
Explanation Tables

Kareem El Gebaly
University of Waterloo

kelgebaly@uwaterloo.ca

Guoyao Feng
CMU

gfeng@andrew.cmu.edu

Lukasz Golab
University of Waterloo

lgolab@uwaterloo.ca

Flip Korn
Google Research

flip@google.com

Divesh Srivastava
AT&T Labs - Research

divesh@research.att.com

Abstract

We present a robust solution to the following problem: given a table with multiple categorical dimension

attributes and one binary outcome attribute, construct a summary that offers an interpretable explana-

tion of the factors affecting the outcome attribute in terms of the dimension attribute value combinations.

We refer to such a summary as an explanation table, which is a disjunction of overlapping patterns

over the dimension attributes, where each pattern specifies a conjunction of attribute=value conditions.

The Flashlight algorithm that we describe is based on sampling and includes optimizations related to

computing the information content of a summary from a sample of the data. Using real data sets, we

demonstrate the advantages of explanation tables compared to related approaches that can be adapted

to solve our problem, and we show significant performance benefits of our approach.

1 Introduction

Before making complex data-driven decisions, users often wish to obtain a summary of the available data sets to

understand their properties; this is particularly important for auditing prior knowledge and/or policy, for example

to ensure fairness. Motivated by this need, we present a robust solution to the following problem: given a table

T with multiple categorical dimension attributes and one binary outcome attribute b, how can we construct a

summary that offers an interpretable explanation of the factors affecting the binary outcome attribute in terms of

the dimension attribute value combinations?

Consider the following example, drawn from [6]. An athlete may be interested in deciding when to exercise

and what to eat before exercising to meet her target goals. To make these decisions in a data-driven fashion, she

monitors her activities and maintains an exercise log. Table 1 shows her exercise log, with each row containing

an ID, the time and day of the week of the exercise, the meal eaten before the exercise, and a binary attribute

indicating the outcome of the exercise, i.e., whether a target goal was met. The three dimension attributes in this

example are day, time and meal.

Table 2 illustrates a corresponding summary. It contains a list of patterns that specify subsets of tuples,

where a pattern is a tuple from the data cube over the dimension attributes of T . Patterns consist of attribute

values or the wildcard symbol “*” denoting all possible values. Each pattern is associated with the number of

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any

copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

43

Table 1: An Exercise relation

id day time meal goal met?

1 Fri Dawn Banana 1

2 Fri Night Green salad 1

3 Sun Dusk Oatmeal 1

4 Sun Morning Banana 1

5 Mon Afternoon Oatmeal 1

6 Mon Midday Banana 1

7 Tue Morning Green salad 0

8 Wed Night Burgers 0

9 Thu Dawn Oatmeal 1

10 Sat Afternoon Nuts 0

11 Sat Dawn Banana 0

12 Sat Dawn Oatmeal 0

13 Sat Dusk Rice 0

14 Sat Midday Toast 0

Table 2: An explanation table over the Exercise relation

day time meal goal met? count

* * * .5 14
Sat * * 0 5
* * Banana .75 4
* * Oatmeal .75 4

tuples it matches (count) and a fraction indicating how many of these tuples have the binary outcome attribute

equal to one.

The first pattern in Table 2 matches all the tuples in Table 1 and indicates that, on average, half the workouts

were successful. The second pattern reveals that all Saturday workouts were unsuccessful, which provides the

most information about the outcome attribute beyond what we know so far from the first pattern. Intuitively, this

is because the average value of the goal met attribute on Saturdays is significantly different than the average value

of this attribute in the entire dataset, and there are sufficiently many Saturday tuples in the dataset. The last two

patterns state that eating bananas or oatmeal led to successful workouts 75 percent of the time. Note that patterns

may overlap. For example, the patterns (*,Morning,*) and (*,*,Banana) overlap, suggesting that working out

in the morning after eating a banana could influence the distribution of the outcome attribute differently from

working out in the morning or working out after eating a banana.

A natural language for expressing summaries over multi-dimensional data is in terms of a disjunction of pat-

terns over the dimension attributes, where each pattern specifies a conjunction of “attribute=value” conditions.

