 
heuristics. These solution strategies produce answers but often without any quality 
guarantee as to how far off they may be from the optimal answer. Heuristic 
algorithms that find a feasible solution in a single attempt are called constructive 
heuristics while algorithms that iteratively modify and try to improve some given 
starting solution are called improvement heuristics. When the solution one obtains is 
dependent on the initial starting point of the algorithm, the same algorithm can be 
used multiple times from various (random) starting points.  Often, if one needs a 
solution quickly, one may settle for a well-designed heuristic algorithm that has been 
shown empirically to find “near-optimal” tours to many TSP problems. Research by 
Golden and Stewart (1985), Jünger, Reinelt and Rinaldi (1994), Johnson and 
McGeoch (2002), and Applegate et al. (2006) describes algorithms that find solutions 
to extremely large TSPs (problems with  hundreds of thousands, or even millions of 



variables) to within 1 or 2% of optimality in very reasonable times. The heuristic 
algorithm of Lin and Kernighan appears so far to be the most effective in terms of 
solution quality, in particular with the variant proposed by Helsgaun (2000), which 
was able to find, for the first time, the optimal solution (although without a quality 
guarantee) of several instances of TSPLIB, a well known library of TSP problems 
described in Reinelt (1991). For genetic algorithmic approaches to the TSP, see 
Potvin (1996); for simulated annealing approaches see Aarts, Korst and Laarhoven 
(1988); for neural net approaches, see Potvin (1993); for tabu search approaches, 
see Fiechter (1990); and for a very effective evolutionary algorithm, see Nagata 
(2006). Probabilistic analysis of heuristics are discussed in Karp and Steele (1985); 
performance guarantees for heuristics are given in Johnson and Papadimitriou 
(1985) and Arora (2002), where an amazing result concerning the polynomial-time 
approximability is described for Euclidean TSP instances (where the nodes are points 
in the plane and the traveling costs are the Euclidean distances between the points). 
For an analysis of the heuristics for the ATSP, see Johnson et al. (2002). 

In order to know about the closeness of the upper bound to the optimum value, one 
must also know a lower bound on the optimum value. If the upper and lower bounds 
coincide, a proof of optimality is achieved. If not, a conservative estimate of the true 
relative error of the upper bound is provided by the difference of the upper and the 
lower bound divided by the lower bound. Thus, one needs both upper and lower 
bounding techniques to find provably optimal solutions to hard combinatorial 
problems or even to obtain solutions meeting a quality guarantee.  

So how does one obtain and improve the lower bound? A relaxation of an 
optimization problem is another optimization problem whose set of feasible solutions 
properly contains all feasible solution of the original problem and whose objective 
function value is less than or equal to the true objective function value for points 
feasible to the original problem. Thus we replace the “true” problem by one with a 
larger feasible region but that is more easily solvable. This relaxation is continually 
refined so as to tighten the feasible region so that it more closely represents the true 
problem. The standard technique for obtaining lower bounds on the TSP problem is 
to use a relaxation that is easier to solve than the original problem. These relaxations 
can have either discrete or continuous feasible sets. Several relaxations have been 
considered for the TSP. Among them are the n-path relaxation, the assignment 
relaxation, the 2-matching relaxation, the 1-tree relaxation, and the linear 
programming relaxation. For randomly generated asymmetric TSPs, problems having 
up to 7,500 cities have been solved, in the early '90s, using an assignment relaxation 
which adds subtours within a branch and bound framework and which uses an upper 
bounding heuristic based on subtour patching, (Miller and Pekny, 1991). For the 
symmetric TSP, the 1-tree relaxation and the 2-matching relaxations have been most 
successful. These relaxations have been embedded into a branch-and-bound 
framework.  

The process of finding constraints that are violated by a given relaxation, is called a 
cutting plane technique and all successes for large TSP problems have used cutting 
planes to continuously tighten the formulation of the problem. To obtain a tight 
relaxation the inequalities utilized as cutting planes in many computational 
approaches to the TSP are often facet-defining inequalities.  



