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Abstract: Data transmission has always been vulnerable to eavesdropping. Conventional
cryptography has provided security in data communication, however it has some
limitations when dealing with passive eavesdropping. Recently, the quantum mechanics
has made a remarkable entry in the field of data communication. Now, it is possible to
construct cryptographic communication systems which detect unauthorized
eavesdropping and guarantee its prevention. Several protocols have been devised to
implement such systems e.g., BB84, B92 and EPR. The famous BB84 protocol describes
quantum encryption in terms of polarization states of a photon. The secret information
is transmitted via secure quantum channel followed by a public conversation for
verification and reconciliation. The B92 protocol is an extension of BB84 which shows
how photons with non-orthogonal states can be used to distribute a secret key. The
EPR protocol utilizes an entangled photon pair for encryption—one photon from this pair
is transmitted towards the destination while keeping the other at the source; the
destination photon describes the state of the source photon, failing to which confirms
the intrusion. This paper presents a study of these protocols and a review on the
recent developments in the field of secure quantum transmission.
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Introduction
Secure transmission of information is a subject under discussion since ancient times.

Especially in military applications, its importance is well-known. With the proliferation on internet
and electronic mail, the importance of achieving secrecy in communications by
cryptography—the art of using coded messages—is growing each day. Amazingly, quantum
mechanics has now provided the foundation stone to a new approach to data encryption. It has
been claimed that quantum encryption can solve many issues in data communication that are
infeasible from the prospective of conventional cryptography.

Quantum mechanics, since introduced, has provided us with some very interesting concepts.
The classical approach views the world as deterministic, where behavior of particles and systems
is well defined. But now it is shown to be actually composed of a collection of particles whose
behavior is probabilistic. In addition, we can actually never know the true state of a particle
since measurement of one aspect of the state may perturb the value of other aspects of the
state. This perturbation affect is known as the Heisenberg uncertainty principle and is the basis
of some of the security issues presented by quantum communication systems.
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Here we discuss some practical aspects behind the power of quantum cryptography. We will
also explore some well-known protocols that describe the efficient use of quantum mechanics
for secure data transmission. Finally, we will give some thoughts for the future. 

Basics of quantum cryptography
Quantum mechanics describes a very basic phenomenon that relates with the polarization

state of a single photon. Suppose a photon has four possible polarizations namely horizontal,
vertical, 45 degrees and 135 degrees. We cannot distinguish between these four possibilities with
certainty. This concept provides the foundation for the quantum encryption. We will consider
the basic properties of quantum mechanics to understand this concept. First, there is a physical
law in quantum mechanics known as the quantum ‘no-cloning’ theorem which states that an
unknown quantum state cannot be cloned. Second, given a quantum system prepared in one of
two prescribed non-orthogonal states, any attempt to distinguish between the two possibilities
necessarily leads to disturbance. Third, a measurement on an arbitrary unknown quantum state
is an irreversible process which introduces disturbance to the state. These three properties
negate the possibility of passive monitoring of quantum signals. Therefore, eavesdropping on
quantum channels necessarily disturbs the signal and is exceedingly likely to be detected. These
properties are discussed in more detail.

Quantum no-cloning theorem
This theorem states that an unknown quantum state cannot be copied. The proof for this

theorem is taken from (Hoi-Kwong, 1997). We will show by contradiction. Suppose a quantum
Xerox machine exists and can copy an unknown state (Fig. 1). Considering the unitary evolution
of the composite system with two orthogonal states |0, and |1,, respectively as the input, one
finds that

|0, q |u, 6 |0, q |0, q |v , (1)0

and
|1, q |u, 6 |1, q |1, q |v , (2) 1

Fig. 1: A Xerox machine outputs a duplicate along with the original input
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Where |u, is the initial state of the Xerox machine, |v , and |v , are the final states of the system0   1

excluding the original and the duplicate. |v , and |v , may be non-orthogonal. Now suppose that0   1

the input is, in fact, a linear superposition a|0, + b|1, (a, b Ö 0) of the two orthogonal states.
Then by the linearity of quantum mechanics, one obtains from Eqs. (1) and (2) that

(a|0, + b|1, ) q |u, 6 a|0, q |0, q |v , + b|1, q |1, q |v , (3)0       1

Notice that the state of the original is now entangled with the duplicate. However, for quantum
cloning the resulting state should be a direct product

(a|0, + b|1, ) q ( a|0, + b|1, ) q |vN, (4)

Instead. Since

a|0, q |0, q |v , + b|1, q |1, q |v , Ö ( a|0, + b|1, ) q ( a|0, + b|1, ) q |vN, (5)0       1

whenever a, b Ö 0, one concludes that an unknown quantum state cannot be cloned.

