Experienceswith XQuery Processing
for Data and Service Feder ation

Michael Blow, Vinayak Borkar, Michael Carey, Daniel Engtog
Dmitry Lychagin, Panagiotis Reveliotis, Joshua Spiegdll \Westmann*

Abstract

In this paper, we describe our experiences in building anoéwg an XQuery engine with a focus on

data and service federation use cases. The engine that wasdiss a core component of the BEA
Aqualogic Data Services Platform product (recently reeesled under the name Oracle Data Service
Integrator). This XQuery engine was designed to provideieffi query and update capabilities over

various classes of enterprise data sources, serving asdteatcess layer in a service-oriented archi-

tecture (SOA). The goal of this paper is to give an architedtaverview of the engine, discussing some
of the key implementation techniques that were employe@khaswseveral XQuery language extensions
that were introduced to address common data and servicgratien problems and challenges.

1 Introduction

The advent of relational databases in the 1970’s usheregioductive era in which developers of data-centric
applications could work more efficiently than ever beforestéad of writing procedural programs to access and
manipulate data, declarative queries could accomplistsdinge tasks. With physical schemas hidden by the
relational model, developers spent less time worrying apetformance, as physical changes no longer implied
program changes. Simplified views could be defined and us#doenfidence because rewrite optimizations
ensured that queries over views are just as performant aeguer base data. The relational revolution was
a huge success and led to many commercial database prodilroisst every enterprise application developed
in the past 15-20 years uses a relational database for feeists and all enterprises run major aspects of their
operations on relationally-based packaged applicatikesSAP, Oracle Financials, PeopleSoft, Siebel, Clarify,
and SalesForce.com.

Today, developers of data-centric enterprise applicatfage a new challenge. There are many different
relational database systems (Oracle, DB2, SQL Server, MySQ and a given enterprise is likely to have
a number of different relational databases within its comfm walls; information about key business entities
like customers or employees commonly exists in multipl@ases. Also, while most “corporate jewels” are
stored relationally, they are often relationally inacdadssbecause the applications enforce the business rules

Copyright 2008 IEEE. Personal use of this material is petedit However, permission to reprint/republish this makfor
advertising or promotional purposes or for creating newledlive works for resale or redistribution to servers ottdisor to reuse any
copyrighted component of this work in other works must bainbtl from the IEEE.

Bulletin of the |[EEE Computer Society Technical Committee on Data Engineering

*Work was done while authors were at BEA Systems, Inc. Cuafifiations: Michael Blow, Dmitry Lychagin, and Joshua &geél
- Oracle Corporation. Vinayak Borkar - Black Titan SoftwdreC. Michael Carey - University of California, Irvine. D&t Engovatov
- Stanford University. Panagiotis Reveliotis - Compositét®are, Inc. Till Westmann - SAP

and control the business logic. Meaningful access mustdbiee through the “front door” via application APIs.
Because of this, developers of new applications face a nirajegration challenge: bits and pieces of a given
business entity will live in a mix of relational databaseaclaged applications, files, legacy mainframe systems,
and/or home-grown applications. New “composite” appiaad need to somehow be created from these parts.
Composite application development is the goal of the sergitented architecture (SOA) movement [2].
XML-based Web services are one piece of the puzzle, prayigimysical normalization for intra- and inter-
enterprise service invocations and data exchange. Welzseamchestration languages [3] are another piece of
the puzzle, but are procedural by nature. At BEA, we felt thdeclarative approach was needed for creating
data serviceg8] for use in composite applications. We chose to ride thgenaeated by Web services and
the associated XML standards, using XML, XML Schema, and &@uo knit together a standards-based
foundation for data services development [9, 10]. The BEAidlgpgic Data Services Platform (ALDSP),
introduced in mid-2005, has XQuery in the leading role asahguage for accessing and composing information
from sources including relational databases, Web servigeskaged applications, and files. This paper reviews
the ALDSP XQuery implementation and some of the key chadleripat we addressed during its development.