One of the simplest classes of cuts that have been shown to define facets of the 
underlying TSP polytope is the subtour elimination cut. Besides these constraints, 
comb inequalities, clique tree inequalities, path, wheelbarrow and bicycle inequalities, 
ladder, crown, domino and many other inequalities have also been shown to define 
facets of this polytope. The underlying theory of facet generation for the symmetric 
traveling salesman problem is provided in Grötschel and Padberg (1985), Jünger, 
Reinelt and Rinaldi (1994) and Naddef (2002); analogous results for the ATSP 
polytope are provided in Balas and Fischetti (2002). The algorithmic descriptions of 
how these inequalities are used in cutting plane approaches are discussed in 
Padberg and Rinaldi (1991), in Jünger, Reinelt and Rinaldi (1994), and in Applegate 
et al. (2006) where it is also shown how the polynomial-time equivalence between 
optimization and separation can be turned into a powerful algorithmic tool to generate 
inequalities not necessarily belonging to one of the known types. 

Cutting plane procedures can then be embedded into a tree search in an algorithmic 
framework referred to as branch and cut and proposed in Padberg and Rinaldi (1991) 
where it is shown how such approach made it possible to solve some still unsolved 
instances of sizes up to 2,392 nodes. Some of the largest TSP problems solved have 
used parallel processing to assist in the search for optimality. This is the case of the 
software Concorde where all the know algorithmic ideas for the TSP (and many new 
ones) have been carefully implemented. With this code Applegate et al. (2006) 
managed to solve all problems of the TSPLIB to optimality; for the largest one, of 
85,900 nodes, they used 96 workstations for a total of 139 years of CPU time. 

As our understanding of the underlying mathematical structure of the TSP problem 
improves, and with the continuing advancement in computer technology, it is likely 
that many difficult and important combinatorial optimization problems will be solved 
using a combination of cutting plane generation procedures, heuristics, variable fixing 
through logical implications and reduced costs, and tree search.  

 
APPLICATIONS  
One might ask, however, whether the TSP problem is important enough to have 
received all of the attention it has. Much of the attention that the problem has 
received is because it is a relatively simple problem to describe and yet a difficult 
(from a complexity viewpoint) optimization problem to solve. However, there are 
important cases of practical problems that can be formulated as TSP problems and 
many other problems are generalizations of this problem. Besides the drilling of 
printed circuits boards described above, problems having the TSP structure occur in 
the analysis of the structure of crystals (Bland and Shallcross, 1987), in the 
overhauling of gas turbine engines (Pante, Lowe and Chandrasekaran, 1987), in 
material handling in a warehouse (Ratliff and Rosenthal, 1981), in cutting stock 
problems (Garfinkel, 1977), in the clustering of data arrays (Lenstra and Rinooy Kan, 
1975), in the sequencing of jobs on a single machine (Gilmore and Gomory, 1964), in 
the assignment of routes for planes of a specified fleet (Boland, Jones, and 
Nemhauser, 1994) and in genome sequencing (Ben-Dor and Chor, 1997; Ben-Dor, 
Chor, and Pelleg, 2000). Related variations on the traveling salesman problem 



include the resource constrained traveling salesman problem which has applications 
in scheduling with an aggregate deadline (Pekny and Miller, 1991). This paper also 
shows how the prize collecting traveling salesman problem (Balas, 2002) and the 
orienteering problem (Golden, Levy and Vohra, 1987; Fischetti, Salazar and Toth, 
2002) are special cases of the resource constrained TSP. Most importantly, the 
traveling salesman problem often comes up as a subproblem in more complex 
combinatorial problems, the best known and important one of which is the vehicle 
routing problem. This is the problem of determining for a fleet of vehicles which 
customers should be served by each vehicle and in what order each vehicle should 
visit the customers assigned to it. For relevant surveys, see Christofides (1985), 
Fisher (1987), and the book The Vehicle Routing Problem, edited by Toth and Vigo 
(2001).  

For the interested reader seeking more information on this important problem, we 
suggest the seminal paper on the problem by Dantzig, Fulkerson and Johnson 
(1954), the books by Lawler, Lenstra, Rinnooy Kan and Shmoys (1985), by Reinelt 
(1994) and by Gutin and Punnen (2002), and the survey and the annotated 
bibliography by Jünger, Reinelt and Rinaldi (1994, 1997), which summarize most of 
the research up through 2002 and provide extensive references. For a deep 
understanding of how algorithms for TSP work, we recommend the book by 
Applegate et al (2006). Besides providing a wide overview on TSP history and on its 
applications, the volume gives a detailed description of how all components of the 
Concorde software are built: a most valuable source for algorithm designers. Finally, 
for a more general audience we recommend the book by Cook (2011) which requires 
almost no mathematical background to read, but very nicely and completely 
describes the TSP from several interesting view points. The computer program 
Concorde, the TSPLIB and many other sources of information on the TSP are 
available electronically at a web site that can be easily located through web search. 

