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ABSTRACT
In various adaptive array applications, the directions of ar-
rival (DOAs) of the desired user signal are sparsely sepa-
rated. As such, the desired beam-pattern has a sparse struc-
ture. We propose an NLMS based adaptive algorithm which
exploits this sparse DOA structure and provides significantly
improved convergence and tracking capabilities.

1. INTRODUCTION

The performance of an adaptive array is commonly measured
by its steady state error (under time invariant conditions),
convergence speed, tracking speed, computational cost, as
well as its stability. The least mean square LMS, or its nor-
malised equivalent NLMS algorithm, is the most commonly
used algorithm for adaptation [1, 2]. This is due to its rela-
tively low computational cost and very good stability prop-
erties. However, its main drawback is its relatively slow con-
vergence and tracking speeds when the adaptive filter length
is ‘large’ [2, 3]. In communications-based adaptive array ap-
plications this may occur, for example, with densely popu-
lated cellular communications cells, where long arrays are
required to produce highly directional beam-patterns.

An approach to combat this ‘parameter dimension’ effect
(within any adaptive application), is to incorporate dimen-
sion reduction techniques within the adaptive LMS/NLMS
algorithm. This may be realised in a number of ways, de-
pending on the characteristics of the system/channel being
estimated or equalised. In the case of communications-based
adaptive arrays, such as in cellular or WLAN applications,
the spatial channel is often characterised by having a ‘sparse’
structure. That is, the desired user signal typically has only
a small number of sparsely separated directions of arrival
(desired-DOAs). Accordingly, a possible approach to dimen-
sion reduction involves transforming the adaptive system into
the spatial or DOA domain and subsequently adaptively esti-
mating only the dominant or ‘active’ desired-DOAs. In this
paper we follow this approach. The key idea is the use of
a criterion for accurately detecting the active desired-DOAs.
Following the work of Homer et. al. [4, 5, 6], we propose
an activity criterion which is based on the minimisation of
a structurally consistent least squares (SC-LS) cost function.
Ultimately, we propose an NLMS based adaptive array al-
gorithm which, for DOA sparse communications channels,
demonstrates significantly higher convergence and tracking
speeds than the standard NLMS algorithm. Furthermore, this

is achieved with only a moderate increase in computational
cost and without compromising the (time-invariant channel)
steady state error. Note, in this paper we assume the commu-
nication temporal channel is a (zero delay) non-time disper-
sive channel. Accordingly, we consider only adaptive arrays
with a complex valued scalar weight applied to each array
element, as illustrated in Figure 1.
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Figure 1: N− element adaptive array.

This paper is organised as follows. The next section
introduces notation and describes the standard NLMS al-
gorithms operating in the array-weight and array-DOA do-
mains. Section 3 uses the notion of a structurally consistent
least squares cost function to derive an activity measure in
the DOA domain. Section 4 describes the implementation
of the algorithm. Section 5 presents some simulation results
and we conclude in Section 6.

2. PRELIMINARIES

The configuration we consider throughout this paper is
shown in Figure 1. We consider an N element uniformly
spaced linear array. For notational simplicity, we assume
only a 2-dimensional spatial system. That is, all the re-
ceived user signals (desired and interfering) lie in the same



2-dimensional plane, and that the linear adaptive array lies
within this plane. We assume: the uniform antenna element
spacing is d ≤ l/2 where l is the wavelength of the narrow-
band transmitted user signals; and each antenna element is
isotropic.

We consider an ‘equivalent sampled complex baseband’
system. That is, we assume all signals are sampled and
complex basebanded. At sampling instant t: u0(t) is
the (complex basebanded) transmitted desired user signal;
ui(t), i = 1,2, ...,n is the transmitted ith interfering user sig-
nal; r j(t), j = 0,1, ...,N − 1 is the signal received at the jth

antenna array element; s j(t) is the noise signal at the jth an-
tenna array element.

We assume: each user transmitted signal ui(t), i =
0,1,2, ...,n is described by a zero mean, bounded, wide sense
stationary process of variance s 2

u ; the different user transmit-
ted signals are uncorrelated with each other; the noise signal
of each antenna element is a zero mean, bounded, wide sense
stationary white process of variance s 2

s ; the noise signals are
uncorrelated with each other and uncorrelated with the user
signals.

