
Rethinking Full-Text Search for Multilingual Databases

Jeffrey Sorensen and Salim Roukos
IBM T. J. Watson Research Center

Yorktown Heights, New York
<sorenj|roukos>@us.ibm.com

Abstract

Textual fields are commonly used in databases and applications to capture details that are difficult
to formalize—comments, notes, and product descriptions. With the rise of the web, users expect that
databases be capable of searching these fields quickly and accurately in their native language. Fortu-
nately, most modern database systems provide some form of full-text indexing of free text fields. However,
these capabilities have yet to be combined with the simultaneous demand that databases provide support
for world languages. In this paper we introduce several of the challenges for handling multilingual data
and introduce a solution based on an architecture that enables flexible processing of texts based upon
the properties of each text’s source language. Extending the indexing architecture, and standardizing
the query capabilities, are important steps to creating the applications that will serve world markets.

1 Introduction

Text fields capture unstructured information such as descriptions, comments, notes and other difficult to formal-
ize information, and are part of most large scale database applications. Standard database tools, and the popular
Structured Query Language (SQL), provide little support for applications that demand indexing and searching
these fields.

Even so, full-text search indexing is a standard non-standard component of every major database system,
including the popular open-source databases MySQL and PostgreSQL, through add-ons such as TSearch2 [11,
3]. Microsoft SQL Server provides the ability to generate full-text indexes and, as shown in Figure 1, a query
syntax for searching the database records.

These three examples illustrate searching for a keyword, searching for the different inflected forms of the
word foot (feet, footed, etc.), and searching for documents that contain two terms in close proximity. More
traditional databases do not provide such query capabilities. While most databases provide string wildcards and
LIKE operator or regular expression matching, using them for search of text fields requires laborious record by
record string comparison operations.

In order to implement fast full-text search, a full-text index must be built. However, to make a full-text index
one must understand issues of tokenization, punctuation handling, normalization stemming and morphology,
and word segmentation; these are all properties that are specific to each language and region. Today, most
databases are configured to contain only one language, but for international companies this is already changing.

Copyright 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

SE AdventureWorks;
GO
SELECT Name, ListPrice
FROM Production.Product
WHERE ListPrice = 80.99
AND CONTAINS(Name, ’Mountain’);
GO

USE AdventureWorks;
GO
SELECT Comments, ReviewerName
FROM Production.ProductReview
WHERE CONTAINS (Comments,

’FORMSOF(INFLECTIONAL, "foot")’);
GO

USE AdventureWorks;
GO
SELECT Description
FROM Production.ProductDescription
WHERE CONTAINS(Description,

’bike NEAR performance’);
GO

Figure 1: Examples of full-text queries for Microsoft SQL Server 2005 [5]

We distinguish between (1) a single language database, (2) a database that contains specific fields in a specific
language (as in a system that supports searching Arabic and Chinese documents using English queries), and (3)
the most general case, a database with fields that have multiple languages in the same field. We are proposing to
use an architecture that supports all three types of databases.

Both Unicode support and full-text indexing are recent additions to traditional relational databases. However,
as the Internet becomes truly international, see Figure 2, the ability to index world languages will become
essential. Especially note that the size of the “Other” category means that developers will need to handle many
new languages.

Looking at Microsoft SQL Server, again as representative of the state of the art, Microsoft uses a separate
operating system component to implement the full-text search. This component has some support [5] for inter-
national text support using “word breakers, stemmers, and filters.” However, this fixed architecture, originally
designed for English, makes it difficult to handle databases that have fields from multiple languages.

In this paper we will be describing in detail the differences between the processing needed for several
languages. By discussing languages that differ greatly in morphological complexity, we hope to demonstrate the
need for a flexible, modular architecture for full-text indexing. To address this we propose database developers
look to the Unstructured Information Management Architecture (UIMA) project affiliated with the Apache web
server and its related projects.

2 Related Work

This paper references a number of papers dealing with various aspects of text processing needed for constructing
indexes. However, the details of how to build and maintain indexes are beyond the scope, but well summarized
in [29]. More recent developments in building compressed full-text indexes are presented in [16].

