
WAVE: Automatic Verification of Data-Driven Web Services∗

Alin Deutsch Victor Vianu
Department of Computer Science & Engineering

University of California, San Diego

Abstract

Data-driven Web services, viewed broadly as interactive systems available on the Web for users and
programs, provide the backbone for increasingly complex Web applications. While this yields ever-
increasing functionality, the added complexity renders such applications more vulnerable to bugs and
failures, potentially compromising their robustness and correctness. Therefore, there is a need to develop
verification techniques for such Web services. TheWAVE project at UC San Diego aims to develop
new approaches for automatic verification of data-driven Web services. The work relies on a novel,
highly effective marriage of model checking and database techniques. We summarize briefly the main
contributions of the project, which range from theoreticalfoundations to the successful implementation
of a prototype verifier.

1 Verification of stand-alone data-driven Web services

We first outline our results on verification of data-driven Web services for single peers in isolation, then dicsuss
extensions of the results to compositions of Web services. We focus on services interacting with external users
or programs through a Web browser interface, and accessing an underlying database. Such services include
e-commerce sites, scientific and other domain-specific portals, e-government, etc. These Web sites are often
governed by complex, data-dependent workflows, controlledby queries. The spread of such services has been
accompanied by the emergence of tools for their high-level specification. A representative, commercially suc-
cessful example is WebML [1], which allows to specify a Web application using an interactive variant of the
E-R model augmented with a workflow formalism. The code for the Web application is automatically generated
from the WebML specification. This not only allows fast prototyping and improves programmer productivity but
also provides new opportunities for automatic verification. Indeed, ourWAVE prototype automatically verifies a
significant class of such services. Verification leads to increased confidence in the correctness of database-driven
Web applications generated from high-level specifications, by addressing the most likely source of errors (the
application’s specification, as opposed to the less likely errors in the automatic generator’s implementation).

We focus on interactive Web sites generating Web pages dynamically by queries on an underlying database.
The Web site accepts input from external users or programs, possibly subject to specified pre-conditions. It
responds by taking some action, updating its internal statedatabase, and moving to a new Web page determined

Copyright 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Supported by the NSF under grant numbers IIS/0415257 and CAREER/0347968. Address: CSE 0404, UC San Diego, La Jolla, CA
92093-0404, USA

1



by yet another query. We model the queries used in the specification of the Web service as first-order queries
(FO), also known as relational calculus, which can be viewedas an abstraction of the data manipulation core
of SQL. A run is a sequence of inputs together with the Web pages, states, and actions generated by the Web
service. The properties we wish to verify range from basic soundness of the specification (e.g. the next Web page
to be displayed is always uniquely defined) to semantic properties (e.g. no order is shipped before a payment
in the right amount is received). Such properties are expressed using an extension oflinear-time temporal logic
(LTL). Recall that LTL is propositional logic augmented with temporal operators such asalways, eventually,
next anduntil . The extension uses FO formulas in place of the atomic propositions of classical LTL, yielding a
language called LTL-FO.

For example, the following is an LTL-FO formula stating thatif a productx is paid at some point in the right
amounty, thenx is eventually delivered:

∀x∀y always[(pay(x, y) ∧ price(x, y)) → eventually (deliver(x))]

Herepay is an input,price is a database relation, anddeliver is an action relation.
The task of a verifier is to check that all runs of the Web service satisfy a given LTL-FO property (as usual

in verification, runs are considered to be infinite). Verifiers search for counter-examples to the desired property,
i.e. runs leading to a violation. A verifier iscompleteif it is guaranteed to find a counter-example whenever
one exists. In the broader context of verification, a database-driven Web service is aninfinite-statesystem,
because the underlying database queried by the applicationis not fixed in advance. This poses an immediate and
seemingly insurmountable challenge. Classical verification deals with finite-state systems, modeled in terms
of propositions. For more expressive specifications, the traditional approach suggests the following strategy:
first abstract the specification to a fully propositional oneand next apply an existing model checker such as
SPIN [6] to verify LTL properties of the abstracted model. This approach is unsatisfactory when the data values
are first-class citizens, as in data-driven Web applications. For example, abstraction would allow checking that
someproduct was delivered aftersomepayment was completed. However, we could not inspect the payment and
product data values to verify that the payment was for the delivered item, and in the correct amount. Conventional
wisdom holds that, short of using abstraction, it is hopeless to attempt complete verification of infinite-state
systems. In this respect,WAVE represents a significant departure because it is complete for a practically relevant
class of infinite-state specifications. As far as we know, this is the first implementation of such a verifier.