This form of expression has appeared extensively in the data mining and OLAP literature, from datacubes to as-

sociation rules, and has been employed more specifically in settings where an “explanation” of some property or

outcome attribute in a data set in terms of the dimensions is needed; see [3, 4, 8, 12, 14] for examples. However,

since these existing explanatory summaries are not always grounded in information theory, we argue that they

are not fully optimized for interpretability in the following sense. We define the accuracy of an explanation E in

terms of its information loss, quantified by the relative entropy with respect to some table T that it summarizes,

where less information loss implies more accuracy. Since there is an inherent trade-off between accuracy and

44

explanation size, interpretability is a relative notion. Therefore, given two explanations, E and E′, where E is at

least as accurate as E′ and E has fewer patterns than E′ (i.e., |E| < |E′|), by Occam’s Razor we should prefer

E since it is the more concise one.1

We take a summary with fewer (disjunctive) patterns as being more concise, rather than the total number

of “attribute=value” conditions, because it provides explanations that are data-driven rather than schema-driven.

For example, when many tuples in T that are concentrated in a very narrow subspace have uniform labels,

it is desirable to include a pattern containing them in a summary, but counting the number “attribute=value”

conditions would penalize heavily for this pattern. Since negations are not used in patterns, intuitively the

way that we are able to achieve conciseness is by allowing the patterns to overlap on the data set records

that they match. In contrast, many existing methods such as decision trees use disjoint patterns, which can

result in significantly more complex explanations (e.g., due to negations). Among the existing approaches that

allow overlap, the semantics of the overlap are not rich enough to provide conciseness, as we demonstrate

experimentally in this paper.

2 Explanation Tables

Our proposed summary is called Explanation Tables, an example of which was provided in Table 2 for the

data set in Table 1. Next, we explain our algorithm for computing explanation tables; see [6, 5, 7] for further

details and extensions to numeric outcome attributes, distributed computation and in-browser computation using

Javascript.

2.1 Computing Explanation Tables

The main idea is to maintain maximum-entropy estimates b̂ for the values of the outcome attribute b and refine

them as new patterns are added to the explanation table. Let t[b] and t[b̂] be the actual and estimated values

of b, respectively, for a tuple t ∈ T . We use Kullback-Leibler Divergence (KL-Divergence) to quantify the

difference between the actual and estimated distributions, which is defined as follows for binary attributes:

KL(b||b̂) =
∑

t∈T |t[b]=1 log
(

1
t[b̂]

)

+
∑

t∈T |t[b]=0 log
(

1
1−t[b̂]

)

. In each iteration of the algorithm, we greedily

add a pattern to the explanation table that provides the most information gain, i.e., leads to the greatest reduction

in KL-Divergence. We stop after k iterations, where k is a user-supplied parameter, yielding an explanation

table with k patterns.

Recall Table 2. Based on the first pattern (the all-stars pattern), the maximum-entropy estimate of the

outcome attribute is to set each value (of each of the 14 rows in Table 1) to 0.5. Of course, the actual values of

the goal met attribute are binary, but we allow the estimates to be real numbers between zero and one. This

maximum-entropy estimate only uses the information implied by the first pattern of the explanation table, which

is that AVG(goal met)=0.5, without making any other assumptions.

As it turns out, the pattern (Sat,*,*) is then added to the explanation table because it provides the greatest

information gain. As a result, we update the estimates t[b̂] as follows. Since the second pattern implies that

all Saturday tuples have goal met=0, we set the estimates for rows 10 through 14 in Table 1 to zero. Next,

for consistency with the first pattern, which requires the average value of the outcome attribute over the whole

dataset to be 0.5, we must set the estimates for all non-Saturday rows to 7
9 each. This gives us a maximum-

entropy estimate that only considers the information contained in the first two patterns of the explanation table.

Since the patterns of an explanation table may overlap, it is not obvious how to compute a maximum-entropy

estimate in the general case. We use an approximation technique called iterative scaling [1, 2] to compute

updated estimates whenever a new pattern is added to the explanation table.

1Usually the goal is not to (losslessly) capture every detail in the data set but represent it at some granularity that achieves a balance

between filtering the noise while preserving the signal.

