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Abstract

As Machine Learning (ML) is becoming ubiquitously used within applications, developers need effective
solutions to build and deploy their ML models across a large set of scenarios, from loT devices to the
cloud. Unfortunately, the current state of the art in model serving suggests to deliver predictions by run-
ning models in containers. While this solution eases the operationalization of models, we observed that
it is not flexible enough to address the variety of ML scenarios encountered in large companies such as
Microsoft. In this paper, we will overview ML.NET—a recently open sourced ML pipeline framework—
and describe how ML models written in ML.NET can be seamlessly integrated into applications. Finally,
we will discuss how model serving can be cast to a database problem, and provide insights on our recent
experience in building a database optimizer for ML.NET pipelines.

1 Introduction

Machine Learning (ML) is transitioning from an art and science into a technology readily available to every
developer. In the near future, every application on every platform will rely on trained models for functionali-
ties that evade traditional programming due to their complex statistical nature. This unfolding future—where
most applications make use of at least one model—profoundly differs from the current practice in which data
science and software engineering are performed in separate and different processes and sometimes even by dif-
ferent teams and organizations. Furthermore, in current practice, models are routinely deployed and managed in
completely distinct ways from other software artifacts: while typical software libraries are seamlessly compiled
and run on a myriad of heterogeneous devices, ML models are often implemented in high-level languages (e.g.,
Python) and relegated to be run as web services in remotely hosted containers [3, 10, 12, 15, 22]. Ad-hoc so-
lutions or bespoken re-engineering strategies can be pursued to address specific applications (e.g., low latency
scenarios as in obstacle detection for self-driving cars), but these efforts are not scalable in general. Therefore
they are inappropriate for enterprise-scale ML needs as the one that can be observed in large companies. This
pattern not only severely limits the kinds of applications one can build with ML capabilities, but also discourages
developers from embracing ML as a core component of applications.

ML.NET [9] is the end-to-end solution provided by Microsoft to address the above problems. ML.NET
is an open source ML framework allowing developers to author and deploy in their applications complex ML
pipelines composed of data featurizers and state of the art ML models. Pipelines implemented and trained
using ML.NET can be seamlessly surfaced for prediction without any modification, and adding a model into an
application is as easy as importing the ML.NET runtime and binding the input/output data sources. ML.NET’s
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ability to capture full, end-to-end pipelines has been demonstrated by the fact that thousands of Microsoft’s data
scientists and developers have been using ML.NET over the past decade, infusing hundreds of products and
services with ML models used by hundreds of millions of users worldwide.

In this paper, we will give an overview of current state of the art practices for surfacing ML pipelines
predictions into applications, and we will highlight the limitations of using containers to operationalize models
for application consumption. We will then introduce how ML.NET allows developers to design their data-driven
applications end-to-end without having to rely on any external resource. Finally, we will present few challenges
we have observed in running ML.NET models in production, and how these can be addressed by considering
models as Direct Acyclic Graphs (DAGs) of operators instead of black-box executable code. Specifically, we
will describe a new ML.NET runtime for model scoring called PRETZEL. PRETZEL treats model scoring as a
database problem and, as such, it employs database techniques to optimize the performance of predictions.

2 Background: ML Pipelines

Many ML frameworks such as Spark MLIib [2], H20 [6], Scikit-learn [23], or Microsoft ML.NET [9] allow data
scientists to declaratively author pipelines of transformations for better productivity and easy operationalization.
Model pipelines are internally represented as DAGs of pre-defined operators ' comprising data transformations
and featurizers (e.g., string tokenization, hashing, etc.), and ML models (e.g., decision trees, linear models,
SVMs, etc.). Figure 1 shows an example pipeline for text analysis whereby input sentences are classified ac-
cording to the expressed sentiment.