See Assignment problem; Branch and bound; Branch and cut; Chinese 
postman; Combinatorics; Combinatorial and integer optimization; 
Computational complexity; Graph theory; Heuristics; Linear programming; 
Networks.  

 

References  

[1]. Aarts, E.H.L., Korst, J.H.M., and Laarhoven, P.J.M. (1988). “A Quantitative 
Analysis of the Simulated Annealing Algorithm: A Case Study for the 
Traveling Salesman Problem,” Jl. Stats. Phys. 50, 189–206  

  
[2]. Applegate, D., Bixby, R.E., Chvátal, V., and Cook, W. (1995). “Finding cuts in 

the TSP(A preliminary report) DIMACS Technical Report 95-05, Rutgers 
University, New Brunswick, USA. 

   

[3]. Applegate, D., Bixby, R.E., Chvátal, V., and Cook, W. (2006). The Traveling 
Salesman Problem: A Computational Study, Princeton University Press, 



Princeton, USA. 
  
[4] Arora, S. (2002). “Approximation Algorithms for Geometric TSP,“ in Gutin, G. 

and A.P. Punnen, eds., The Traveling Salesman Problem and its Variations, 
Kluwer, The Netherlands, 207-222. 

  
[5]. Balas, E. (2002). “The Prize Collecting Traveling Salesman Problem and its 

Applications,” in Gutin, G. and A.P. Punnen, eds., The Traveling Salesman 
Problem and its Variations, Kluwer, The Netherlands, 663-696. 

   

[6] Balas, E. and M. Fischetti (2002). “Polyhedral Theory for the Asymmetric 
Traveling Salesman Problem,“ in Gutin, G. and A.P. Punnen, eds., The 
Traveling Salesman Problem and its Variations, Kluwer, The Netherlands, 
117-168. 

  

[7] Ben-Dor, A. and B. Chor (1997). “On Constructing Radiation Hybrid Maps,“ 
Journal of Computational Biology 4, 517-533. 

  

[8] Ben-Dor, A., B. Chor and D. Pelleg (2000). “RHO-Radiation Hybrid Ordering,“ 
Genome Research 10, 365-378. 

  

[9]. Bland, R.E. and Shallcross, D.F. (1987). “Large Traveling Salesman Problem 
Arising from Experiments in X-ray Crystallography: a Preliminary Report on 
Computation,” Technical Report No. 730, School of OR/ IE, Cornell 
University, Ithaca, New York.  

   

[10]. Burkard, R.E., Deineko, V.G., van Dal, R., van der Veen, J.A.A., and 
Woeginger, G.J. (1998). “Well-Solvable Cases of the Traveling Salesman 
Problem: A Survey,” SIAM Review 40, 496–546. 

   

[11]. Cook, W. (2011). In Pursuit of the Salesman: Mathematics at the Limits of 
Computation, Princeton University Press, Princeton, USA. 

   

[12]. Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M. (1954). “Solution of a 
Large-scale Traveling Salesman Problem,” Operations Research 2, 393–410. 

   

[13]. Fiechter, C.N. (1990). “A Parallel Tabu Search Algorithm for Large Scale 
Traveling Salesman Problems,” Working Paper 90/1, Department of 
Mathematics, Ecole Polytechnique Federale de Lausanne, Switzerland.  

   

[14]. Fisher, M.L. (1988). “Lagrangian Optimization Algorithms for Vehicle Routing 
Problems,” Operational Research '87, G.K. Rand, ed., 635–649.  

   

[15]. Golden, B.L., Levy, L., and Vohra, R. (1987). “The Orienteering Problem,” 
Naval Research Logistics 34, 307–318. 

   



[16]. Golden, B.L. and Stewart, W.R. (1985). “Empirical Analysis of Heuristics,” in 
The Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy 
Kan, and D.B. Shmoys, eds., John Wiley, 207–250.  

   

[17]. Grötschel, M. and Holland, O. (1991). “Solution of Large Scale Symmetric 
Traveling Salesman Problems,” Mathematical Programming 51, 141–202. 

   

[18]. Grötschel, M. and Padberg, M.W. (1985). “Polyhedral Theory,” in The 
Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, 
and D.B. Shmoys, eds., John Wiley, 251–306.  