2

 0

 50

 100

 150

 200

 250

 300

 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

M
ill

io
ns

 o
f s

pe
ak

er
s

Year

English
Chinese

Other
Japanese

Spanish
German
French
Italian

Korean
Portuguese

Scandinavian
Dutch

Figure 2: Internet population growth by language [24]

Our focus is primarily on the operations required to extract terms from the text for indexing purposes. How-
ever, there are several papers related to the building of indexes and their use in search. In [13], query operators
are built into a database engine to allow fuzzy matching of strings from different languages through a map-
ping to approximate pronunciation differences, and, more abstractly, using a multilingual taxonomy, semantic
category matching. Similarly, [32] studies the application of various edit distances seeking to match strings
cross-lingually if their pronunciations are similar.

The trade off between building an exhaustive index and using a fuzzy distance metric during search involves
trade-offs between computational complexity and memory storage. Several algorithms are compared in [21],
matching terms cross lingually based upon string matching functions. Algorithms of this type can be used to
reduce the total size of the index by collapsing interlanguage spelling variation. Similarly, [1] presents work that
seeks to identify terms in documents that represent names of people or places in different languages.

3 Internationalization of Applications

Traditionally, internationalization efforts have focused on creating applications that can be operated by popula-
tions in different languages. This means tailoring fonts, menus, and other application messages often through the
modification of global operating system settings. Many systems today determine the precise manner to collate
and search strings through global “locale” settings. While these technologies have allowed products to be sold
in international markets, this approach to “internationalizing” applications has been largely unsuccessful as an
approach to creating multilingual applications. Even today, the standard ANSI C++ language has very limited
support for international character representations.

Web browsers represent the leading edge of internationalization technology, as the web rendering technolo-
gies are the only software currently capable of rendering multilingual texts irrespective of most operating system
settings. To a large extent most users today can effectively retrieve, and even create, texts in most languages,
often limited only by their keyboards and the availability of alternate text input methods. This is amply demon-
strated by the Wikipedia project [28] which, using a unified set of web tools, has successfully grown to more
than 10,000 articles in each of 21 languages.

3

Chinese Text
Han

Unification

Arabic Text
Diacritic
Removal

English Text
Punctuation/
Tokenization

Sentence
Segmentation

Bigram
Extraction

Word
Segmentation

Index

Affix
Separation

Stemming

Figure 3: Typical text processing components for indexing

4 Modularization of Text Analysis

Developing international applications is a challenge for any platform. At present, implementing applications
with full-text search requires correctly configuring a database server’s operating system and a careful design of
the database. If full-text searching is to become a standard feature of applications, making it work with multi-
lingual texts must be simplified. Some of the current impediments include: a lack of standards for indexing and
query specification, small alphabet assumptions in the text-processing components of databases and operating
systems, the widespread use of components that do not correctly transfer Unicode data.

We seek to address many of these problems using a text processing architecture that is sensitive to the source
language, even if said language is not specified explicitly. We present examples of processing pipelines for
several languages that represent some of the widely varying needs.

4.1 Text-Indexing Pipeline

The full-text processing pipeline, as implemented in all of the current indexers for current database platforms,
invariably involves a word segmenter, often just synonymous with “whitespace” tokenization. Many systems
also make use of stemmers and stop word lists. Such a pipeline is usually adequate, at least for English texts.
This is less true for other European languages which often have much richer word morphologies.

The Unstructured Information Management Architecture (UIMA) is a set of standards [9] and an Apache
hosted collection of libraries intended to foster interoperability between developers of semantic analysis tools
and other components for document search. While UIMA is intended to integrate analysis tools that reach to
higher levels of abstraction than is typical for full-text search [17], it also has considerable strength for interna-
tionalization through its integration with Java and the International Classes for Unicode (ICU) [12] project. The
capability to chain a sequence of text analysis engines, when appropriate, is a crucial capability when dealing
with multiple languages. Figure 3 illustrates several chains of analysis tools used for a variety of languages.