ML.NET is an open-source C# library running on
a managed runtime with garbage collection and Just- “This is a nice product”
In-Time (JIT) compilation 2. ML.NET’s main abstrac-
tion is called DataView, which borrows ideas from the
database community. Similarly to (intensional) database
relations, the DataView abstraction provides composi-
tional processing of schematized data, but specializes it
for ML pipelines. In relational databases, the term view
typically indicates the result of a query on one or more
tables (base relations) or views, and is generally im- Positive vs. Negative
mutable [18]. Views have interesting properties that dif-
ferentiate them from tables and make them appropriate Figure 1: A Sentiment Analysis (SA) pipeline consist-
abstractions for ML: (1) views are composable—new ing of operators for featurization (ellipses), followed
views are formed by applying transformations (queries) by a ML model (diamond). Tokenizer extracts tokens
over other views; (2) views are virtual, i.e., they can be (€-g., words) from the input string. Char and Word
lazily computed on demand from other views or tables /Vgrams featurize input tokens by extracting n-grams.
without having to materialize any partial results; and (3) Concat generates a unique feature vector which is
since a view does not contain values but merely com- then scored by a Logistic Regression predictor. This
putes values from its source views, it is immutable and 18 @ simplification: the actual DAG contains about 12
deterministic: the exact same computation applied over ©OPerators.
the same input data always produces the same result.
Immutability and deterministic computation enables transparent data caching (for speeding up iterative com-
putations such as ML algorithms) and safe parallel execution. DataView inherits the aforementioned database
view properties, namely: composability, lazy evaluation, immutability, and deterministic execution.

In ML.NET, pipelines are represented as DAGs of operators, each of them implementing the DataView

'Note that user-defined code can still be executed through a second order operator accepting arbitrary UDFs.
*Unmanaged C/C++ code can also be employed to speed up processing when possible.
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interface and executing a featurization step or a ML model. Upon pipeline initialization, the operators composing
the model DAG are analyzed and arranged to form a chain of function calls which, at execution time, are JIT-
compiled to form a unique function executing the whole DAG on a single call. Operators are able to gracefully
and efficiently handle high-dimensional and large datasets thanks to cursoring, which resembles the well-known
iterator model of databases [17]: within the execution chain, inputs are pulled through each operator to produce
intermediate vectors that are input to the following operators, until a prediction or a trained model is rendered as
the final output of the pipeline. We refer readers to [13] for further details on ML.NET.

3 Model Serving: An Overview
Models
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(a) Models are deployed into containers, (b) ML.NET allows devel- (c) With the white-box approach, models’ struc-

Scoring Server
Runtime

connected to a Serving System via RPC. To opers to deploy models di- tural information can be used to optimize the exe-
score the models, applications must call into rectly into their applications cution. As in (b), applications can directly access
the Web Server hosted on the Serving System and without any additional the models by importing the Scoring Server Run-
using a REST APIL. custom engineering effort. time.

Figure 2: Three different ways to deploy models into applications. (a) and (b) represent two variations of the
black-box approach where the invocation of the function chain (e.g., predict ()) on a pipeline returns the
result of the prediction. (c) shows the white-box approach.

In this Section, we survey how models are commonly operationalized in industry. The most popular (and
easiest) method to deploy ML models (in general, and pipelines in particular) is what we refer to as black box.
Under this approach, internal pipelines’ information and structures are not considered inasmuch as pipelines
are opaque executable code accepting some input record(s) and producing a prediction. Within the black box
approach, there are two possible ways for a developer to deploy models, and consequently for an application to
request and consume predictions. The first option (a la Clipper [3], depicted in Figure 2(a) and further described
in Section 3.1) is to ship models into containers (e.g., Docker [4]) wired with proper Remote Procedure Calls
(RPCs) to a Web Server. With this approach, predictions have to go through the network and be rendered on the
cloud: low latency or edge scenarios are therefore out of scope. The second option (Figure 2(b) and detailed in
Section 3.2) is to integrate the model logic directly into the application (a la ML.NET: the model is a dynamic
library the application can link). This approach is suitable for the cloud as well as for edge devices and it
unlocks low latency scenarios. However, we still find this approach sub-optimal with respect to customized
solutions because it ships the same training pipeline code for prediction. In fact, while using the same code is
a great advantage because it removes the need for costly translation work, it implicitly assumes that training
and prediction happen in the same regime. However, prediction serving is much more latency sensitive. The
white box approach (Section 3.3) depicted in Figure 2(c) tackles the aforementioned problem by considering
ML pipelines not anymore as black-box artifacts, but as DAGs of operators, and therefore it tries to rewrite them
using optimizations specifically tailored to prediction-time scenarios. We next provide additional details on each
of the three possibilities.
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3.1 Deploying Models into Containers