We assume that the ith (i = 0,1,2, ...,n) user transmitted
signal arrives from a ‘small’ number mi of sparsely separated
directions; and each of these directions is characterised by an
angle of arrival qi,k,k = 1,2, ...,mi and a complex valued gain
gi,k. We choose the direction perpendicular to the linear array
line as the zero angle (q = 0 radians) direction.

Note: for the sake of simplicity (notation and algorithm
development), we have assumed the DOA characteristics of
the communication channel are time-invariant. It needs to be
emphasised that the proposed DOA-detection guided NLMS
adaptive array algorithm is suitable for time-varying DOA
channels, as well as for time-invariant DOA channels.

Accordingly, the complex baseband signal received at the
jth array element is:

r j(t) =
n

å
i=0

mi

å
k=1

ui(t)gi,k exp(−j(2pd j sin[qi,k]/l +fi,k))+s j(t)

(1)
where j =

√
−1, and fi,k is the phase at the j = 0 element of

the ith user signal arriving from direction qi,k.
The signal output by the adaptive array is:

v(t) =
N−1

å
j=0

r j(t)w∗
j(t) = RT (t)W ∗(t),

W (t) = [w0(t),w1(t), ...,wN−1(t)]
T ,

R(t) = [r0(t),r1(t), ...,rN−1(t)]
T

and where w j(t) is the scalar weight applied at the jth array
element at sample time t. The standard NLMS adaptation
equation for the array weight vector is:

W (t +1) = W (t)+
m

RT (t)R∗(t)+ e
R(t)e∗(t).

where: ∗ denotes complex conjugate, e(t) = u0(t)− v(t) and
m , e are small positive constants.

As discussed earlier, in order to exploit the sparse spatial
characteristics of the desired user’s signal DOAs, we carry

out the NLMS adaptation in the DOA domain. The corre-
sponding NLMS algorithm is:

Wf (t +1) = W f (t)+
mN

RT
f (t)R

∗
f (t)+ e

R f (t)e
∗(t),

where R f (t) = [r f ,0(t),r f ,1(t), ...,r f ,N−1(t)]T = FT [R(t)],
Wf (t) = [w f ,0(t),w f ,1(t), ...,w f ,N−1(t)]T = FT [W (t)],
FT [X(t)] denotes the Fourier transform of the vector X
at time t, and e(t) = u0(t)− v(t) = u0(t)− RT (t)W ∗(t) =
u0(t)−RT

f (t)W
∗
f (t).

We define W (0) = [w(0)
0 ,w(0)

1 , ...,w(0)
N−1] as the desired

weight-domain vector, that is the weight vector which min-
imises the cost function of (2) below. Similarly, we de-
fine W (0)

f = FT [W (0)] = [w(0)
f ,0,w

(0)
f ,1, ...,w

(0)
f ,N−1] as the desired

DOA-domain vector. In many cases, W (0)
f will show a sparse

structure. The same is not generally true for W (0). The de-
sired vector W (0) or W (0)

f depends both on the DOAs of the
desired user signal and the interfering user signals.

3. ACTIVITY DETECTION

As discussed earlier, our proposed NLMS based adaptive ar-
ray algorithm incorporates an activity criterion for detecting
the active (or existing) desired-DOAs.The activity criterion
we employ is derived from the following structurally consis-
tent least squares based cost function [4]:

VSCLS(T ) = VLS(T )+ms 2
u logT (2)

where: T is the data length or current (time) sample number;
VLS(T ) = åT

t=1 |u0(t)−RT
f (t)W

∗
f |2; s2

u = variance of u0(t);
Wf = estimated array DOA-domain vector, which contains
only m active/nonzero elements.

In general, minimisation of VSCLS(T ) requires examina-
tion and comparison of a large number

(N
m

)

of index sets with
(N

m

)

= åN
m=1

N!
(N−m)!m! . To circumvent this large comparison

problem, we begin by introducing an assumption, which is
not necessarily valid but which greatly simplifies the cost
function analysis. We then include a number of modifica-
tions to offset the effects of the simplifying assumption.

Assume the DOA-domain received signal vector R f (t)
has uncorrelated elements. Then, for sufficiently large T , we
may approximate VSCLS(T ) of (2) by [4]:

V̂SCLS(T ) =
T

å
t=1

v2(t)−
m

å
k=1

[Xak(T )−s 2
u logT ] (3)

Xak(T ) =
|åT

t=1 u0(t)r∗f ,ak
(t)|2

åT
t=1 |r f ,ak(t)|2

(4)

where |.| denotes modulus, and ak(k = 1,2, ...m) are the un-
known indices of the active elements of the desired weight
vector W (0)

f .