Figure 4: Marking character spans using stand-off notation in UIMA

4

4.2 Stand-off Notation

UIMA, through the Common Analysis Structure (CAS) represents tokens and other values to be indexed through
the use of stand-off notation. Stand-off notation is the separate demarkation of text substrings via data structures
that mark the begining and ending character offsets, as opposed to mark-up which uses in-line notation which
is inserted into the text document. As the original text is unmodified, it can be inspected by any indexing
processing subsystem. Stand-off notation is also important when text spans may be overlapping. The case of
Chinese is exemplary, as Chinese text must be broken into individual words either using rules or some other
automatic mechanism. However, this cannot be done unambiguously. Therefore, a common practice is to
index Chinese simultaneously as words and as overlapping bigrams [14]. By referring to the text through a
sequence of offset pairs instead of a single sequence of tokens, stand-off notation can support indexing of these
overlapping spans. Figure 4 illustrates a potential use of stand-off notation to mark an English sentence that
contains complex morphology. In addition to finding word stems and labeling verbs with their infinitive form,
we may also apply, potentially, overlapping labels of semantic categories like “persons” or “locations” and even
hierarchical relationships between these labels (e.g., the PARTICIPANT(PERSON,EVENT) relation in Figure 4).

4.3 Subjects of Analysis

When documents are translated, either by human or machine, or when text processing is used in a manner
that modifies text in an irreversible way, the CAS is capable of maintaining multiple parallel representations.
Within UIMA, these separate representations are considered differing views of the same text. Multiple subjects
of analysis can be an important tool when building an index multilingually, as links into a view provide the
matching correspondence in the original text. Thus both the document and its translation may be maintained in
parallel in this CAS container.

4.4 Unicode Representation

The Unicode standard is an ambitious effort to represent the union of the characters from all written languages
into one extended alphabet. Unicode remains controversial as a solution in some quarters, particularly among
Chinese and Japanese communities [27]. The controversy is in part due to the complexity of the task of cata-
loging all of the hundreds of thousands of characters that occur in languages around the world. However, the
problem is also due to the difficult experiences that developers have had with incomplete or, often, incorrect
implementations of the Unicode Standard.

The Unicode consortium has been very active and the Unicode Standard is a rapidly evolving document
with changes in virtually every aspect. The reference, and open-source, implementation [12] of the standard
- the International Classes for Unicode (ICU) project has been under constant evolution and is itself a large
and complex project that is often included, in whole or in part, in other projects such as Apache and the Java
language.

5 Text Analysis Components

Most full-text indexing systems have a fixed architecture for text ingestion. At present, full-text indexing is still
considered a special feature with only limited integration into the database. This means, in part, that the database
has very limited control over the processing of individual text fields.

We are proposing that a more flexible approach be used. To illustrate why this would be beneficial, we
would like to review some of the major components of text analysis to demonstrate how their relative importance
changes, depending upon which language is being processed. When these multiple components can be combined
flexibly on a record by record basis, perhaps based upon the content of other fields, multilingually indexing

5

and searching can be more easily and effectively accomplished. This dynamic ability to combine text-analysis
components is one of the principal design goals of the UIMA project.

5.1 Language Identification

Where possible, applications should allow users to specify unambiguously what language a source text is written
in. Typically, users enter texts in the same language as the interface an application is written in. However, this is a
brittle assumption for polyglots. For text entry, the ability to check spelling is highly desirable, and this requires
specification of not only the language but even the specific regional variant. Well written applications allow the
user to make these specifications explicitly, although support for mixed languages within a single text field can
pose significant interface challenges. When users cannot specify the language, or in cases where text fields are
otherwise uncategorized, statistical techniques can be employed to determine the likely language [23, 2]. The
UIMA standoff annotation can effectively encode the language ID of different spans in mixed language fields.

5.2 String Matching

The question of whether two strings, perhaps one typed in by the user and one stored in a database, are equivalent
is an essential component of nearly every application. While less complicated than the issue of near match or
phonetic match, there are difficulties that must be faced when a single string has multiple representations that
are visually equivalent.

In the English world, many applications make use of lower case comparisons so that “English” and “en-
glish” are considered equivalent. However, this is quite problematical for applications comparing “espanol”
with “Español” for a number of reasons, including ongoing difficulties associated with the case folding func-
tions and case-insensitive string comparison functions that are based on ASCII character assumptions.

The Unicode standard has a substantial literature on the problem of accented characters, the first to be
aware of is the existence of the variety of normalization forms [7] where characters can be represented in both
composed and decomposed forms. In addition, the Unicode report on Case Mappings [8] gives some guidance
on how to perform a case-independent string matching.