Information gain implies disturbance
Another unusual property of quantum mechanics is that, in any attempt to distinguish

between two non-orthogonal states, information gain is possible only at the expense of
introducing disturbance to the signal. A proof is taken from (Hoi-Kwong, 1997) and goes as follow:
Suppose we have a particle in one of two possible non-orthogonal states |N, and |4,. Also
suppose that there is a quantum system in an initial prescribed state |u,. Assuming that the
evolution leaves the state of the particle unchanged, we finds that

|N, q |u, 6 |N, q |v, (6)
and

|4, q |u, 6 |4, q |vN, (7)

where |v, and |vN, denote the final states of the quantum system in the two situations. Since the
inner product is preserved by unitary transformations, we can take the inner product between
the above two equations and finds that

( +u| q+N| )( |4, q |u, ) = ( +v| q +N| )( |4, q |vN, ) +u|u, • +N|4, = +v|vN, • +N|4, 1 = +v|vN, (8)

where Eq.(8) follows from the fact that +N|4, Ö 0 for non-orthogonal states. Therefore, we
conclude that |v, is the same as |vN,. In other words, a process that does not cause disturbance
to any two non-orthogonal states can pull out no information while distinguishing between the
two states. Thus, information gain in distinguishing between two non-orthogonal states is possible
only at the expense of disturbing the state of the system.
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Irreversibility of measurements 
The theorem of section 2.2 unleashes another aspect of quantum mechanics. We might think

that we make a measurement and copies the result of that measurement. But this is not possible
because the measurement will disturb the state of the signal. Consequently, the result of a
measurement is different from the initial state and copying will be unfaithful. To understand this
point, we will consider a photon in one of its four possible polarizations. A birefringent calcite
crystal can be used to detect and distinguish with certainty between horizontally and vertically
polarized photons. If a horizontally polarized beam of light is passed through this crystal, then
the photons pass straight through it. On the other hand, if we pass a vertically polarized beam
of light, then the photons are deflected to a new path. This fact is shown in Fig. 2(a) and Fig.
2(b). Photons originally in these two polarizations are, therefore, deterministically routed.
However, a beam of light polarized at some other direction experiences a different behavior.
According to the law of quantum mechanics, the photons with such polarization will have some
probability of going into either beam Fig. 2(c). A photon will then be repolarized according to
which beam it goes into and permanently forget its original polarization. For instance, a
diagonally (i.e., 45-degree or 135-degree) polarized photon is equally likely to go into either
beam, revealing nothing about its original polarization.

Fig. 2: A calcite crystal is used to distinguish between horizontal and vertical photons
(a) Horizontally polarized photons pass straight through
(b) Vertically polarized photons are deflected to a new path
© Diagonally polarized photons will have equal probability of coming our vertically or

horizontally polarized

We can setup an apparatus to distinguish rectilinear (horizontal or vertical) photons by
adding two detectors, such as photo multiplier tubes that can record single photons along the
two paths, to the calcite crystal. By using this apparatus, an observer can reliably distinguish
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between the two possibilities. This set up will, however, randomize the polarizations of diagonal
(45- or 135-degree) photons, thus failing to distinguish between the two possibilities. In order to
distinguish between diagonal photons, one should rotate the whole apparatus (calcite crystal
and detectors) by 45 degrees. The rotated apparatus is, however, powerless in distinguishing
between vertical and horizontal photons.

We can conclude from the above discussion that for a photon in one of the four
polarizations (horizontal, vertical, 45-degree and 135-degree), a process of measure-and-copy will
disturb the signal and fail to distinguish between the four possibilities. A measurement that
distinguishes rectilinear photons will disturb diagonal photons. Similarly, a measurement that
distinguishes diagonal photons will disturb rectilinear photons. This fundamental limitation in
distinguishing between non-orthogonal states is due to the basic principles of quantum
mechanics and thus it applies only to the particular measuring apparatus described here, but
also to any measuring apparatus.