It is apparent that V̂SCLS(T ) is minimised by (and hence
the indices of the desired active elements correspond to)
those indices j which satisfy:

X j(T ) > L(T ) (5)



where

L(T ) = s 2
u logT ≈ logT

T

T

å
t=1

|u0(t)|2.

Equation 5 provides us with a suitable activity criterion
for the case in which the elements of R f (t) are uncorrelated.
This activity criterion, however, is not suitable for the more
general case in which the R f (t) vector elements are corre-
lated. This is because the correlation causes neighbouring
indices to contribute significantly to the numerator term of
X j(T ).

To reduce this coupling effect from neighbouring indices,
we propose the following three modifications. These modifi-
cations are based on the work of Homer et. al. [5, 6] which
focusses on NLMS adaptive temporal channel estimators, as
opposed to NLMS adaptive arrays.
Modification 1: Replace X j(T ) by:

X̃ j(T ) =
|åT

t=1{e(t)+w∗
f , j(t)r f , j(t)}r∗f , j(t)|2

åT
t=1 |r f , j(t)|2

. (6)

Modification 2: Replace L(T ) by:

L̃(T ) =
logT

T

T

å
t=1

|e(t)|2. (7)

Modification 3: Include an exponentially forgetting factor:
(1− g), 0 < g � 1 within the summation terms of X̃ j(T )
and L̃(T ).

Importantly, the inclusion of Modification 3, in addition
to reducing the correlation coupling effect, also improves
the applicability of the DOA-detection guided NLMS adap-
tive array to DOA time-varying systems. This capability is
demonstrated in the simulation section.

4. DOA-DETECTION GUIDED NLMS ADAPTIVE
ALGORITHM

The proposed algorithm is as follows.
Initialisation:
(a) For each array element index j, initialise b j(0) = d j(0) =

w f , j(0) = 0.
(b) Initialise: q(0) = C(0) = 0.
At each sample interval T :
(a) Standard signal operations:

R f (T ) = FT [R(T )], FT = Fourier transform

v(T ) = RT
f (T )W ∗

f (T )

e(T ) = u0(T )− v(T).

(b) Activity threshold calculation:

q(T ) = (1− g)q(T −1)+ |e(T)|2
C(T ) = (1− g)C(T −1)+1
L̃(T ) = q(T ) log{C(T )}/C(T )

(c) Activity measure calculation, for element index j:

b j(T ) = (1− g)b j(T −1)

+[e(T )+w∗
f , j(T )r f , j(T )]r∗f , j(T )

d j(T ) = (1− g)d j(T −1)+ |r f , j(T )|2

X̃ j(T ) =
|b j(T )|2
d j(T )

.

(d) Application of activity criterion, for element j:
If X̃ j(T ) > L̃(T ) then label j as an active element index
ak; otherwise label j as an inactive element index.

(e) NLMS adaptation, for element j:
If j = ak (that is, corresponds to a detected active index)
then:

w f , j(T +1) = w f , j(T )

+
mN

åak
|r f ,ak(T )|2 + e

r f , j(T )e∗(T )

where åak
=summation over all detected active indices.

If j 6= ak then

w f , j(T ) = 0.

4.1 Computational Complexity

We measure computational complexity by the number of
multiplications per sample interval (MPSI). The standard
array-weight domain NLMS algorithm requires 3N + 2
MPSI; while the corresponding standard array-DOA domain
NLMS algorithm requires 3N + 2 +(N/2) logN MPSI. The
proposed DOA-Detection guided NLMS algorithm requires
6N + m̂ + 5 + (N/2) logN MPSI. [Note: This assumes the
values of L̃(k) and log{L̃(k)}/L̃(k) are available from a look-
up table.] Hence, for sufficiently long and practical ar-
rays (1 � N < 100) and sufficiently DOA sparse channels
(N � m̂), the computational cost of the proposed DOA detec-
tion guided NLMS algorithm is approximately two to three
times that of the standard NLMS algorithms.

5. SIMULATIONS

Simulations were conducted to compare the performance of
the standard weight vector domain and DOA domain NLMS
adaptive array algorithms with that of the proposed DOA de-
tection guided NLMS adaptive array algorithm.