2 Background

The types of data models employed by enterprise data sospegsfrom semi-structured to fully-structured,
from flat to hierarchical to graph-based, and from untypedbtsely-typed to strictly-typed. For example,
relational databases contain structured, flat data whildeXidcuments contain semi-structured, hierarchical
data. Some backend sources may require input or provideioiutgthe form of flat, structured data (e.g. stored
procedures), or hierarchical, semi-structured data (&/gb services). Given the vast heterogeneity found in
enterprise data models, a data federation approach shopfibd access to as many different kinds of data
sources as possible and employ a rigorous yet versatiletzdeal and type system.

In our approach, the XML data model [11], XML Schema [4, 5]ddhe XQuery language [13] serve as a
solid foundation for integrating diverse data sources. Xpiavides a flexible way of describing many different
types of data representations, while XML Schema offers adstal facility for the formal definition of both
simple and complex, hierarchical types. The combinatioXMf. Schema types and the concept of sequence
type, specified by the XQuery type system, facilitates tleeifjgation of data models that go beyond document
types, admitting collections of heterogeneous, arbijrahiaped data items, and providing additional constructs
for advanced usages [12].

XQuery has been specifically designed to query XML documediite paying a lot of attention to many
details of XML-centric data processing. XQuery supportthbigped and untyped data, focusing on structured
as well as semi-structured use cases [14]. The languagdkistsieclarative, enabling many rewriting and op-
timization opportunities for the compiler and runtime aregimany of which have been extensively researched
over the past years (e.g., [6, 7]). XQuery is relatively efmsyse, with simple constructs for node construc-
tion, XPath-based navigation, and flexible FLWOR expressior joining and ordering of XML data. While
currently focusing on declarative query processing, thguage roadmap includes the XQuery Update Facility
extension [15], for handling data modifications in a dedlaeafashion, as well as the XQuery Scripting Exten-
sion [16], for imperative programming when strict evalaatorder is needed and side-effects may be present.
The XQuery language has an active community of users andri;igaadoption across many commercial soft-
ware vendors. All these factors make it an excellent langudmice for building a complex data federation
system.

Figure 1 illustrates how a complex data federation problérassembling a single view of customer in-
formation is easily accomplished in an XQuery-capableesystit demonstrates a scenario where the data is
assembled from three different data sources: two reldtidatabases containing customer information along
with the orders, and a Web service used to obtain the creihgraAccess to relational tables is modeled via

decl are nanespace db_custoner = ‘urn: CUSTOMER ;
decl are nanespace db_order = ‘urn: ORDER ;
decl are nanmespace websrv_credit_check = ‘urn: CREDI T_CHECK ;

decl are function getProfile() as el enent(custoner_profile)x
client API
for $custoner in db_custoner: CUSTOVER()
return - l
. —
<cust oner _profile> L7

<custoner _i d>{ data($custoner/cid) }</customer_id> query security

<nane> i
<first>{ data($customer/first_name) }</first> plar? compiler metadata
<l ast>{ data($customer/|ast_nane) }</last> \Cac e/ x

</ name> i

<credit_rating> - .
let $ssn := da{lt a($cust omer/ ssn) " L4 function
return websrv_credit_check: GET_CREDI T_RATI N& $ssn) data runtime metadata

}</credit_rating> cache

<order s>{ - I
for $order in db_order: ORDER()
wher e $order/customer_id eq $custoner/cid
order by $order/order_date descending adaptor framework
return

<or der >

<order _i d>{ data($order/order_id) }</order_id> / I \
<dat e>{ dat a($order/order_date) }</date> _ =
<total >{ data($order/total _amount) }</total > Web
oraral>{ datal -ameunt) RDBMS | | XML CSV | |goneo || Java
}</ orders>

</ customer_profile> queryable non-queryable functional

+

Figure 1: XQuery example Figure 2: Overview of the ALDSP engine architecture

XQuery function calls (dicustomer:CUSTOMER() and diwder:ORDER()), as is a parameterized invocation
of the Web service (websreredit check: GETCREDIT_RATING()). Note that, due to the usage of XML, the

result has a natural nested structure, allowing for comwdrtlient data consumption and simple bindings to
other programming environments and data models, such ag&&ata Objects (SDO) [17] and the Java Ar-
chitecture for XML Binding (JAXB) [18].

