WAVE: Automatic Verification of Data-Driven Web Services*

Alin Deutsch Victor Vianu
Department of Computer Science & Engineering
University of California, San Diego

Abstract

Data-driven Web services, viewed broadly as interactivstesys available on the Web for users and
programs, provide the backbone for increasingly compleX Afeplications. While this yields ever-
increasing functionality, the added complexity rendershsapplications more vulnerable to bugs and
failures, potentially compromising their robustness andectness. Therefore, there is a need to develop
verification techniques for such Web services. WaE project at UC San Diego aims to develop
new approaches for automatic verification of data-driverb\WWervices. The work relies on a novel,
highly effective marriage of model checking and databaskrigues. We summarize briefly the main
contributions of the project, which range from theoreti@indations to the successful implementation
of a prototype verifier.

1 Verification of stand-alone data-driven Web services

We first outline our results on verification of data-driveniéervices for single peers in isolation, then dicsuss
extensions of the results to compositions of Web servicesfddlus on services interacting with external users
or programs through a Web browser interface, and accessinmaerlying database. Such services include
e-commerce sites, scientific and other domain-specifialspre-government, etc. These Web sites are often
governed by complex, data-dependent workflows, contrdiiedueries. The spread of such services has been
accompanied by the emergence of tools for their high-lepetiication. A representative, commercially suc-
cessful example is WebML [1], which allows to specify a Welplagation using an interactive variant of the
E-R model augmented with a workflow formalism. The code fer\t¥eb application is automatically generated
from the WebML specification. This not only allows fast piiyfmng and improves programmer productivity but
also provides new opportunities for automatic verificatiomeed, ouwaAvE prototype automatically verifies a
significant class of such services. Verification leads togased confidence in the correctness of database-driven
Web applications generated from high-level specificatitnysaddressing the most likely source of errors (the
application’s specification, as opposed to the less likelgre in the automatic generator’s implementation).

We focus on interactive Web sites generating Web pages dgafyrby queries on an underlying database.
The Web site accepts input from external users or prograwssilly subject to specified pre-conditions. It
responds by taking some action, updating its internal skatgbase, and moving to a new Web page determined

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbd from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee e Data Engineering

*Supported by the NSF under grant numbers 11S/0415257 andBEARR347968. Address: CSE 0404, UC San Diego, La Jolla, CA
92093-0404, USA

by yet another query. We model the queries used in the spaaicof the Web service as first-order queries
(FO), also known as relational calculus, which can be vieag@n abstraction of the data manipulation core
of SQL. Arun is a sequence of inputs together with the Web pages, statésciions generated by the Web
service. The properties we wish to verify range from basimsioess of the specification (e.g. the next Web page
to be displayed is always uniquely defined) to semantic ptigse(e.g. no order is shipped before a payment
in the right amount is received). Such properties are egpregsing an extension lifiear-time temporal logic
(LTL). Recall that LTL is propositional logic augmented lvitemporal operators such akvays, eventually,
next anduntil. The extension uses FO formulas in place of the atomic pitigos of classical LTL, yielding a
language called LTL-FO.

For example, the following is an LTL-FO formula stating tifat productz is paid at some point in the right
amounty, thenz is eventually delivered:

VzVy always|(pay(z,y) A price(x,y)) — eventually (deliver(x))]

Herepayis an input,price is a database relation, addliveris an action relation.

The task of a verifier is to check that all runs of the Web sergitisfy a given LTL-FO property (as usual
in verification, runs are considered to be infinite). Verdgisearch for counter-examples to the desired property,
i.e. runs leading to a violation. A verifier mompletelf it is guaranteed to find a counter-example whenever
one exists. In the broader context of verification, a daloliven Web service is amfinite-statesystem,
because the underlying database queried by the appligatiai fixed in advance. This poses an immediate and
seemingly insurmountable challenge. Classical verificatieals with finite-state systems, modeled in terms
of propositions. For more expressive specifications, taditional approach suggests the following strategy:
first abstract the specification to a fully propositional @mal next apply an existing model checker such as
SPIN [6] to verify LTL properties of the abstracted model.isTapproach is unsatisfactory when the data values
are first-class citizens, as in data-driven Web applicatidror example, abstraction would allow checking that
someproduct was delivered aftesomepayment was completed. However, we could not inspect thepaiyand
product data values to verify that the payment was for thigeleld item, and in the correct amount. Conventional
wisdom holds that, short of using abstraction, it is hopekesattempt complete verification of infinite-state
systems. In this respeatiavE represents a significant departure because it is completedi@actically relevant
class of infinite-state specifications. As far as we knovg, ihithe first implementation of such a verifier.