The growth of web search as a user interface has greatly changed the expectations of users. Most search
engines use broad equivalence classes so that distinctions between searches that involve punctuation and accents
are often impossible to make. This can be both forgiving when the representation is ambiguous (consider résumé
versus resume) but maddening when the difference is essential.

However, when considering languages outside of European contexts, these problems are only the beginning.
Although most non-European languages do not have upper and lower case distinctions, some languages have
rich morphology that makes simple many-to-one equivalence insufficient for searching indexes. We will consider
two specific languages cases as illustrative.

5.2.1 Traditional and Simplified Chinese

For databases and user interfaces, Chinese presents numerous challenges. Beyond the sheer complexity and size
of the character set, there also exist several related language variants. In Taiwan and Hong Kong, Traditional
Chinese characters are the predominant written form. Mainland China and Singapore use the much more recently
developed Simplified Chinese character set.

The Unihan database is a project that seeks to index the relationship between the characters used in these
different representations. While it important to maintain the distinctions between the various forms of the written
Chinese language for rendering purposes, for search and indexing the representation of terms should be unified,
typically by mapping to simplified Chinese. Of course, what constitutes a “term” in Chinese, where characters
are written without any white-space separation, is a matter addressed in Section 5.3.3.

6

�����
�
� �	���

���
 � �
�
� �	 � ���

aal + maqar maqaru + hum
the location their location

����� ��� �	������
���
 � �

�
� � �� �	 � ���
 � ��

bi + aal + maqar bi + maqari + hum
by the location by their location

������� �	�����
���
 � �

�
� � � � �	 � ���
 � �

li + aal + maqar ly + maqari + hum
to the location to their location

Figure 5: An illustration of Arabic morphological changes

Many older string handling libraries assume byte or smaller alphabet sizes - in particular libraries that per-
form compression; many Asian texts clearly violate these assumptions. In addition to the some 70,000 unique
ideographs designated in the Unicode specification, there exists extension mechanisms such as ideographic
descriptions which allow users to describe an individual character using a hierarchical combination of other
characters; a description that may be as many as 16 Unicode code points, meaning a single rendered character
might be described by some 30 bytes in a file.

Character descriptions that are this long and complex are often chopped into meaningless sequences by naı̈ve
components. This is one of the many reasons we advocate, wherever possible, the use of standoff notation for
text processing components.

5.2.2 Arabic

The Arabic alphabet is more similar in size to English than Chinese. However, it is much richer than either
language in morphological complexity. In written Arabic, a single word often represents many terms, sometimes
related. Written Arabic does not typically encode short vowel sounds; the reader determines the meaning based
upon the context, filling in the missing vowels. Through the use of diacritics, or accent marks, the short vowels
can be specified, and often are, in contexts where they must be specified unambiguously such as in children’s
educational books or poetry.

Unicode supports the encoding of diacritics through combining forms and through the use of composite
forms for the most common diacritic combinations. That is, there is more than one representation of many
accented characters, and they are graphically equivalent. This is true for other languages besides Arabic. For
example, the “ü” character may be equivalently encoded using the code point U+00FC, or as the ASCII equiva-
lent letter “u” U+0075 followed by the combining diaeresis (or umlaut) character U+0308. Note too that this
is also distinct from the stand alone diaeresis character U+00A8.

For Arabic, diacritics are not used for searching and indexing because they do not typically appear in the
written text. However, a much larger problem exists with Arabic writing, and that involves the complex mor-
phology. Arabic words typically combined with suffixes and prefixes that indicate gender, number, possessives
and other relationships typically represented with prepositions in English. Searching typically requires identi-
fying the “root” word or, for more effective searching, the “stem.” Figure 5 shows an example of these types of
modifications all of which share the same stem word.

7

5.3 Segmentation

Working with international or multilingual texts also presents problems already familiar to practitioners working
with English texts. Consider the issue of tokenization, or the practice of segmenting an English text into word
or word-like units.

One of the first difficulties that developers encounter is how to correctly handle punctuation. A first approx-
imation is to simply consider words to be all contiguous alphabetic sequences. However, the frequent use of
abbreviations, such as “Mr.” or “Mrs.” would be incorrectly segmented as a sentence boundary by a simple rules
based tokenizer that considered periods as end of sentence markers.