3 XQuery Language Extensions

While our experience has shown XQuery to be an excellenteHor a data federation language, we also found
it necessary to extend the language in certain ways in ocdsupport advanced querying capabilities and to
make existing features easier to use. This section descsimme of the language extensions that have been
implemented in ALDSP for these purposes.

e Metadata. In ALDSP, enterprise information sources are modeled asmat XQuery functions whose actual
implementations are transparently provided by the sysEaarly in the design of ALDSP we were faced with the
need to capture and store metadata pertaining to exterteakdarces. The solution we adopted was to extend
XQuery prolog declarations with a flexible concept of antiotes, which are XML fragments augmenting either
an individual function declaration or a whole prolog/maglint general [19]. They are defined using “pragma”
directives that either precede a function declaration peapat the beginning of a module/prolog definition:

(::pragma nane <XM._content/> ::)

As the content of an annotation is XML, it can easily hold ves kinds of information. One of the usages
of annotations in ALDSP is to describe data source bindirggnties such as relational database connectivity
configurations, Web service definition and endpoint locetjalelimited file format properties, etc. Over time,
ALDSP’s usage of annotations has evolved to store many diteils of a function/prolog configuration in the
product, such as function visibility scope, modeling kinalsdate configuration information, and key specifica-
tions. In retrospect, this powerful annotation framewoikimized the overall number of artifacts in the system
and allowed us to quickly introduce new concepts and feataseALDSP evolved.

e Optional node constructors. Renaming elements and attributes is a common operatioarpetl in queries
that integrate data. In the following example, an XQueryregpion is used to rename the customer’s “fesne”
element to “last”, creating a new element with the new nantecapying the typed value of the input element:

<l ast >{ data($custoner/|ast_nane) }</|ast>

Per XQuery semantics, this expression calls for the cocisbru of an empty element in the event that the
input is the empty sequence. But what if the user wants tdetba new element with the new name only if the
input is non-empty? One can express that logic in XQuery & follows:

if (exists(data($customer/|ast_nanme))) then <l ast>{ data($custoner/|ast_nane) }</last> else ()

Given the occurrence frequency of this sort of scenario ia oleegration use cases, a less verbose approach
was required. We extended the direct element and attrilarstizictors of XQuery with a ? modifier, so the
same logic can be expressed as follows in ALDSP:

<l ast ?>{ data($custoner/|ast_nanme) }</|ast>

To optionally create attributes based on the input, one avauite

<custoner | ast?="{ data($custoner/|ast_nane) }" />

e Group by. Grouping data is an important operation in query procesbimg unfortunately, the standard
XQuery 1.0 provides no concise way to do so. In our XQuery magive added a GROUP BY clause to the
FLWOR expression [1]. The following query constructs semas of customer names grouped by their zip
codes.

for $customer in db_customer: CUSTOVER()
group $custonmer as $c-group by $custoner/zip_code as $zip
return <group zi p="{ $zip }">{ $c-group/last_nane }</group>

e XQSE. Although any computation can be expressed in XQuery, SOmeepsing is easier to express in an
imperative manner (like in Java, C++, etc). This is alsovahe when the steps in a program have side effects
beyond the state of the program itself, as XQuery is a sifisefree language. We introduced the XQuery
Scripting Extension (XQSE), described in detail in [20],a@ercome this limitation of XQuery. XQSE is a
proper superset of XQuery based on statements. XQueryssipns can be used anywhere in an XQSE program
where an expression is expected. Some of the constructeegpn XQSE are “while” and “iterate” loops,
variable assignment with “set” statements, conditionfil Statements, and “try/catch” based error-handling,
which is commonplace in popular programming languages.

e Typing extensions. The XQuery standard includes an optional feature for stiyi¢yping expressions. We
found it necessary to extend the XQuery type inferencingsrth meet users’ requirements, as requiring query
writers to explicitly request revalidation on node constian in order to stay in the typed world was producing
a poor user experience. To work around this issue, we impitedea structural form of type inferencing; types
in ALDSP are represented by their structure rather than by #thema type name. This is also absolutely
essential for view unfolding, which needs to preserve tyferimation through the process of node construction
and subsequent drill-down [21].

4 Implementation Techniques

Figure 2 gives an overview of the ALDSP query engine. Quearessubmitted for execution through the client
API, compiled and optimized, then evaluated by the runtimesgstem, utilizing the adaptor framework for
external data source connectivity. Assisting in query essing are metadata context providers, which keep

4

track of various configuration parameters and other prseras well as caching components for improving
overall system performance.