45

Algorithm 1 Greedy algorithm template for constructing explanation tables

Require: T , k

1: E ← (∗, . . . , ∗)
2: for each t ∈ T do

3: t[b̂]← fraction of rows in T with t[b] = 1
4: end for

5: for i = 1 to k − 1 do

6: P ← set of candidate patterns

7: popt ← argmaxp∈P information gain(p)
8: E ← E ∪ popt

9: update t[b̂] for each t ∈ T using iterative scaling

10: end for

Algorithm 1 shows a greedy algorithm template for constructing an explanation table E with k patterns

from table T . We iterate k times, once to obtain each pattern, with the all-stars pattern added first. In each

subsequent iteration, we identify a set P of candidate patterns, we then add to E the pattern from P with the

highest information gain, and we finally update the maximum-entropy estimates t[b̂] via iterative scaling.

2.2 Sampling to Improve Efficiency

A naive instantiation of the template of Algorithm 1 considers all possible patterns in line 6 during each iteration.

This may not be feasible for large datasets, both in the number of rows and the number of columns. To improve

efficiency, we prune the candidate space by drawing a random sample s from T in line 6 (a different sample in

each iteration of the loop) and setting P to be only the patterns from the data cube of the sample. The intuition is

that patterns with frequently occurring combinations of dimension attribute values are likely to be sampled and

also to have high information gain. In line 7, we compute the gain of only the patterns in P , as described below.

We illustrate our solution using Table 1. Suppose that the pattern (*,*,*) has been added to the explanation

table, meaning that t[b̂] = 0.5 for each tuple in T . Suppose that we draw a sample s that consists of tuples 4, 9

and 11 from Table 1.

The first step is to compute the Lowest Common Ancestor (LCA) of each pair of tuples having one tuple

from s and one from T . To compute the LCA, non-matching (categorical) attribute values are replaced with

stars. For example, the LCA of (Sun,Morning,Banana) and (Fri,Dawn,Banana) is (*,*,Banana). Table 3 shows

all the LCAs in our example, including the same LCAs computed from different pairs of tuples. Each row of

Table 3 corresponds to one of the 14 tuples from T and each column corresponds to one of the three tuples from

the sample s.

In the second step, we do a group-by over the LCAs, and, for each distinct pattern, we compute the three

aggregates shown in Table 4: count, sum(t[b]) and sum(t[b̂]). Ignore “Ancestors” for now; we will explain them

in the next step. To understand these three aggregates, consider (*,*,Banana). It was generated as an LCA five

times, as shown in Table 3. Thus, its count is five. To understand sum(t[b]), note that the five occurrences of

(*,*,Banana) in the LCA set are derived from (Fri,Dawn,Banana) which has t[b] = 1, (Sun,Morning,Banana)

which has t[b] = 1, (Mon,Midday,Banana) twice which has t[b] = 1, and finally (Sat,Dawn,Banana) which has

t[b] = 0. The sum of these t[b]’s is four, including counting (Mon,Midday,Banana) twice. Similarly, the sum

of the t[b̂]’s is 2.5, including counting (Mon,Midday,Banana) twice; recall that at this point every tuple in T has

t[b̂] = 0.5.

In the third step, we generate the ancestors of each distinct LCA pattern p, defined as p itself plus all other

patterns that are the same as p except one or more of the attribute values in p have been replaced by wildcards.

These are shown in the rightmost column of Table 4. Each ancestor of p is associated with the same count,

46

Table 3: Computing LCAs (first step of the algorithm)

T \s (Sun,Morning,Banana) (Thu,Dawn,Oatmeal) (Sat,Dawn,Banana)

(Fri,Dawn,Banana) (*,*,Banana) (*,Dawn,*) (*,Dawn,Banana)

(Fri,Night,Green salad) (*,*,*) (*,*,*) (*,*,*)

(Sun,Dusk,Oatmeal) (Sun,*,*) (*,*,Oatmeal) (*,*,*)

(Sun,Morning,Banana) (Sun,Morning,Banana) (*,*,*) (*,*,Banana)

(Mon,Afternoon,Oatmeal) (*,*,*) (*,*,Oatmeal) (*,*,*)

(Mon,Midday,Banana) (*,*,Banana) (*,*,*) (*,*,Banana)