In many cases, the solutions used for English tokenization can be applied to other languages directly. We
will review some of those techniques in the subsequent sections. However, it is important to also note the ways in
which techniques originally developed for other languages are now influencing the processing of English texts.

5.3.1 Rule based segmenters

The highly popular Snowball stemmers [22], originally developed for the English language, are used for a
variety of European languages. Snowball is a language for encoding an algorithmic description of a stemming
algorithm as well as C++ and Java code generators that convert the algorithmic description into code. The
Snowball website includes ample references detailing the effect that stemming has on information retrieval.

Unfortunately, rule based segmenters, at least as they are used today, are limited in the amount of context
that can be employed when trying to determine the correct word root. Words which involve spelling changes can
be incorrectly processed; “mouse” being the root of “mice” is a well known example. As one begins to integrate
texts with increased use of morphological changes, the limitations of rule based systems become increasingly
apparent.

5.3.2 Statistical Stemmers

In addition to the rule based systems popular for European languages, the use of statistical models has received
considerable attention [15] for languages such as Arabic. In these cases, character or word n-grams are used
with a dynamic programming search algorithm to find the most likely segmentation of words into roots, prefixes,
and suffixes (affixes).

Arabic segmentation can also depend upon contextual features not captured by n-grams, and in these cases
additional features may prove useful [31]. However, it is important to remember that search terms are supplied
without context, and determining which index entries match can be quite difficult when compared to the words
in context. In these cases, query expansion or n-best segmentation should be applied to make the search more
inclusive.

5.3.3 Words

Text processing of documents in multiple languages often entails solving problems that English speaking devel-
opers take for granted. For example, in many Asian languages, the concept of a word is subtle. Chinese and
Thai are written in a style that does not delimit word boundaries.

The Unicode consortium has acknowledged this problem, and has sought to provide applications such as
word processors with reasonable equivalents of the “next word” and “last word” commands through the use of
dictionary based techniques. However, the current implementation, which is only currently used for Thai, is still
considered by the community to be a work in progress.

The segmentation of Chinese into word units, such as those that denote actions, places, or people, is an
area of considerable research [26] among the machine learning community. As with segmentation, the use of

8

statistical machine learning techniques show the greatest promise for providing an automatic means of separating
words in Chinese and, potentially, other Asian languages.

5.3.4 Transliteration

Representing names of people and locations in non-native languages requires a system of mapping from one
representation to another. Usually this is done phonetically, although in many cases place names are simply
different words in different languages requiring, in this case, translation dictionaries. Figure 5 includes several
such examples of Arabic words rendered to be read phonetically, using the letters of the English language.

Phonetic transliteration is also very commonly used in Chinese names, often resulting in letter sequences
atypical of English rules, such as the name “Qian.” Transliteration is a process that is amenable to automatic
methods [25]. It should also be noted that ICU has support for rule based transliterations [12] even though this
is not part of the Unicode standard.

5.4 Translation

Machine translation has been demonstrated [30, 10, 6] to be effective in providing cross-lingual search. Using
the CAS Subject of Analysis capability, it is possible, in a UIMA processing pipeline, to simultaneously maintain
multiple representations of the same text. By indexing records in both their source language and one or more
translations that can be indexed in parallel, thus making it possible to build cross-lingual search tools.

5.5 Semantic Labeling

The information retrieval community also performs higher levels of annotation of texts, including the identifi-
cation of “entities” such as people, places, organizations, and companies. The extraction, from text fields, of
these types of objects—and the ability to build structured data from free text [4] also promise to greatly enhance
future search capabilities. Thus, it is important for database systems to include flexibility in their text analysis
architecture so as to not limit future applications’ ability to use such deeper analysis.

6 Information Retrieval for International Text

Extracting terms from text fields is only the first step in implementing full-text search, as the terms must be
placed into an index that provides a fast reverse map from terms back to the relevant documents. The details
of building such an index can range from straightforward to complex, depending upon the quantity of text and
the vocabulary. While many of the issues are beyond the scope of this paper, we would like to introduce several
relevant ideas from the information retrieval community that can be employed to make index based retrieval
more valuable.