Most serving systems in the state of the art [3, 8, 10, 12, 15, 22] aim to minimize the burden of deploying
trained pipelines in production by serving them in containers, where the same code is used for both training
and inference 3. This design allows decoupling models from serving system development, and eases the imple-
mentation of mechanisms and policies for fault tolerance and scalability. Furthermore, hardware acceleration
can be exploited when available. A typical container-based, model serving system follows the design depicted
in Figure 2(a): containers are connected to a Serving System (e.g., Clipper) via RPC, and, to score models,
applications should contact the Serving System by invoking a Web Server through a REST API. Developers are
responsible for setting up the communication between their applications and the Serving System, but this is in
general an easy task as most Serving Systems provide convenient libraries (e.g., Microsoft ML Server [8]). Im-
plementing model containers for new ML frameworks and integrating them with the Serving System requires a
reasonable amount of effort: for example, a graduate student spent a couple of weeks to implement the protocol
for integrating an ML.NET container into Clipper.

Limitations. While serving models via containers greatly eases operationalization, we found though that it is not
flexible enough to accommodate the requirements stemming from running ML models at Microsoft scale. For
instance, containers allow resource isolation and thus achieve effective multitenancy, but each container comes
with its own runtime (e.g., an ML.NET instance) and set of processes, thus introducing memory overheads that
can possibly be higher than the actual model size. Additionally, the RPC layer and REST API introduce network
communication costs, which are especially relevant for models that have millisecond-level prediction latency.
Finally, only a restricted set of optimizations are available, specifically those that do not require any knowledge
of the internals of the pipelines; examples are handling multiple requests in batches and caching prediction
results if some inputs queries are frequently issued for the same pipeline. Instead, any optimization specific to
the model is out of scope, as from the inscrutable nature of its container *.

3.2 Importing Models Directly into Applications

At Microsoft, we have encountered the problem of model deployment across a wide spectrum of applications
ranging from Bing Ads to Excel, PowerPoint and Windows 10, and running over diverse hardware configurations
ranging from desktops, to custom hardware (e.g., XBox and IoT devices) and to high performance servers [1, 5,
7]. To allow such diverse use cases, an ML toolkit deeply embedded into applications should not only satisfy
several intrinsic constraints (e.g., scale up or down based on the available main memory and number of cores)
but also preserve the benefits commonly associated with model containerization, i.e., (1) it has to capture the
full prediction pipeline that takes a test example from a given domain (e.g., an email with headers and body)
and to produce a prediction that can often be structured and domain-specific (e.g., a collection of likely short
responses); and (2) it has to allow to seamlessly carry the complete train-time pipeline into production for model
inference. This later requirement is the keystone for building effective, reproducible pipelines [27].

ML.NET is able to implement all the above desiderata. Once a model is trained in ML.NET, the full training
pipeline can be saved and directly surfaced for prediction serving without any external modification. Figure 2(b)
depicts the ML.NET solution for black-box model deployment and serving: models are integrated into appli-
cation logic natively and predictions can be served in any OS (Linux, Windows, Android, MacOS) or device
supported by the .NET Core framework. This approach removes the overhead of managing containers and im-
plementing RPC functionalities to communicate with the Serving System. In this way, application developers

3Note that TensorFlow Serving [12] is slightly more flexible since users are allowed to split model pipelines and serve them into
different containers (called servables). However, this process is manual and occurs when building the container image, ignoring the final
running environment.

*In the case of ML.NET pipelines, the C# runtime in the container can optimize the code of the model, but not the model itself as we
propose in the following.
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are facilitated for writing applications with ML models inside. Nevertheless, models can still be deployed in the
cloud if suggested by the application domain (e.g., because of special hardware requirements).

Limitations. ML.NET assumes no knowledge and no control over the pipeline inasmuch as the same code is
executed both for training and prediction. 3 This is in general good practice because it simplifies the process
of training-inference skew debugging [27]. Nevertheless, we found that such approach is sub-optimal from
a performance perspective. For instance, transfer learning, A/B testing and model personalization are getting
popular. Such trends produce models DAGs with high chance of overlapping structure and similar parameters,
but these similarities cannot be recognized nor exploited using a black-box approach. Furthermore, it is common
practice for in-memory data-intensive systems to pipeline operators in order to minimize memory accesses for
memory-intensive workloads, and to vectorize compute-intensive operators in order to minimize the number of
instructions per data item [16, 28]. ML.NET’s operator-at-a-time model [28] is sub-optimal because computation
is organized around logical operators, ignoring how those operators behave together: in the example of the
sentiment analysis pipeline of Figure 1, logistic regression is commutative and associative (e.g., dot product
between vectors) and can be pipelined with Char and WordNgram, eliminating the need for the Concat operation
and the related buffers for intermediate results. Note that this optimization is applicable only at prediction-time
whereas at training-time logistic regression runs the selected optimization algorithm. We refer readers to [19]
for further limitations arising when serving models for prediction using the black-box approach.