In general, complete verification is easlily seen to be umidde. Thus, completeness is only guaranteed
under certain restrictions described shortly. To show thase restrictions cover a large class of applications,
we have modeled a computer shopping Web site similar to tiesiies an airline reservation application similar
to Expedia, an online bookstore in the spirit of Barnes & Molbind a sports Web site on the Motorcycle Grand
Prix. We used these applications in our experimental etialuaf WAVE. If the specification and the property
do not satisfy the restrictions needed for completenesse can still be used as an incomplete verifier, as
typically done in software verification. The heuristics vexveloped remain just as effective in this case.

We now describe informally the restrictions on the Web ser@pecifications and properties that guarantee
completeness, calledput boundednedd, 5]. Recall that the queries we use in the specification eb\8&rvice
as well as properties are FO queries. In a nutshell, inputdedness restricts the range of quantifications in FO
formulas to values occurring in the input. This is natural¢s interactive Web applications are input-driven. For
example, to state that every payment received is in the agidunt, one might use the input-bounded formula
VaVylpay(x,y) — price(z,y)], wherepay(x,y) is an input angrice is a database relation providing the price
for each item.

Our main theoretical result shows the decidability of martedcking for input-bounded specifications and
properties. The complexity of checking that a Web servieecsigation)V satisfies an LTL-FO property is
shown to beesPACE We briefly describe the technique underlying this ressltyall as the implementation of
WAVE. In our scenario, a first difficulty facing a verifier is thathexistive exploration of all possible runs of a

Web servicé/V on all databases is impossible since there are infinitelyyrpassible databases and the length
of runs is infinite. The solution lies in avoiding explicit@rration of the state space. Instead of materializing a
full initial database and exploring the possible runs owé,generate a compact representation of equivalence
classes of actual runs, callpdeudo-runshy lazily making at each point in the run just the assumstioeeded

to obtain the next configuration and check satisfactiop.opecifically, for input-boundetly and, this can

be done as follows:

(i) explicitly specify the tuples in the database that usky ensmall set of relevant constants computed
from W and; this is called thecore of the database and remains unchanged throughout the sgizdt
is polynomial inWV andp.

(i) ateach step in the run, make additional assumptionatahe content of the database, needed to determine
the next possible configurations. The assumptions invaiye @small set of additional values.

The key point is that the local assumptions made in (ii) ahestep need not be checked for global consistency.
Indeed, a non-obvious consequence of the input-boundédcties is that these assumptions are guaranteed
to be globally consistent witsomevery large database which is however never explicitly aoiesed. Since
pseudo-run configurations are of polynomial size, thisdged PSPACEverification algorithm and establishes
our main theoretical result [5].

Theorem 1: Given an input-bounded Web service specificatidhand LTL-FO formulay, it is PSPACE
complete whetheyV satisfiesy.

ThepPsPACEuUpper bound holds assuming a fixed bound on the arity of deg¢advad state relations. Other-
wise, the complexity iEXPSPACE(with the arity in the exponent). It is worth noting that, iretbroader context
of static analysis, thesPACEcomplexity is the best one can hope for. Indeed, recall the satisfaction of a
propositional LTL property by a finite-state Mealy machiaalreadyrSPACEcomplete.

The input-boundedness restriction imposed for decidgtilirns out to be quite tight. Indeed, we showed
that even minor relaxations to these restrictions lead tiecidability. Some extensions to the model also lead
to undecidability, such as allowing key constraints on thtadase. On the other haresPACE decidability
continues to hold with built-in predicates such as a denderayn the domain.

The WAVE verifier To explore the practical feasibility of our ideas, we emledrkipon the implementation of
the wavE verifier. First, we developed a tool for high-level, effidiepecification of data-driven Web services,
in the spirit of WebML. Next, we implementedave taking as input a specification of a Web service using our
tool, and an LTL-FO property to be verified. The implememtatis made possible by a novel coupling of clas-
sical model-checking with database optimization techesqunterestingly, the starting point is the pseudo-run
technique used to show tlrsPACEuUpper bound. However, verification becomes practical amlgonjunction
with an array of additional heuristics and optimizationhigiques, yielding critical improvements. Chief among
these is dataflow analysis, allowing to dramatically cut ddahve number of database cores and pseudo-runs
generated in a search.