6.1 String Comparison

Approximate string matching techniques, such as the use of edit distance or phonetic matching is an important
tool for assisting users when the exact spelling of a term is unknown. Efficient computational methods exist [20]
for many edit distances. However incorporating fuzzy string matching in the index search has to be carefully
throttled to mitigate the increased computational requirements.

6.2 n-gram Indexing

Chinese text, in particular, due to its lack of explicit word segmentation is frequently indexed [14] using character
bi-grams. That is, every overlapping two character sequence is placed into the index. Interestingly, as we move to

9

Figure 6: A demonstration of a cross-lingual search engine

larger n-grams, this technique can also be used for European languages. In [18], character n-grams were found
to be comparable to other text indexing techniques. Although similar results were not found in the case of Arabic
[19]. Ideally, n-gram enabled search can be combined, in a weighted fashion, with traditional word based search
and provide near matches in cases where exact matches are not found, without introducing expensive string
comparisons across the entire database contents.

7 Conclusion

Full text indexing typically involves the process of stripping away details that are unimportant in terms of search.
However, complete applications must also report results and generate meaningful output. Figure 6 shows an
example of output from a cross-lingual search engine that has found relevant Chinese and Arabic documents
given search terms in English. The system uses UIMA and many of the components discussed in this paper to
provide access to a multilingual database of documents.

Fully indexed text fields in databases often change substantially the way that applications are designed.
While structured data, and database normalization are important contributors to efficiency and scaling, many
real world problems resist structuring. Text fields are widely used in applications to capture those ad-hoc details.
Without full-text indexing, these fields are essentially opaque to the application, and, unfortunately, the users.

As applications continue to push into international forums, the need to uniformly handle records regardless
of the language is increasingly important. Fortunately, mature standards already exist that database designers
should consider when extending these capabilities. Unicode technology is already part of most desktop comput-
ers through their web browsers. Modularizing the full-text indexing capability of contemporary databases, and
standardization of the analysis would be a substantial step in the right direction.

10

References

[1] Yaser Al-Onaizan and Kevin Knight. Translating named entities using monolingual and bilingual resources. In ACL
’02: Proc. of the 40th Annual Meeting on Association for Computational Linguistics, pages 400–408, Morristown,
NJ.

[2] Olga Artemenko, Thomas Mandl, Margaryta Shramko, and Christa Womser-Hacker. Evaluation of a language iden-
tification system for mono- and multilingual text documents. In SAC ’06: Proc. of the 2006 ACM symposium on
Applied computing, pages 859–860, New York, NY.

[3] Oleg Bartunov and Teodor Sigaev. Tsearch2. PostgreSQL RDBMS Extension
http://www.sai.msu.su/ megera/postgres/gist/tsearch/V2/.

[4] Jennifer Chu-Carroll, John Prager, Krzysztof Czuba, David Ferrucci, and Pablo Duboue. Semantic search via XML
fragments: a high-precision approach to IR. In SIGIR ’06: Proc. of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 445–452, New York, NY.

[5] Microsoft Corporation. SQL server 2005: Full text search architecture. http://msdn2.microsoft.com/en-
us/library/ms142541.aspx, April 2006.

[6] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. Gate: an architecture for develop-
ment of robust HLT applications. In ACL ’02: Proc. of the 40th Annual Meeting on Association for Computational
Linguistics, pages 168–175, Morristown, NJ.

[7] Mark Davis. Unicode normalization forms. Unicode Technical Report 15, The Unicode Consortium, San Jose, CA,
August 1998.

[8] Mark Davis. Case mappings. Unicode Technical Report 21, The Unicode Consortium, San Jose, CA, November
1999.

[9] David Ferrucci and Adam Lally. UIMA: an architectural approach to unstructured information processing in the
corporate research environment. Nat. Lang. Eng., 10(3-4):327–348, 2004.

[10] Martin Franz, J. Scott McCarley, and Salim Roukos. Ad hoc and multilingual information retrieval at IBM. In TREC
’89: Text Retrieval Conference, National Institute of Standards and Technology, pages 104–115, 1998.

[11] J. M. Hellerstein, J. F. Naughton, and Avi Pfeffer. Generalized search trees for database systems. In Proc. of the 21st
International Conference on Very Large Data Bases, 1995.