In general, complete verification is easlily seen to be undecidable. Thus, completeness is only guaranteed
under certain restrictions described shortly. To show thatthese restrictions cover a large class of applications,
we have modeled a computer shopping Web site similar to the Dell site, an airline reservation application similar
to Expedia, an online bookstore in the spirit of Barnes & Noble, and a sports Web site on the Motorcycle Grand
Prix. We used these applications in our experimental evaluation of WAVE. If the specification and the property
do not satisfy the restrictions needed for completeness,WAVE can still be used as an incomplete verifier, as
typically done in software verification. The heuristics we developed remain just as effective in this case.

We now describe informally the restrictions on the Web service specifications and properties that guarantee
completeness, calledinput boundedness[7, 5]. Recall that the queries we use in the specification of Web service
as well as properties are FO queries. In a nutshell, input boundedness restricts the range of quantifications in FO
formulas to values occurring in the input. This is natural, since interactive Web applications are input-driven. For
example, to state that every payment received is in the rightamount, one might use the input-bounded formula
∀x∀y[pay(x, y) → price(x, y)], wherepay(x, y) is an input andprice is a database relation providing the price
for each item.

Our main theoretical result shows the decidability of modelchecking for input-bounded specifications and
properties. The complexity of checking that a Web service specificationW satisfies an LTL-FO propertyϕ is
shown to bePSPACE. We briefly describe the technique underlying this result, as well as the implementation of
WAVE. In our scenario, a first difficulty facing a verifier is that exhaustive exploration of all possible runs of a

2



Web serviceW on all databases is impossible since there are infinitely many possible databases and the length
of runs is infinite. The solution lies in avoiding explicit exploration of the state space. Instead of materializing a
full initial database and exploring the possible runs on it,we generate a compact representation of equivalence
classes of actual runs, calledpseudo-runs, by lazily making at each point in the run just the assumptions needed
to obtain the next configuration and check satisfaction ofϕ. Specifically, for input-boundedW andϕ, this can
be done as follows:

(i) explicitly specify the tuples in the database that use only a small set of relevant constantsC computed
from W andϕ; this is called thecoreof the database and remains unchanged throughout the run. Its size
is polynomial inW andϕ.

(ii) at each step in the run, make additional assumptions about the content of the database, needed to determine
the next possible configurations. The assumptions involve only a small set of additional values.

The key point is that the local assumptions made in (ii) at each step need not be checked for global consistency.
Indeed, a non-obvious consequence of the input-bounded restriction is that these assumptions are guaranteed
to be globally consistent withsomevery large database which is however never explicitly constructed. Since
pseudo-run configurations are of polynomial size, this yields aPSPACEverification algorithm and establishes
our main theoretical result [5].

Theorem 1: Given an input-bounded Web service specificationW and LTL-FO formulaϕ, it is PSPACE-
complete whetherW satisfiesϕ.

ThePSPACEupper bound holds assuming a fixed bound on the arity of database and state relations. Other-
wise, the complexity isEXPSPACE(with the arity in the exponent). It is worth noting that, in the broader context
of static analysis, thePSPACEcomplexity is the best one can hope for. Indeed, recall that even satisfaction of a
propositional LTL property by a finite-state Mealy machine is alreadyPSPACE-complete.

The input-boundedness restriction imposed for decidability turns out to be quite tight. Indeed, we showed
that even minor relaxations to these restrictions lead to undecidability. Some extensions to the model also lead
to undecidability, such as allowing key constraints on the database. On the other hand,PSPACEdecidability
continues to hold with built-in predicates such as a dense order on the domain.

The WAVE verifier To explore the practical feasibility of our ideas, we embarked upon the implementation of
the WAVE verifier. First, we developed a tool for high-level, efficient specification of data-driven Web services,
in the spirit of WebML. Next, we implementedWAVE taking as input a specification of a Web service using our
tool, and an LTL-FO property to be verified. The implementation is made possible by a novel coupling of clas-
sical model-checking with database optimization techniques. Interestingly, the starting point is the pseudo-run
technique used to show thePSPACEupper bound. However, verification becomes practical only in conjunction
with an array of additional heuristics and optimization techniques, yielding critical improvements. Chief among
these is dataflow analysis, allowing to dramatically cut down the number of database cores and pseudo-runs
generated in a search.