The simulation conditions were as follows.
Signal wavelength l = 20mm; Array element spacing

d = l/2; Number of array elements N = 64; Adaptation con-
stants: m = 0.001, e = 0.1, g = 0.99.

Desired signal u0: random binary real valued signal (gen-
erated using Matlab: u0 = sign(randn(1,2000))).

First interfering signal u1: random binary real valued sig-
nal with amplitude twice that of desired signal (generated us-
ing Matlab: u1 = 2∗ sign(randn(1,2000))).

Second interfering signal u2: random binary real valued
signal with amplitude equal to that of desired signal (gener-
ated using Matlab: u2 = sign(randn(1,2000))).

Antenna element noise signal s j: complex valued ran-
dom Gaussian signal with variance s 2

s = 2 (generated us-
ing Matlab: s j = randn(1,2000)+ j∗ randn(1,2000), where
j =

√
−1 ).

Table 1 shows the simulation DOA parameters of the de-
sired and interfering signals. A time sequence of 2000 sam-
ple intervals was considered, with some of the DOA param-
eters undergoing a sudden change at sample interval 1001.

Figures 2,3 show the results of the simulations. Shown
are the average of ten similar simulations. Figure 2 is a plot
of the squared error |e(t)|2 over time (sample number), for
each of the three NLMS algorithms. Figure 3 is a plot of
the array beampattern for each of the algorithms at either t =
1000 (i.e. just before the sudden time variation) or t = 2000.



Table 1: Desired signal and interfering signal parameters
Desired Signal DOAs, sample times: t=1:1000
Angles, {q0,k}4

k=1 75o 35o −20o −55o

Gains, {g0,k}4
k=1 0.5e jp/3 1.0e jp 0.8e jp/9 0.5

Desired Signal DOAs, sample times: t=1001:2000
Angles, {q0,k}4

k=1 75o 10o −20o −75o

Gains, {g0,k}4
k=1 0.5e jp/3 1.0e jp 1e jp/9 0.5

First Interfering signal DOAs, sample times: t=1:1000
Angles, {q1,k}3

k=1 55o 5o −70o

Gains, {g1,k}3
k=1 1.0e jp/3 1.0e jp/7 0.5

First Interfering signal DOAs, sample times: t=1001:2000
Angles, {q1,k}3

k=1 55o 25o −55o

Gains, {g1,k}3
k=1 1.0e jp/3 1.0e jp/7 0.5

Second Interfering signal DOAs, sample times: t=1:1000
Angles, {q2,k}5

k=1 50o +10o −35o

Gains, {g2,k}5
k=1 1.2e jp/3 0.8e j1.6p 0.8e jp

Second Interfering signal DOAs, sample times: t=1001:2000
Angles, {q2,k}5

k=1 50o 0o −35o

Gains, {g2,k}5
k=1 1.2e jp/3 0.8e j1.6p 0.8e jp

The results indicate that the proposed algorithm shows
a significantly enhanced convergence rate and tracking abil-
ity over the standard NLMS algorithms. The ability of the
proposed algorithm to accurately track the desired DOAs is
clearly demonstrated by Figure 3(b). The attained beampat-
tern at t = 2000 displays maxima “only” in the current de-
sired DOAs. In comparison, at t = 2000 the standard NLMS
algorithms display maxima also in the previous (t = 1 : 1000)
desired DOAs.
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Figure 2: Plot of squared error |e(t)|2 over time for: (a) pro-
posed NLMS algorithm, (b) standard NLMS algorithm in
DOA domain, (c) standard NLMS algorithm in weight do-
main.

6. CONCLUSIONS

We have proposed a detection guided NLMS adaptive ar-
ray algorithm that operates in the DOA domain. This algo-
rithm incorporates an activity criterion, which is based on a
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Figure 3: Plot of array beampattern for: proposed NLMS
algorithm at (a) t = 1000 and (b) t = 2000; standard NLMS
algorithm in DOA domain at (c) t = 1000 and (d) t = 2000;
standard NLMS algorithm in weight domain at (e) t = 1000
and (f) t = 2000.

structurally consistent version of the least squares cost func-
tion. The activity criterion is employed to detect the active
DOAs of the desired user signal. NLMS estimation is then
only applied to the (complex) gain coefficients of these de-
tected DOAs. Simulation results show that this algorithm
exhibits significantly better convergence and tracking capa-
bilities than the standard NLMS adaptive array algorithms.