The BB84 quantum cryptographic protocol
BB84 protocol was proposed by Bennett and Brassard (1984). It is the first well known

quantum cryptographic protocol. This protocol has been experimentally demonstrated to work
for a transmission over 30 km of fiber optic cable (Phoenix, 1995) (Townsend, 1994) (Townsend
and Thompson, 1994) (Townsend et al., 1993) and also over free space for a distance of over one
hundred meters (Jacobs, 1996 and Franson, 1994). Experiments for ground to satellite
communication are also underway. It is speculated, but not yet experimentally verified, that the
BB84 protocol should be implement able over distances of at least 100 km. 

We now describe the BB84 protocol in terms of the polarization states of a single photon.
A detailed description of this protocol is given in (Samuel, 1998). Fig. 3 illustrates the steps taken
in this protocol.

Let H be the two dimensional Hilbert space whose elements represent the polarization
states of a single photon. We can make use of two different orthogonal bases of H, namely
circular polarization basis and linear polarization basis. The circular polarization basis consists of
the kets |  , and |  , for right and left circular polarization states, respectively. The linear
polarization basis consists of the kets |;, and |:, for vertical and horizontal linear polarization
states, respectively. 

The BB84 protocol utilizes any two incompatible orthogonal quantum alphabets in the Hilbert
space H. Let Au be the circular polarization quantum alphabet and Ar be the linear polarization
quantum alphabet, as shown in Table 1 and Table 2, respectively.

Table 1: Circular Polarization Quantum Alphabet Au

Symbol Bit 

|  , 1 
|  , 0 
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Table 2: Linear Polarization Quantum Alphabet Ar

Symbol Bit 

|;, 1 
|:, 0 

Let us suppose that a key exchange is going to take place between two parties namely Ali
and Omar and this communication is threatened by Khan—an eavesdropper.  To assure the
detection of Khan’s eavesdropping, Bennett and Brassard require Ali and Omer to communicate
in two steps, the first step over a one way quantum communication channel from Ali to Omer,
the second step over a two way public communication channel. 

Fig. 3: Steps in BB84 protocol

Communication over a quantum channel 
Ali randomly selects, each time he sends a bit, one of the two orthogonal alphabets Au or

Ar with equal probability. Since no measurement operator of Au is compatible with any
measurement operator of Ar, it follows from the Heisenberg uncertainty principle that no one,
not even Omer or Khan, can receive Ali’s transmission with an accuracy of greater than 75%, i.e.
the minimum error rate is ¼. 

With the knowledge put forward in section 2.3, a measurement that distinguishes linear
photons will disturb circular photons. Similarly, a measurement that distinguishes circular
photons will disturb linear photons. This shows that A and Ar are incompatible and because of_ 

this incompatibility, there is no simultaneous measurement operator for both Au and Ar. Since
one has no knowledge of Ali’s secret choice of quantum alphabet, 50% of the time (i.e., with
probability ½) one will guess correctly, i.e., choose a measurement operator compatible with
Ali’s choice and 50% of the time (i.e., with probability ½) one will guess incorrectly. A correct
guess means Ali’s transmitted bit is received with probability 1. On the other hand, an incorrect
guess means Ali’s transmitted bit is received correctly with probability ½. Thus in general, the
probability of correctly receiving Ali’s transmitted bit is 
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P = ½ • 1 + ½ • ½ = ¾

Let 8 be the probability of Khan’s eavesdropping, 0 # 8 # 1. Therefore, if Khan is not
eavesdropping, then the probability will be 1 - 8. Thus, if 8 = 1, Khan is eavesdropping on each
transmitted bit and if 8 = 0, Khan is not eavesdropping at all. 

As discussed earlier, both Omer and Khan have no knowledge of Ali’s choice of alphabet.
Also, the measurement operators they choose are stochastically independent of each other.
Therefore Khan’s eavesdropping has an immediate and detectable impact on Omer’s received
bits. Khan’s eavesdropping causes Omer’s error rate to jump from ¼ to ¼ (1 - 8) + (3/8)8 = ¼ +
8/8 

Thus, if Khan eavesdrops on every bit, i.e., if 8 = 1, then Omer’s error rate jumps from ¼ to
3/8, a 50% increase. 

Communication over a public channel
Ali and Omer communicate in two phases over a public channel to check for Khan’s

presence by analyzing Omer’s error rate. 

Extraction of raw key
This step is dedicated to eliminating the bit locations (and hence the bits at these locations)

at which error could have occurred without Khan’s eavesdropping (Fig. 4). Omer publicly
communicates to Ali which measurement operators (not the results) he used for each of the
received bits. Ali then in turn publicly communicates to Omer to tell him which of his
measurement operator choices were correct. After this two way communication, Ali and Omer
delete the bits corresponding to the incompatible measurement choices for which they can
start over again later to communicate these bits securely. The sequence of bits obtained after
deletion is known as the raw key. Both Ali and Omer have their own raw key which may differ
with each other. 