We evaluated the verifier on a set of practically significant Web application specifications, mimicking the
core features of sites such as Dell, Expedia, and Barnes and Noble. The experimental results are quite exciting:
we obtained surprisingly good verification times (on the order of seconds), suggesting that automatic verification
is practically feasible for large classes of properties andWeb services. We describe the implementation and
our experimental results in [2]. A demo of the WAVE prototypeis presented in [4] and is also available at
http://db.ucsd.edu/wave.

3



2 Extension to Web service compositions

The above results apply to the verification of single peers inisolation. We extended these results to the more
challenging but practically interesting case ofcompositionsof Web services. Asynchronous communication
between peers adds another dimension that has to be taken into account. We briefly describe the model and
results.

In a composition of Web services, peers communicate with each other by sending and receiving messages
via one-way channels implemented bymessage queues. Each queue is associated with a unique sender who
places messages into the queue, and a unique receiver who consumes messages from it in FIFO order (thus, we
assume messages arrive in the same order they were sent). Themessages can beflat or nested. Flat messages
consist of single tuples, e.g. the age and social security number of a given customer. Nested messages consist of
a set of tuples, e.g. the set of books written by an author.

As in the stand-alone case, each peer can receive external inputs and produce actions (sets of tuples). In a
composition, each peer additionally consumes messages from its input queues, and generates output messages.
A configurationof the composition consists of the configurations of all participating peers (the database, their
local state relations, inputs, current action relations, and the message queues). A run of the composition is a
sequence of consecutive configurations. We only consider serialized runs, in which at every step precisely one
peer performs a transition. Properties of runs to be verifiedare specified in an extension of LTL-FO, where the
FO statements may additionally refer to the messages currently read and sent.

In order to obtain decidability of verification, we need to extend the input-boundedness restriction introduced
for single peers. Naturally, we need to also require input-boundedness of the queries defining output messages.
Additional restrictions must be placed on the message channels: they may be lossy, but are required to be
bounded. With these restrictions, verification is again shown to bePSPACE-complete (for fixed-arity relations,
andEXPSPACEotherwise).

The above model of compositions assumes that all specifications of participating peers are available to
the verifier. However, compositions may also involve autonomous parties unwilling to disclose the internal
implementation details. In this case, the only informationavailable is typically a specification of their input-
output behavior. This led us to investigatemodularverification. This consists in verifying that a subset of fully
specified peers behaves correctly, subject to input-outputproperties of the other peers. We obtained similar
decidability results for verification, subject to an appropriate extension of the input-boundedness restriction.

The results on verification of Web service compositions are described in [3].

ConclusionThe results of theWAVE project obtained so far are very encouraging. They suggest that interactive
applications controlled by database queries may be unusually well suited to automatic verification, and that our
approach based on a mix of model checking and database optimization techniques may come to have significant
practical impact.

References

[1] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera.Designing data-intensive Web
applications. Morgan-Kaufmann, 2002

[2] A. Deutsch, M. Marcus, L. Sui, V. Vianu and D. Zhou: A verifier for interactive, data-driven Web applica-
tions.ACM SIGMOD Conference2005: 539-550

[3] A. Deutsch, L. Sui, V. Vianu, D. Zhou: Verification of communicating data-driven Web services.ACM
SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems(PODS) 2006: 90-99

4



[4] A. Deutsch, L. Sui, V. Vianu, D. Zhou: A system for specification and verification of interactive, data-
driven Web applications (demo paper).ACM SIGMOD Conference2006: 772-774

[5] A. Deutsch, L. Sui, V. Vianu: Specification and verification of data-driven Web applications. Invited to
special issue ofJ. Comput. Syst. Sci.73(3): 442-474 (2007). Extended abstract inACM SIGMOD-SIGACT-
SIGART Symp. on Principles of Database Systems(PODS) 2004: 71-82

[6] G. Holzmann.The Spin Model Checker – Primer and Reference Manual. Addison-Wesley, 2003

[7] M. Spielmann. Verification of relational transducers for electronic commerce.J. Comput. Syst. Sci.
66(1):40–65 (2003). Extended abstract inACM SIGMOD-SIGACT-SIGART Symp. on Principles of
Database Systems(PODS) 2000: 92-103

5