Efficient query execution is crucial in data integrationrsmgos. Our experience has shown that layers of
XQuery functions are quite common in federated data viewsALDSP, users start with XQuery functions
representing physical data sources, then create fundtotagical transformations, and finally specialize them
for publishing through client APIs. User-defined XQuery dtions can be reused in each step during this
process, selection predicates can be applied at varioasslegnd code reuse could potentially result in subparts
of a function not being required for a final result. The ALDSRjime performs efficient query evaluation by
using standard optimization techniques such as functiming, unnesting, dead code elimination, and many
others [21]. All non-recursive functions are inlined in tieginning of the rewriting process, thus enabling the
optimizer to have a global view of the whole query. Subsetjaoptimization stages rely on this global view to
rewrite parts of the plan to a more efficient form, eliminatpressions that were determined to be unnecessary
for the result, and choose optimal implementations forinaatoperators.

Another important feature of our engine is the inclusioneaftional operators in its core XML query al-
gebra. During the query compilation phase, these operataile well-known relational optimizations such as
join reordering, predicate pushdown, transitive condifiaference, and many others. At runtime, relational op-
erators are evaluated on tuple streams in a traditionatipekl database like) manner. Efficient join processing
is vital to overall system performance. The ALDSP query cibengletects inner, outer, and semi-joins patterns
in XML queries and the execution engine implements themgusiell-known join algorithms. When it comes
to combining data from relational sources, ALDSP employstituted join method internally callezlustered
parameter passing joinit significantly reduces the number of accesses to the iymdgmatabase sources and
leads to a very efficient query evaluation. Grouping and eggfion operations require special attention in data
integration use cases and have always been at the focus oBRldDery processing. First of all, as described
in the previous section, ALDSP introduces an additionabtgrby” clause in the FLWR expression, which
is backed up by optimizer and runtime support. During quemngilation the optimizer may choose to split
group-by into two operations: clustering and pre-clustegeouping. Clustering is a weaker form of sorting
which may be merged with adjacent order-by clauses or editathaltogether if the optimizer can prove that the
input is already clustered on the required field. The grageiperation is then executed in a streaming fashion
on pre-clustered input.

Relational database systems play a central role in thenr#tion federation architecture, typically storing
most of the enterprise data. For this reason, the ALDSP ergpecifically focuses on optimizing database
access patterns. We designed and implemented ALDSP’s XQae2QL translation framework to identify
XQuery subexpressions and patterns that can be translate@quivalent SQL queries and pushed down to
underlying database sources for native execution. A ketyfeaf the SQL generator is its broad support of
different SQL dialects found in modern database systemi;hwik also customizable by users. The XQuery
to SQL translation process is driven by the ALDSP query ogtem First of all, it relies on the join identifi-
cation performed in previous optimization stages. Using f[docks in the plan, the optimizer then re-arranges
expressions to maximize SQL-able fragments. Finally,edBen SQL text generation stage which emits SQL
gueries and replaces XQuery fragments with database itwoaxpressions which will be executed at runtime.
The key problem we faced at this stage is how to preserve tharg& equivalence between a generated SQL
statement and the actual XQuery expression given by the wsefortunately, we found that in some cases
preservation may not be possible or may lead to highly sulaptquery execution plans. In these relatively
rare cases, the query optimizer is designed to prefer dwpraty performance over adhering exactly to precise
XQuery semantics, while also providing query architecthfexible mechanisms to control which parts of the
query are executed by the underlying databases and whievaieated in the middle tier by the ALDSP engine.
An example of such a semantic mismatch is when a databasendbpsoperly distinguish between an empty
string and a NULL value, or if it has some special rules foingttomparison operations on certain character
data types.

The major challenge in executing queries efficiently in thddieware is to avoid data materialization, as it
usually impacts performance negatively. The ALDSP runtangine meets this challenge by processing data
in a streaming fashion, thus preventing materializatiomndver possible. XML data is represented as a stream
of small tokens, each corresponding to a part of an XML dafa if22]. These tokens flow through the runtime
system and are discarded as soon as possible. The ALDSe@sahiXML data model extends the XQuery
Data Model with support for tuple tokens which serve as typaatainers for various data items. Having tuple
tokens greatly simplifies implementation of joins and ghagpoperators, at the same time natively matching
relational data obtained from back-end database systermgydyuery execution. In cases when large data sets
are unavoidable during query execution, the ALDSP runtioqgpsrts such time-tested memory management
techniques as external merge sorting and secondary stioiageerators.