REFERENCES

[1] B. Widrow, J.M. McCool, M.G. Larimore and C.R.
Johnson, “Stationary and nonstationary learning char-
acteristics of the LMS adaptive filter”, Proc. of the
IEEE, Vol. 64, No. 8, pp. 1151-1162, 1976.

[2] S. Haykin, B. Widrow, Least-Mean-Square Adaptive
Filters, Wiley, 2003.

[3] J. Homer, R.R. Bitmead, I.M.Y. Mareels, “Quantifying
the effects of dimension on the convergence rate of the
LMS adaptive FIR estimator”, IEEE Trans. on Signal
Proc., Vol. 46, pp. 2611-2615, Oct. 1998.

[4] J. Homer, I.M.Y. Mareels, R.R. Bitmead, B. Wahlberg
and F. Gustafsson, “Improved LMS estimation via
structural detection”, IEEE Trans. on Signal Proc., Vol.
46, pp. 2651-2663, Oct. 1998.

[5] J. Homer, “Detection guided NLMS estimation of
sparsely parametrized channels”, IEEE Trans. on Cir-
cuits and Systems II, Vol. 47, pp. 1437-1442, Dec.
2000.

[6] J. Homer, I. Mareels, “LS Detection guided NLMS es-
timation of sparse systems”, IEEE Int. Conf. Acoustics
Speech and Signal Proc. 2004, Montreal, Canada, May
2004.


	Index
	EUSIPCO 2005

	Conference Info
	Welcome Messages
	Sponsors
	Committees
	Venue Information
	Special Info

	Sessions
	Sunday 4, September 2005
	SunPmPO1-SIMILAR Interfaces for Handicapped

	Monday 5, September 2005
	MonAmOR1-Adaptive Filters (Oral I)
	MonAmOR2-Brain Computer Interface
	MonAmOR3-Speech Analysis, Production and Perception
	MonAmOR4-Hardware Implementations of DSP Algorithms
	MonAmOR5-Independent Component Analysis and Source Sepe ...
	MonAmOR6-MIMO Propagation and Channel Modeling (SPECIAL ...
	MonAmOR7-Adaptive Filters (Oral II)
	MonAmOR8-Speech Synthesis
	MonAmOR9-Signal and System Modeling and System Identifi ...
	MonAmOR10-Multiview Image Processing
	MonAmOR11-Cardiovascular System Analysis
	MonAmOR12-Channel Modeling, Estimation and Equalization
	MonPmPS1-PLENARY LECTURE (I)
	MonPmOR1-Signal Reconstruction
	MonPmOR2-Image Segmentation and Performance Evaluation
	MonPmOR3-Model-Based Sound Synthesis ( I ) (SPECIAL SES ...
	MonPmOR4-Security of Data Hiding and Watermarking ( I ) ...
	MonPmOR5-Geophysical Signal Processing ( I ) (SPECIAL S ...
	MonPmOR6-Speech Recognition
	MonPmPO1-Channel Modeling, Estimation and Equalization
	MonPmPO2-Nonlinear Methods in Signal Processing
	MonPmOR7-Sampling, Interpolation and Extrapolation
	MonPmOR8-Modulation, Encoding and Multiplexing
	MonPmOR9-Multichannel Signal Processing
	MonPmOR10-Ultrasound, Radar and Sonar
	MonPmOR11-Model-Based Sound Synthesis ( II ) (SPECIAL S ...
	MonPmOR12-Geophysical Signal Processing ( II ) (SPECIAL ...
	MonPmPO3-Image Segmentation and Performance Evaluation
	MonPmPO4-DSP Implementation

	Tuesday 6, September 2005
	TueAmOR1-Segmentation and Object Tracking
	TueAmOR2-Image Filtering
	TueAmOR3-OFDM and MC-CDMA Systems (SPECIAL SESSION)
	TueAmOR4-NEWCOM Session on the Advanced Signal Processi ...
	TueAmOR5-Bayesian Source Separation (SPECIAL SESSION)
	TueAmOR6-SIMILAR Session on Multimodal Signal Processin ...
	TueAmPO1-Image Watermarking
	TueAmPO2-Statistical Signal Processing (Poster I)
	TueAmOR7-Multicarrier Systems and OFDM
	TueAmOR8-Image Registration and Motion Estimation
	TueAmOR9-Image and Video Filtering
	TueAmOR10-NEWCOM Session on the Advanced Signal Process ...
	TueAmOR11-Novel Directions in Information Theoretic App ...
	TueAmOR12-Partial Update Adaptive Filters and Sparse Sy ...
	TueAmPO3-Biomedical Signal Processing
	TueAmPO4-Statistical Signal Processing (Poster II)
	TuePmPS1-PLENARY LECTURE (II)