(Tue,Morning,Green salad) (*,Morning,*) (*,*,*) (*,*,*)

(Wed,Night,Burgers) (*,*,*) (*,*,*) (*,*,*)

(Thu,Dawn,Oatmeal) (*,*,*) (Thu,Dawn,Oatmeal) (*,Dawn,*)

(Sat,Afternoon,Nuts) (*,*,*) (*,*,*) (Sat,*,*)

(Sat,Dawn,Banana) (*,*,Banana) (*,Dawn,*) (Sat,Dawn,Banana)

(Sat,Dawn,Oatmeal) (*,*,*) (*,Dawn,Oatmeal) (Sat,Dawn,*)

(Sat,Dusk,Rice) (*,*,*) (*,*,*) (Sat,*,*)

(Sat,Midday,Toast) (*,*,*) (*,*,*) (Sat,*,*)

sum(t[b]) and sum(t[b̂]) values as p. We then take all the ancestors and compute another group-by on each

unique pattern to get new count, sum(t[b]) and sum(t[b̂]) values. These are shown in the four leftmost columns

of Table 5. For example, (*,*,Banana) is an ancestor of itself (with count 5), of (*,Dawn,Banana) (with count 1),

of (Sat,Dawn,Banana) (with count 1) and of (Sun,Morning,Banana) (with count 1). Thus, its count in Table 5 is

eight, and sum(t[b]) and sum(t[b̂]) are computed similarly.

Note that at this point, after generating the ancestors of all the LCAs, the resulting set of 20 patterns is

exactly the data cube of s. This is our candidate set P referenced in line 6 of the algorithm.

In the fourth step, we “correct” the counts and sums so that they correspond to the true count of tuples

matching each pattern and the true sums of the matching t[b] and t[b̂] values. To do this, we consider the

number of tuples in the sample that match each pattern. For example (*,*,Banana) matches two tuples in s,

namely tuples 4 and 11, so we divide the aggregates we have computed for (*,*,Banana) by two. This gives

the corrected count = 4, sum(t[b]) = 3 and sum(t[b̂]) = 2. The rightmost four columns of Table 5 show

the frequency in sample of each candidate pattern p (i.e., how many tuples in s it matches) and the corrected

aggregates.

Finally, we select the pattern with the highest information gain based on the computed aggre-

gates. We approximate the information gain of a pattern p as count × (sum(t[b]) log sum(t[b])

sum(t[b̂])
+ (1 −

sum(t[b])) log 1−sum(t[b])

1−sum(t[b̂])
). In our example, the pattern (Sat,*,*) has the highest information gain of 5 × (0 +

log(1
0.5)) = 5 log 2, so it is added to the explanation table.

The computational complexity of our approach is O(|s|×|T |) to compute the LCAs and their ancestors, plus

O(|datacube(s)|) to generate ancestors, plus O(|datacube(s)| × |s|) to join the patterns with the sample and

compute the corrected aggregates. Note that |datacube(s)|, the size of the data cube of the sample s, is likely to

be much smaller than |datacube(T)|. In fact, based on the results we reported in [6], our approach (called the

“Flashlight Strategy” in that work) can be orders of magnitude faster than computing the information gain of all

possible patterns in datacube(T), with only slightly worse information gain.

An important aspect of our sampling-based approach is that sampling is used only to restrict the space

of candidate patterns, not to compute their information gain. In other words, the sum(t[b]) and sum(t[b̂])
aggregates are computed over the underlying dataset, not just the sample. In [6], we also investigated an even

faster approach, termed “Laserlight”, in which these aggregates are computed over the sample. This is faster

47

Table 4: Computing aggregates over the LCAs from Table 3 (second step of the algorithm) and generating ancestors

(third step of the algorithm)

Pattern count sum(t[b]) sum(t[b̂]) Ancestors

(*,*,*) 21 9 10.5 (*,*,*)

(*,*,Banana) 5 4 2.5 (*,*,Banana), (*,*,*)

(*,Dawn,*) 3 2 1.5 (*,Dawn,*), (*,*,*)

(Sat,*,*) 3 0 1.5 (Sat,*,*), (*,*,*)

(*,*,Oatmeal) 2 2 1 (*,*,Oatmeal), (*,*,*)