Fig. 4: Determination of Key using BB84 protocol
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If there is no intrusion, then Ali’s and Omer’s raw keys will be in total agreement. However,
if Khan has been at work, then corresponding bits of Ali’s and Omer’s raw keys will not agree
with probability 

0 • ( 1 - 8 ) + ¼ • 8 = 8/4

Detection of external intrusion via error detection
This step is dedicated to check for external intrusion e.g., Khan’s presence. Ali and Omer

select a publicly agreed upon random subset of m bit locations in the raw key and publicly
compare corresponding bits, making sure to discard from raw key each bit as it is revealed. In
the absence of noise, if a comparison reveals an inconsistency, then Khan’s eavesdropping has
been detected, in which case Ali and Omer return to step 1 and start over. On the other hand,
if no inconsistencies are uncovered, then the probability that Khan escapes detection is: 

P  = ( 1 -  8/4 )false
m

For example, if 8 = 1 and m = 200, then 

P  = ( ¾ ) . 10false
200  -25

Thus, if P  is sufficiently small, Ali and Omer agree that Khan has not eavesdropped andfalse

accordingly adopt the remnant raw key as their final secret key. 

The B92 quantum cryptographic protocol
The B92 protocol was proposed by Bennett (1992). Like BB84 protocol, this protocol can be

described in terms of any quantum system represented by a two dimensional Hilbert space. As
described in (Samuel, 1998); we choose the two dimensional Hilbert space H representing the
polarization states of a single photon. 

B92 can be implemented in terms of any non-orthogonal basis. Let |N, and |n, be the kets
representing the polarization state of a photon linearly polarized at an angle N and an angle n,
respectively, with respect to the vertical, where 0 # N # B/4. 
Unlike BB84 which requires two orthogonal quantum alphabets, B92 requires only a single non-
orthogonal quantum alphabet. We choose the non-orthogonal quantum alphabet A , as describedN

in Table 3.

Table 3: Linear polarization quantum alphabet AN

Symbol Bit 

|N, 1
|n, 0
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As in BB84, Ali and Omer communicate in two steps, the first over a one way quantum
channel, the second over a two way public channel. 

Communication over a quantum channel
Ali generates a random sequence of photons using the quantum alphabet A  and sends it toN

Omer. Since |N, and |n, are not orthogonal, there are many experiments that unambiguously
distinguish between these two polarization states. Thus, Omer can use one of many possible
measurement strategies. Bennett (1992) suggests the measurements be based on the two
incompatible experiments corresponding to the projection operators 

P  = 1 - |N, +N| and P  = 1 - |n, +n|not N       not n

In this case, Omer either correctly detects Ali’s transmitted bit, or an ambiguous result, i.e.,
an erasure, denoted by “?”. Assuming that Ali transmits 0’s and 1’s at random with equal
probability and that, for each incoming bit, Omer at random with equal probability chooses to
base his experiment on either of the incompatible operators P  or P , then the probabilitynot N  not n

of Omer’s correctly receiving Ali’s transmission is 

( 1 - || + N | n , || ) / 22  

and the probability of receiving an erasure is 

( 1 + || + N | n , ||   ) / 22

where 

|| + N | n , || = cos (2N)

and where 0 < N < B/4. Thus, Omer receives more than 50% erasures. 
On the other hand  Ekert (1994) suggest a more efficient measurement process for Omer.

They suggest that Omer base his experiments on the positive operator valued measure (POVM)
(Busch, 1991) (Peres, 1993) consisting of the operators 

A  = ( P  ) / ( 1 + || + N | n , || ), A  = ( P  ) / ( 1 + || + N | n , || ) and A  = 1 - A  - A   N   not N              n   not n               ?    N  n

With this more efficient detection method, the probability of an inconclusive result is now 

|| + N | n , || = cos (2N)

where again 0 < N < B/4
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Communication over a public channel
Omer publicly informs Ali as to which time slots he received non erasures. The bits in these

time slots become Ali’s and Omer’s raw keys. Khan’s presence is detected by an unusual error
rate in Omer’s raw key. It is also possible to detect Khan’s presence by an unusual erasure rate
for Omer. 