We evaluated the verifier on a set of practically significariVdpplication specifications, mimicking the
core features of sites such as Dell, Expedia, and Barnes ahl@NThe experimental results are quite exciting:
we obtained surprisingly good verification times (on thesomaf seconds), suggesting that automatic verification
is practically feasible for large classes of properties ®ab services. We describe the implementation and
our experimental results in [2]. A demo of the WAVE prototyisepresented in [4] and is also available at
http://db.ucsd.edu/wave.

2 Extension to Web service compositions

The above results apply to the verification of single peefisatation. We extended these results to the more
challenging but practically interesting casea@mpositionsof Web services. Asynchronous communication
between peers adds another dimension that has to be takeacicwunt. We briefly describe the model and
results.

In a composition of Web services, peers communicate with etteer by sending and receiving messages
via one-way channels implemented message queuefach queue is associated with a unique sender who
places messages into the queue, and a unique receiver wiiances messages from it in FIFO order (thus, we
assume messages arrive in the same order they were sentineBisages can bkat or nested Flat messages
consist of single tuples, e.g. the age and social securityben of a given customer. Nested messages consist of
a set of tuples, e.g. the set of books written by an author.

As in the stand-alone case, each peer can receive extepud$iand produce actions (sets of tuples). In a
composition, each peer additionally consumes messagasitsonput queues, and generates output messages.
A configurationof the composition consists of the configurations of all ipgrating peers (the database, their
local state relations, inputs, current action relatioms] the message queues). A run of the composition is a
sequence of consecutive configurations. We only consid@liged runs, in which at every step precisely one
peer performs a transition. Properties of runs to be verdredspecified in an extension of LTL-FO, where the
FO statements may additionally refer to the messages ¢lyrread and sent.

In order to obtain decidability of verification, we need taemnd the input-boundedness restriction introduced
for single peers. Naturally, we need to also require inmutAgdedness of the queries defining output messages.
Additional restrictions must be placed on the message @isinithey may be lossy, but are required to be
bounded. With these restrictions, verification is againnshio bePsPACEcomplete (for fixed-arity relations,
andEXPSPACEotherwise).

The above model of compositions assumes that all spedificatf participating peers are available to
the verifier. However, compositions may also involve autooos parties unwilling to disclose the internal
implementation details. In this case, the only informatamailable is typically a specification of their input-
output behavior. This led us to investigatmdularverification. This consists in verifying that a subset ofyful
specified peers behaves correctly, subject to input-oyipaperties of the other peers. We obtained similar
decidability results for verification, subject to an appiage extension of the input-boundedness restriction.

The results on verification of Web service compositions asedbed in [3].

ConclusionThe results of thevAavE project obtained so far are very encouraging. They sugbasitriteractive
applications controlled by database queries may be urysuell suited to automatic verification, and that our
approach based on a mix of model checking and database patiom techniques may come to have significant
practical impact.

References

[1] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comaind M. Matera.Designing data-intensive Web
applications Morgan-Kaufmann, 2002

[2] A. Deutsch, M. Marcus, L. Sui, V. Vianu and D. Zhou: A vesififor interactive, data-driven Web applica-
tions.ACM SIGMOD Conferenc2005: 539-550

[3] A. Deutsch, L. Sui, V. Vianu, D. Zhou: Verification of conunicating data-driven Web serviceSCM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database@gtPODS) 2006: 90-99

[4] A. Deutsch, L. Sui, V. Vianu, D. Zhou: A system for spedimn and verification of interactive, data-
driven Web applications (demo papeCM SIGMOD Conferenc2006: 772-774

[5] A. Deutsch, L. Sui, V. Vianu: Specification and verificati of data-driven Web applications. Invited to

special issue aJ. Comput. Syst. SA3(3): 442-474 (2007). Extended abstracAldM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Sys{@&@DS) 2004: 71-82

[6] G. Holzmann.The Spin Model Checker — Primer and Reference Manidtlison-Wesley, 2003

[71 M. Spielmann. Verification of relational transducers fdectronic commerce.J. Comput. Syst. Sci.

66(1):40-65 (2003). Extended abstract ACM SIGMOD-SIGACT-SIGART Symp. on Principles of
Database SystenfPODS) 2000: 92-103