(*,Dawn,Banana) 1 0 .5 (*,Dawn,Banana), (*,Dawn,*), (*,*,Banana), (*,*,*)

(*,Dawn,Oatmeal) 1 0 .5 (*,Dawn,Oatmeal), (*,Dawn,*), (*,*,Oatmeal), (*,*,*)

(*,Morning,*) 1 0 .5 (*,Morning,*), (*,*,*)

(Sat,Dawn,*) 1 0 .5 (Sat,Dawn,*), (Sat,*,*),(*,Dawn,*),(*,*,*)

(Sat,Dawn,Banana) 1 0 .5 (Sat,Dawn,Banana), . . . , (Sat,*,*), (*,Dawn,*),(*,*,*)

(Sun,*,*) 1 1 .5 (Sun,*,*), (*,*,*)

(Sun,Morning,Banana) 1 1 .5 (Sun,Morning,Banana), . . . , (*,*,Banana), (*,*,*)

(Thu,Dawn,Oatmeal) 1 1 .5 (Thu,Dawn,Oatmeal), . . . , (*,*,Oatmeal),(*,*,*)

because it does not require a join with the underlying table T to compute the LCAs; instead it simply computes

a data cube over the sample s. However, we observed in [6] that the improvement in efficiency of “Laserlight”

comes at a steep cost of information gain, making the strategy we described here (“Flashlight”) a more effective

choice for constructing informative explanation tables.

3 Experimental Results

In this section, we provide a brief experimental evaluation of the information content of explanation tables

compared to related techniques. The experiments were performed on a 3.3 GHz AMD machine with 16 GB of

Ram and 6 MB of cache, running Ubuntu Linux. We use the following datasets.

• Upgrade: 5795 United Airline ticket records obtained from https://www.diditclear.com/.

Each record contains seven attributes about the tickets (origin airport, destination airport, date, booking

class, etc.) and a binary attribute indicating whether the passenger was upgraded to business class. This

data set has over 346,000 possible patterns.

• Adult: U.S. Census data containing demographic attributes such as occupation, education and gender,

and a binary outcome attribute denoting whether the given person’s income exceeded $50K. This data set

was downloaded from the UCI archive at archive.ics.uci.edu/ml/datasets/Adult/ and

contains 32561 tuples, 8 attributes and 436, 414 possible patterns.

We measured the information content of explanation tables and other summaries in terms of the average

information gain. This is the improvement in KL-Divergence compared to having only the all-wildcards pattern

and knowing only the fraction of tuples in the whole data set having outcome 1.

To compute explanation tables, we used the sampling-based approach from [6] which we described earlier,

with a sample size of 16, which we observed to offer a good trade-off between running time and information

gain on the tested datasets (we observed diminishing returns in terms of information content for larger sample

sizes). The reported information gains are averages of five runs with different samples.

We compare explanation tables with four related approaches. The first three were compared in [6], whereas

a comparison with the last one is a novel contribution of this paper.

48

Table 5: Computing aggregates over the LCAs and their ancestors (fourth step of the algorithm)

Pattern count sum(t[b]) sum(t[b̂])
Frequency

in sample
count sum(t[b]) sum(t[b̂])

(*,*,*) 42 21 21 3 14 7 7
(*,*,Banana) 8 6 4 2 4 3 2
(*,*,Oatmeal) 4 3 2 1 4 3 2

(*,Dawn,*) 8 4 4 2 4 2 2
(*,Morning,*) 2 1 1 1 2 1 1

(Sat,*,*) 5 0 2.5 1 5 0 2.5
(Sun,*,*) 2 2 1 1 2 2 1
(Thu,*,*) 1 1 .5 1 1 1 .5

(*,Dawn,Banana) 2 1 1 1 2 1 1
(*,Dawn,Oatmeal) 2 1 1 1 2 1 1

(*,Morning,Banana) 1 1 .5 1 1 1 .5
(Sat,*,Banana) 1 0 .5 1 1 0 .5
(Sun,*,Banana) 1 1 .5 1 1 1 .5
(Thu,*,Oatmeal) 1 1 .5 1 1 1 .5