3.3 White Box Model Serving

As we have seen so far, black-box approaches disallow any optimization and sharing of resources among models.
Such limitations are overcome by the white box approach embraced by systems such as TVM [14] and PRET-
ZEL [19]. Figure 2(c) sketches white-box prediction serving. Models are registered to a Runtime that considers
them not as mere executable code but as DAGs of operators. Applications can request predictions by directly
including the Runtime in their logic (similarly to how SQLite databases [11] can be integrated into applications),
or by submitting a REST request to a cloud-hosted Runtime. The white box approach enables the Runtime to
apply optimizations over the models such as operator reordering to improve latency or operator and sub-graph
sharing to improve memory consumption and computation reuse (through caching). Thorough scheduling of
pipelines’ components can be managed within the Runtime, which controls the whole workload so that optimal
allocation decisions can be made for running machines to high utilization and avoid many of the aforementioned
overheads. In general, we have identified the following optimization opportunities for white-box model serving.
End-to-end Optimizations: The operationalization of models for prediction should focus on computation units
making optimal decisions on how data are processed and results are computed, to keep low latency and graceful
degradation of performance with increasing load. Such computation units should: (1) avoid memory allocation
on the data path; (2) avoid creating separate routines per operator when possible, which are sensitive to branch
mis-prediction and poor data locality [21]; and (3) avoid reflection and JIT compilation at prediction time.
Optimal computation units can be compiled Ahead-Of-Time (AOT) since pipeline and operator characteristics
are known upfront, and often statistics from training are available. The only decision to make at runtime is where
to allocate the computation units based on available resources and constraints.
Multi-model Optimizations: To take full advantage of the fact that pipelines often use similar operators and
parameters, shareable components have to be uniquely stored in memory and reused as much as possible to
achieve optimal memory usage. Similarly, execution units should be shared at runtime and resources should be
properly pooled and managed, so that multiple prediction requests can be evaluated concurrently. Partial results,
for example outputs of featurization steps, can be saved and re-used among multiple similar pipelines.

Out of these guidelines, the next Section describes a prototype runtime for ML.NET enabling white-box
model serving.

3Indeed, already trained operators will bypass the execution of the learning algorithm and directly apply the previously learned
parameters.
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4 A Database Runtime for Model Serving

Following the guidelines of white-box model serving, we implemented PRETZEL [19, 24], a new runtime for
ML.NET specifically tailored for high-performance prediction serving. PRETZEL views models as database
queries and employs database techniques to optimize DAGs and to improve end-to-end performance. The prob-
lem of optimizing co-located pipelines is casted as a multi-query optimization and techniques such as view
materialization are employed to speed up pipeline execution. Memory and CPU resources are shared in the form
of vector and thread pools, such that overheads for instantiating memory and threads are paid only upfront at
initialization time. PRETZEL is organized in 6 main components. A data-flow-style language integrated API
called Flour with related compiler and optimizer called Oven are used in concert to convert ML.NET pipelines
into model plans. An Object Store saves and shares parameters among plans. A Runtime manages compiled
plans and their execution, while a Scheduler manages the dynamic decisions on how to schedule plans based on
machine workload. Finally, a FrontEnd is used to submit prediction requests to the system.