	Wednesday 7, September 2005
	WedAmOR1-Nonstationary Signal Processing
	WedAmOR2-MIMO and Space-Time Processing
	WedAmOR3-Image Coding
	WedAmOR4-Detection and Estimation
	WedAmOR5-Methods to Improve and Measures to Assess Visu ...
	WedAmOR6-Recent Advances in Restoration of Audio (SPECI ...
	WedAmPO1-Adaptive Filters
	WedAmPO2-Multirate filtering and filter banks
	WedAmOR7-Filter Design and Structures
	WedAmOR8-Space-Time Coding, MIMO Systems and Beamformin ...
	WedAmOR9-Security of Data Hiding and Watermarking ( II  ...
	WedAmOR10-Recent Applications in Time-Frequency Analysi ...
	WedAmOR11-Novel Representations of Visual Information f ...
	WedAmPO3-Image Coding
	WedAmPO4-Video Coding
	WedPmPS1-PLENARY LECTURE (III)
	WedPmOR1-Speech Coding
	WedPmOR2-Bioinformatics
	WedPmOR3-Array Signal Processing
	WedPmOR4-Sensor Signal Processing
	WedPmOR5-VESTEL Session on Video Coding (Oral I)
	WedPmOR6-Multimedia Communications and Networking
	WedPmPO1-Signal Processing for Communications
	WedPmPO2-Image Analysis, Classification and Pattern Rec ...
	WedPmOR7-Beamforming
	WedPmOR8-Synchronization
	WedPmOR9-Radar
	WedPmOR10-VESTEL Session on Video Coding (Oral II)
	WedPmOR11-Machine Learning
	WedPmPO3-Multiresolution and Time-Frequency Processing
	WedPmPO4-I) Machine Vision, II) Facial Feature Analysis

	Thursday 8, September 2005
	ThuAmOR1-3DTV ( I ) (SPECIAL SESSION)
	ThuAmOR2-Performance Analysis, Optimization and Limits  ...
	ThuAmOR3-Face and Head Recognition
	ThuAmOR4-MIMO Receivers (SPECIAL SESSION)
	ThuAmOR5-Particle Filtering (SPECIAL SESSION)
	ThuAmOR6-Geometric Compression (SPECIAL SESSION)
	ThuAmPO1-Speech, speaker and language recognition
	ThuAmPO2-Topics in Audio Processing
	ThuAmOR7-Statistical Signal Analysis
	ThuAmOR8-Image Watermarking
	ThuAmOR9-Source Localization
	ThuAmOR10-MIMO Hardware and Rapid Prototyping (SPECIAL  ...
	ThuAmOR11-BIOSECURE Session on Multimodal Biometrics (  ...
	ThuAmOR12-3DTV ( II ) (SPECIAL SESSION)
	ThuAmPO3-Biomedical Signal Processing (Human Neural Sys ...
	ThuAmPO4-Speech Enhancement and Noise Reduction
	ThuPmPS1-PLENARY LECTURE (IV)
	ThuPmOR1-Isolated Word Recognition
	ThuPmOR2-Biomedical Signal Analysis
	ThuPmOR3-Multiuser Communications ( I )
	ThuPmOR4-Architecture and VLSI Hardware ( I )
	ThuPmOR5-Signal Processing for Music
	ThuPmOR6-BIOSECURE Session on Multimodal Biometrics ( I ...
	ThuPmPO1-Multimedia Indexing and Retrieval
	ThuPmOR7-Architecture and VLSI Hardware ( II )
	ThuPmOR8-Multiuser Communications (II)
	ThuPmOR9-Communication Applications
	ThuPmOR10-Astronomy
	ThuPmOR11-Face and Head Motion and Models
	ThuPmOR12-Ultra wideband (SPECIAL SESSION)


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Ö
	Ø

	Papers
	Papers by Session
	All papers

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	Copyright
	About
	Current paper
	Presentation session
	Abstract
	Authors
	John Homer
	Peter Kootsookos
	Vigneswaran Selvaraju