However, Ekert (1994) do point out that Khan can choose eavesdropping strategies which
have no effect on the erasure rate and hence, can only be detected by unusual error rates in
Omer’s raw key.

EPR quantum cryptographic protocols
Ekert (1991) has devised a quantum protocol based on the properties of quantum correlated

particles. 
Einstein, Podolsky and Rosen (EPR) in their famous 1935 paper (Einstein, 1935) point out an

interesting phenomenon in quantum mechanics. According to their theory, the EPR effect
occurs when a pair of quantum mechanically correlated photons, called the entangled photons,
is emitted from a source. The entanglement may arise out of conservation of angular momentum.
As a result, each photon is in an undefined polarization. Yet, the two photons always give
opposite polarizations when measured along the same basis. Since EPR pairs can be pairs of
particles separated at great distances, this leads to what appears to be a paradoxical “action at
a distance”. 

For example, it is possible to create a pair of photons (each of which we label below with
the subscripts 1 and 2, respectively) with correlated linear polarizations. An example of such an
entangled state is given by 

|S , = 1/v2 ( |0,  |B/2,  - |B/2,  |0,  )0     1 2  1 2

Thus, if one photon is measured to be in the vertical linear polarization state |0,, the other,
when measured, will be found to be in the horizontal linear polarization state |B/2, and vice
versa. 

Einstein (1935) then state that such quantum correlation phenomena could be a strong
indication that quantum mechanics is incomplete and that there exist “hidden variables”,
inaccessible to experiments, which explain such “action at a distance”. 

Bell (1964) gave a means for actually testing for locally hidden variable (LHV) theories. He
proved that all such LHV theories must satisfy the Bell inequality. Quantum mechanics has been
shown to violate the inequality. 

The EPR quantum protocol is a 3Sstate protocol that uses Bell’s inequality to detect the
presence or absence of Khan as a hidden variable. We now describe a simplified version of this
protocol in terms of the polarization states of an EPR photon pair. 

As with the BB84 and B92, there are two steps to the EPR protocol, the first step over a
quantum channel, the second over a public channel. 
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Communication over a quantum channel
An EPR pair is created at the source. One photon of the constructed EPR pair is sent to Ali,

the other to Omer. Ali and Omer at random with equal probability separately and independently
measure their respective photons. Ali records his measured bit. On the other hand, Omer
records the complement of his measured bit. This procedure is repeated for as many EPR pairs
as needed. 

Communication over a public channel
Ali and Omer communicate over a public channel. 

Separation of key into raw and rejected keys
Ali and Omer carry on a discussion over a public channel to determine the correct bases

they used for measurement. They each then separate their respective bit sequences into two
subsequences. One subsequence, called raw key, consists of those bits at which they used the
same basis for measurement. The other subsequence, called rejected key, consists of all the
remaining bits. 

Detection of Khan’s presence with Bell’s inequality applied to rejected key
Unlike the BB84 and B92 protocols, the EPR protocol, instead of discarding rejected key,

actually uses it to detect Khan’s presence. Ali and Omer now carry on a discussion over a public
channel comparing their respective rejected keys to determine whether or not Bell’s inequality
is satisfied. If it is, Khan’s presence is detected. If not, then Khan is absent. 

Quantum mechanics will have a dramatic impact on cryptographic communication systems.
It is now within the realm of possibility to build practical cryptographic systems which check for,
detect and prevent unauthorized intrusion. Quantum mechanics provides an intrusion detection
mechanism never thought possible within the world of classical cryptography. Most importantly,
the feasibility of these methods has been experimentally verified in a laboratory setting. 

Much remains to be done before quantum cryptography is a truly practical and useful tool
for cryptographic communication. We list below some of the areas in need of development: 

! Quantum protocols need to be extended to a computer network setting. 
! There is a need for greater understanding of intrusion detection in the presence of noise.

The no cloning theorem and the “no detection implies no information” theorem simply do
not provide a complete picture. (Ekert, 1994). 

! There is a need for better intrusion detection algorithms. All quantum intrusion detection
algorithms in the open literature depend on some assumption as to which eavesdropping
strategy is chosen by Khan. It is important that eavesdropping algorithms be developed that
detect Khan’s intrusion no matter which eavesdropping strategy he uses. 

It would be interesting to see if the quantum error correction can be used in practice to
increase the range of quantum key distribution from the state-of-the-art tens of km to a
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futuristic range of thousands of km. This would be an important milestone in the feasibility study
of a practical quantum key distribution system.
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