5 Updates

We now turn our attention to the ALDSP update model. ALDSPRI Anables a client to execute a query,
operate on the results, and then submit the modified datatbguksist the changes. Changes on the client side
are transmitted using Service Data Objects (SDO) [17]. @rs#Hrver side we have extended the XQuery Data
Model (XDM) with an SDO-like ability to carry changes. Thesudt, eXtended XDM, or XXDM for short, is

a proper superset of XDM in terms of information content. inep words, XXDM can model everything that
XDM can model, and it can also model changes to XDM instances.

XXDM nodes share the same data model attributes as XDM negeq{1]) and have an additional attribute
called “state” which is used to indicate if the node has bdwemnged or not, and if so, how. This state attribute
can have one of four values: CREATED, DELETED, MODIFIED, oDNE. A newly created XXDM node
has a value of CREATED, a node to be deleted has a value of DEDE®& node that has been modified has a
value of MODIFIED, and a node that has not been altered halkia @aNONE. Like nodes, atomic values have
state as well but their attribute may not have a value of MOBIF Modified atomic values are represented by
a DELETED value (the old value) followed by a CREATED valuee(thew value). We use this finer-grained
indicator for modification of simple content so that chanigesequences of atomic values can be captured more
efficiently.

XXDM is similar, at least abstractly, to the pending updade(PUL) concept in the XQuery Update Facility
(XUF) [15]. While conceptually related, the goal of XXDM idffgdrent. The PUL is used to explain the
semantics of various XUF constructs, and is used only intglior that purpose. In contrast, XXDM is a
concrete extension to XDM that provides programmatic actesdata and changes.

Changes to a result set need to be translated to the undgdgita sources, and ALDSP provides the user
with two tools for doing this: automatic update maps and X@&te Section 3). Update maps are an internally
generated description of how to map values from target toceoUALDSP generates them automatically by
analyzing the XQuery source for a data service definition esgkntially inverting the query. The mapping
is described using an internal language that the user cgedhsfix, and augment using a graphical editor.
For cases where the update map is insufficient or unavajlgtdeXQSE scripting capabilities can be used to
decompose the changes manually. For this purpose, ALDSRipmoa built-in library of mutator functions for
working with XXDM instances. XQSE can also be used in comtiamawith update maps, allowing the user
to inject complex business logic or error handling withoatihg to hand code the basic “mapping” logic. We
refer the reader to [23] and [24] for more information.

6 Conclusion

In this paper we have explained how we utilized XQuery at BE#w& core technology for a modern information
integration product (ALDSP, now called ODSI — for Oracle ®&ervice Integrator). We discussed how we

implemented the full XQuery language in that context at BE@yering some of the techniques used to ensure
efficiency and some problems that we faced along the way. &ayniques included the use of efficient and
streamable internal data formats, much like those in coroialeelational query engines, and a strong focus on
delegating query processing to the underlying data costaiwhenever possible. We also briefly described how
ALDSP handles updates. Based on our experiences to datXiithand XQuery, as well as with the diversity
of enterprise data sources, we are very optimistic aboufufuge of XML and XQuery as the “right” fit for
information integration in the SOA era.

References

[1] V. Borkar, M. Carey,Extending XQuery for Grouping, Duplicate Elimination, a@diter Joins in XML
Conference and Expo., Nov, 2004.

[2] M. Huhns, M. Singh,Service-Oriented Computing: Key Concepts and Princjple$EEE Internet Com-
puting (9):2, 75-81, 2005.

[3] M. Singh, M. Huhns Service-Oriented Computing: Semantics, Processes, agd#fiey, 2005.

[4] World Wide Web Consortium, XML Schema Part 1: Structures Second Edition
http://imww.w3.0rg/TR/2004/WD-xquery-20040723/, 28 (=04.

[5] World Wide Web Consortium, XML Schema Part 2: Datatypes Second Edition
http://www.w3.0rg/TR/2004/WD-xquery-20040723/, 28 (004.