In PRETZEL, deployment and serving of model pipelines follow a two-phase process as illustrated in Fig-
ure 3(a) and 3(b). During the off-line phase, pre-trained ML.NET pipelines are translated into Flour transfor-
mations. Oven optimizer re-arranges and fuses transformations into model plans composed of parameterized
logical units called stages. Each logical stage is then AOT-compiled into physical computation units. Logical
and physical stages together with model parameters and training statistics form a model plan. Model plans
are registered for prediction serving in the Runtime where physical stages and parameters are shared among
pipelines with similar model plans. In the on-line phase, when an inference request for a registered model
plan is received, physical stages are parameterized dynamically with the proper values maintained in the Object
Store. The Scheduler is in charge of binding physical stages to shared execution units.

var fContext = ...;
Model var Tokenizer = ...;
return fPrgm.Plan();
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Transforms @ (2) Optimization | FrontEnd |<=
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(a) Model optimization and compilation in PRETZEL: (1) A model (b) (1) When a prediction request is issued, (2) the Runtime de-

is translated into a Flour program. (2) Oven Optimizer generates a termines whether to serve the prediction using (3) the request/re-
DAG of logical stages from the program. Additionally, parameters sponse engine or (4) the batch engine. In the latter case, the
and statistics are extracted. (3) A DAG of physical stages is gen- Scheduler takes care of properly allocating stages over the Ex-
erated by the Oven Compiler using logical stages, parameters, and ecutors running concurrently on CPU cores. (5) The FrontEnd
statistics. A model plan is the union of all the elements. returns the result to the Client once all stages are complete.

Figure 3: How PRETZEL system works in two phases: (a) Offline and (b) Online.
PRETZEL compiles a model pipeline into an optimized, executable plan following 3 steps:

1. Model conversion: Flour is an an intermediate representation, which makes PRETZEL’s optimizations
applicable to various ML frameworks (although the currently implementation is for ML.NET). Once a
pipeline is ported into Flour, it can be optimized and compiled into a model plan. Flour provides a
language-integrated API similar to KeystoneML [25] or LINQ [20], where sequences of transformations
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are chained into DAGs and lazily compiled for execution.

2. Optimization: Oven’s rule-based Optimizer rewrites a model pipeline represented in Flour into a graph
of logical stages. Initially, the Optimizer applies rules for schema propagation, schema validation and
graph validation. The rules check whether the input schema of each data transformation is valid (e.g.,
WordNgram in Figure 1 takes a text as input) and the structure of the graph is well-formed (e.g., only one
final predictor model at the end). The next rules are used to build stages by traversing the entire graph
to find pipeline-breaking transformations that require all inputs to be fully materialized (e.g., normalizer):
all transformations up to that point are then grouped into a stage. By leveraging stage graphs similar
to Spark [26], PRETZEL can run computations more efficiently than the operator-at-a-time strategy of
ML.NET. The stage graph is then optimized by recursively applying rules such as (1) removing unnec-
essary branches (similar to common sub-expression elimination); (2) merging stages containing identical
transformations; (3) inlining stages that contain only one transformation.

3. Compilation: After building the stage graph, a Model Plan Compiler (MPC) translates the graphs into
physical stages, which are AOT-compiled, parameterized, and result in lock-free computation unit. Logi-
cal and physical stages have a 1-to-n mapping, and MPC selects the most efficient physical implementation
given the logical stage’s parameters (e.g., the maximum length of n-grams) and statistics (e.g., whether
the vector is dense or sparse). During the translation process, MPC saves the additional parameters re-
quired for running stage code (e.g., a dictionary consisting of frequency of n-grams) into the ObjectStore
in order to share them with other stages with the same parameters. Finally, model plans are registered into
the Runtime. Model plans consist of mappings between logical representations, physical implementations
and the associated parameters. Upon registration, physical stages composing a plan are loaded into a sys-
tem catalog. When a prediction request is submitted to the system, the AOT-compiled physical stages are
initialized with the parameters from the mapping in the model plan, which allows PRETZEL Runtime to
share the same physical implementation among multiple pipelines.

5 Conclusion

Inspired by the growth of ML applications and ML-as-a-service platforms, this paper identifies three strate-
gies for operationalizing trained models: container-based, direct import into applications, and the white-box
approach. Using ML.NET as use case, we listed a set of limitations on how existing systems fall short in key
requirements for ML prediction-serving, disregarding the optimization of model execution in favor of ease of
deployment. Finally, we describe how the problem of serving predictions can be casted as a database problem,
whereby end-to-end and multi-query optimization strategies are applied to ML pipelines.

We recognize that much work remains to be done for achieving a seamless and efficient integration of ML
models with applications and development processes. While we believe that ML.NET and PRETZEL are a step in
the right direction, equivalents in data science for common tools and techniques in software development (e.g.,
unit/integration test, build server, code review, versioning, backward compatibility, and lifecycle management)
are not defined yet. We encourage the community to engage in the work towards closing those gaps.
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