   

[19]. Gutin, G. and A.P. Punnen, eds. (2002). The Traveling Salesman Problem 
and its Variations, Kluwer, The Netherlands. 

  

[20] Helsgun, K. (2000). “An Effective Implementation of the Lin-Kernighan 
Traveling Salesman Heuristic,“ European Journal of Operational Research 
126, 106-130. 

  

[21]. Hoffman, A.J. and Wolfe, P. (1985). “History” in The Traveling Salesman 
Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan, and D.B. Shmoys, 
eds., John Wiley, 1–16.  

  
[22]. Johnson, D.S. and Papadimitriou, C.H. (1985). “Performance Guarantees for 

Heuristics,” in The Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, 
A.H.G. Rinooy Kan, and D.B. Shmoys, eds., John Wiley, 145–180.  

   

[23]. Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W. and Zverovitch, 
A. (2002). “ Experimental Analysis of Heuristics for the ATSP“, in Gutin, G. 
and A.P. Punnen, eds., The Traveling Salesman Problem and its Variations, 
Kluwer, The Netherlands, 485-488. 

  

[24]. Johnson, D.S. and L.A. McGeoch (2002). “Experimental Analysis of 
Heuristics for the STSP“, in Gutin, G. and A.P. Punnen, eds., The Traveling 
Salesman Problem and its Variations, Kluwer, The Netherlands, 369-444. 

  

[25]. Jünger, M., Reinelt, G., and Rinaldi, G. (1994). “The Traveling Salesman 
Problem,” in M. Ball, T. Magnanti, C. Monma and G. Nemhauser, eds., 
Handbook on Operations Research and the Management Sciences, North 
Holland, 225–330.  

   

[26]. 
Jünger, M., Reinelt, G., and Rinaldi, G. (1997). “The Traveling Salesman 
Problem,” in M. Dell'Amico, F. Maffioli, and S. Martello, eds., Annotated 
Bibliographies in Combinatorial Optimization, Wiley, New York, 199-221. 

  

[27]. Karp, R. and Steele, J.M. (1985). “Probabilistic Analysis of Heuristics,” in The 
Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, 
and D.B. Shmoys, eds., John Wiley, 181–205.  



   

[28]. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., and Shmoys, D.B., eds. 
(1985). The Traveling Salesman Problem, John Wiley, Chichester, UK.  

   

[29]. Miller, D. and Pekny, J. (1991). “Exact Solution of Large Asymmetric 
Traveling Salesman Problems,” Science 251, 754–761. 

   

[30]. Nagata, Y. (2006). “New EAX Crossover for Large TSP Instances,“ LNCS 
4193, 372-381. 

  

[31] Naddef, D. (2002). “Polyhedral Theory and Branch-and-Cut Algorithm for the 
Symmetric TSP“, in Gutin, G. and A.P. Punnen, eds., The Traveling 
Salesman Problem and its Variations, Kluwer, The Netherlands, 21-116. 

  

[32]. Padberg, M.W. and Grötschel, M. (1985). “Polyhedral Computations,” in The 
Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinooy Kan 
and D.B. Shmoys, eds., John Wiley, 307–360.  

   

[33]. Padberg, M.W. and Rinaldi, G. (1991). “A Branch and Cut Algorithm for the 
Resolution of Large-scale Symmetric Traveling Salesmen Problems,” SIAM 
Review 33, 60–100. 

   

[34]. Potvin, J.V. (1993). “The Traveling Salesman Problem: A Neural Network 
Perspective,” INFORMS Jl. Computing 5, 328–348. 

   

[35]. Potvin, J.V. (1996). “Genetic Algorithms for the Traveling Salesman 
Problem,” Annals of Operations Research 63, 339–370. 

   

[36]. Ratliff, H.D. and Rosenthal, A.S. (1981). “Order-Picking in a Rectangular 
Warehouse: A Solvable Case for the Traveling Salesman Problem,” PDRC 
Report Series No. 81-10. Georgia Institute of Technology, Atlanta, Georgia.  

   

[37]. Reinelt, G. (1991). “TSPLIB–A traveling salesman library,” ORSA Jl. 
Computing 3, 376–384. 

   

[38]. Reinelt, G. (1994). The Traveling Salesman: Computational Solutions for TSP 
Applications, Springer-Verlag, Berlin.  

  

[39]. Toth, P. and Vigo, D. (2001). The Vehicle Routing Problem, SIAM, 
Philadelphia, USA. 

  
 