[12] International Business Machines, Inc. International components for Unicode user guide. Software Library
http://icu.sourceforge.net/, 2006.

[13] A. Kumaran, Pavan K. Chowdary, and Jayant R. Haritsa. On pushing multilingual query operators into relational
engines. In ICDE ’06: Proc. of the 22nd International Conference on Data Engineering, 2006.

[14] K. L. Kwok. Comparing representations in Chinese information retrieval. In Research and Development in Informa-
tion Retrieval, pages 34–41, 1997.

[15] Young-Suk Lee, Kishore Papineni, Salim Roukos, Ossama Emam, and Hany Hassan. Language model based Arabic
word segmentation. In ACL ’03: Proc. of the 41st Annual Meeting on Association for Computational Linguistics,
pages 399–406, Morristown, NJ.

[16] V. Mäkinen and G. Navarro. Compressed full-text indexes. Technical Report TR/DCC-2006-6, Department of
Computer Science, University of Chile, April 2006.

[17] Alan Marwick. Text mining for associations using UIMA and DB2 Intelligent Miner. IBM Developer Works,
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0602marwick/, February 2006.

[18] Paul Mcnamee and James Mayfield. Character n-gram tokenization for European language text retrieval. Inf. Retr.,
7(1-2):73–97, 2004.

[19] Suleiman H. Mustafa and Qasem A. Al-Radaideh. Using n-grams for Arabic text searching. J. Am. Soc. Inf. Sci.
Technol., 55(11):1002–1007, 2004.

11

[20] Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing Surveys, 33(1):31–88, 2001.

[21] Ari Pirkola, Jarmo Toivonen, Heikki Keskustalo, Kari Visala, and Kalervo Järvelin. Fuzzy translation of cross-lingual
spelling variants. In SIGIR ’03: Proc. of the 26th Annual International ACM SIGIR Conference on Research and
development in Information Retrieval, pages 345–352, New York, NY, 2003.

[22] M. F. Porter. Snowball: A language for stemming algorithms. http://snowball.tartarus.org, 2001.

[23] John M. Prager. Linguini: Language identification for multilingual documents. In HICSS ’99: Proc. of the Thirty-
Second Annual Hawaii International Conference on System Sciences-Volume 2, page 2035, Washington, DC, 1999.

[24] Global Reach. Global Internet statistics (by language). http://global-reach.biz/globstats/evol.html, 2004.

[25] Charles Schafer. Novel probabilistic finite-state transducers for cognate and transliteration modeling. In Proc. of the
7th Conference of the Association for Machine Translation of the Americas, pages 203–212, Cambridge, MA, August
2006.

[26] Richard Sproat, Chilin Shih, William Gale, and Nancy Chang. A stochastic finite-state word-segmentation algo-
rithm for Chinese. In Proc. of the 32nd annual meeting on Association for Computational Linguistics, pages 66–73,
Morristown, NJ, 1994.

[27] Suzanne Topping. The secret life of Unicode. IBM Developer Works, http://www-
128.ibm.com/developerworks/library/u-secret.html, May 2001.

[28] Jakob Voss. Measuring Wikipedia. In Proc. of the 10th International Conference of the International Society for Sci-
entometrics and Informetrics 2005. International Society for Scientometrics and Informetrics, Stockholm, Germany,
July 2005.

[29] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kaufmann Publishers, San Francisco, CA, 1999.

[30] Jinxi Xu, Alexander Fraser, and Ralph M. Weischedel. TREC 2001 cross-lingual retrieval at BBN. In TREC ’01:
Text Retrieval Conference, National Institute of Standards and Techonology, 2001.

[31] Imed Zitouni, Jeffrey S. Sorensen, and Ruhi Sarikaya. Maximum entropy based restoration of Arabic diacritics. In
ACL ’06: Proc. of the 41st Annual Meeting on Association for Computational Linguistics, Sydney, Australia, 2006.

[32] J. Zobel and P. W. Dart. Phonetic string matching: Lessons from information retrieval. In H.-P. Frei, D. Harman,
P. Schäble, and R. Wilkinson, editors, Proc. of the 19th International Conference on Research and Development in
Information Retrieval, pages 166–172, Zurich, Switzerland, 1996.

12