[6] V. Braganholo, S. Davidson, C. HeusErom XML View Updates to Relational View Updates: Old Sohsi
to a New Problemin Proc. of the Int'l Conference on Very Large Data Base$-287, 2004.

[7] Y. Papakonstantinou, V. Borkar, M. Orgiyan, K. Stattsgth. Suta, V. Vassalos, P. Velikho¥ML Queries
and Algebra in the Enosys Integration Platfqrim Data & Knowledge Engineering, (44):3, 299-322, 2003.

[8] M. Carey,Data Services: This is Your Data on SQA Business Integration Journal, Nov/Dec, 2005.

[9] V. Borkar, M. Carey, N. Mangtani, D. McKinney, R. Patel, Bhatte, XML Data Servicesin International
Journal of Web Services Research, (3):1, 85-95, 2006.

[10] M. Carey, the AquaLogic Data Services Platform Te&rata Delivery in a Service-Oriented World: The
BEA Aqualogic Data Services Platfoyim Proc. of the ACM SIGMOD Int'| Conference on Management
of Data, 695-705, 2006.

[11] World Wide Web Consortium, XQuery 1.0 and XPath 2.0 Data Model (XDM)
http://iwww.w3.0rg/TR/2007/REC-xpath-datamodel-200Z8/, 23 Jan, 2007.

[12] World Wide Web Consortium, XQuery 1.0 and XPath 2.0 Formal Semantics
http://mww.w3.0rg/TR/2007/REC-xquery-semantics-20023/, 23 Jan, 2007.

[13] World Wide Web ConsortiumXQuery 1.0: An XML Query Languagkettp://www.w3.0rg/TR/2007/REC-
xquery-20070123/, 23 Jan, 2007.

[14] World Wide Web ConsortiumXML Query Use Casesttp://www.w3.0rg/TR/2007/NOTE-xquery-use-
cases-20070323/, 23 Mar, 2007.

[15] World Wide Web ConsortiumXQuery Update Facility 1.0 http://www.w3.0rg/TR/2008/CR-xquery-
update-10-20080801/, 28 Aug, 2008.

[16] World Wide Web ConsortiumXQuery Scripting Extension 1.0ttp://mwww.w3.0rg/TR/xquery-sx-10/, 28
Mar, 2008.

[17] Adams et al.Service Data Objects For Java SpecificatiomService Data Objects For Java Specification,
Ed. 2.1, 2006.

[18] S. Vajjhala, J. FialliThe Java Architecture for XML Binding (JAXB) 2ttp://jcp.org/en/jsr/detail?id=222,
19 Apr, 2006.

[19] P. Reveliotis, M. Careyyour Enterprise on XQuery and XML Schema: XML-based DataMethdata
Integration in Proc. of the Int’l. Workshop on XML Schema and Data Mamagat (XSDM), 2006.

[20] V. Borkar, M. Carey, D. Engovatov, D. Lychagin, T. Westnm, W. Wong XQSE: An XQuery Scripting
Extension for the AqualLogic Data Services PlatfamfProc. of the Int'l Conference on Data Engineering,
1229-1238, 2008.

[21] V. Borkar, M. Carey, D. Lychagin, T. Westmann, D. Engimyg N. OnoseQuery Processing in the Aqua-
Logic Data Services Platforim Proc. of the 32nd Int'| Conference on Very Large Data Ba$687-1048,
2006.

[22] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Rid¢al. Westmann, M. Carey, A. Sundararajaime
BEA Streaming XQuery Processar The VLDB Journal, (13):3, 294-315, 2004.

[23] V. Borkar, M. Carey, D. Lychagin, R. Preotiuc-Pietro Reveliotis, J. Spiegel, T. WestmarkiDM + SDO
= XXDM: Getting Change Back From XDNn Proc. of the Int'l Workshop on XQuery Implementation,
Experience and PerspectiveXIME-P/>, 2008.

[24] M. Blow, V. Borkar, M. Carey, C. Hillery, A. Kotopoulid). Lychagin, R. Preotiuc-Pietro, P. Reveliotis, J.
Spiegel, T. Westmanrpdates in the AqualLogic Data Services PlatfpimProc. of the Int'l Conference
on Data Engineering, 2009.