(Sat,Dawn,*) 2 0 1 1 2 0 1
(Sun,Morning,*) 1 1 .5 1 1 1 .5

(Thu,Dawn,*) 1 1 .5 1 1 1 .5
(Sun,Morning,Banana) 1 1 .5 1 1 1 .5

(Sat,Dawn,Banana) 1 0 .5 1 1 0 .5
(Thu,Dawn,Oatmeal) 1 1 .5 1 1 1 .5

1. Decision trees, as an example of a human-interpretable classifier. Each root-to-leaf path in a decision

tree can be thought of as a pattern (of values of the dimension attributes), with the leaf node providing a

prediction for the value of the outcome attribute. We computed the information gain of decision trees by

comparing the predicted values of the outcome attribute with the true values.

We used the Weka J48 implementation [10] of the C4.5 algorithm, which provides a confidence parameter

to control pruning and the number of tuples a leaf node can cover. We considered both multi-way split

decision trees in which a node can have many children and binary split decision trees in which a node has

exactly two children. Since there is no direct way to enforce decision tree size in Weka, we performed a

grid search over the parameter space to obtain trees with specific numbers of root-to-leaf paths. To do this,

in our experiments, we varied confidence in the range [0.01 − 0.59] and the minimum number of tuples

per leaf in the range [2− 20].

2. The SURPRISE operator for data cube exploration [13], which identifies regions of a datacube whose

distribution of the outcome variable is different than the distribution in the regions already seen by the user.

As in explanation tables, these regions are represented by patterns of values of the dimension attributes.

However, while SURPRISE also uses information gain to find informative patterns, for efficiency reasons

it only considers non-overlapping patterns or patterns that are fully contained in each other (corresponding

to rolling-up or drilling-down in the datacube). We implemented this technique in C++ based on the

algorithm given in [13]. For a fair comparison with explanation tables, we start with the knowledge of the

average value of the outcome attribute in the dataset, and we request the k most informative patterns.

The SURPRISE operator includes two parameters: the desired number of patterns and an accuracy thresh-

old ǫ. A lower ǫ indicates a finer algorithm resolution but slower runtime. To fairly represent SURPRISE,

we have chosen two values for ǫ for each data set: SURPRISE cmp, which uses ǫ that gives comparable

49

0

250

500

750

1000

10 20 30 40 50

Explanation Tables

SURPRISE bst

SURPRISE cmp

Cover bst

✢

❦

A
v
er

ag
e

In
fo

rm
at

io
n

G
ai

n

Number of Patterns

DT:Multiway
×××××××

××××× ××

××××××
×××××

×

××××××××
×××××××

×

×
DT:Binary

∗

∗

∗
IDS bst•

••
•

•
•

•
•

•
0

2500

5000

7500

10000

10 20 30 40 50

Explanation Tables

SURPRISE bst
SURPRISE cmp

Cover bst

❑❨

A
v
er

ag
e

In
fo

rm
at

io
n

G
ai

n

Number of Patterns

DT:Multiway

×××××××××
×××××××××××××

××××××××××××××
×
×

×
DT:Binary

∗ ∗∗

∗
IDS•

••

•

•

Figure 1: Average information gain of various methods using Upgrade (left) and Adult (right)

runtime to Flashlight, and SURPRISE bst, which uses ǫ that yields the best possible information gain

without running out of memory.

3. Data summarization techniques from [8, 9] which find the fewest patterns that cover most of the tu-

ples with outcome 1. These methods require a confidence threshold that denotes the minimum frac-

tion of 1-outcomes per pattern. We experiment with a variety of confidence thresholds, including

{0.4, 0.5, . . . , 0.9, 0.95, 0.99}, and report the runtime of the one with the best information gain, denoted

Cover bst. After generating the summaries, we apply the maximum entropy principle to derive an esti-

mated distribution of the outcome attribute and we compute information gain based on this.

4. Interpretable Decision Sets (IDS) [11], as another recent example of a human-interpretable classifier. An

IDS is a set of independent if-then classification rules. We obtained the source code from the authors’

Github repository2. The IDS generation algorithm includes a support threshold ǫ, which determines the

lowest possible support of a given classification rule. We started with ǫ = 1 and considered lower values

until the runtime became too long. We varied ǫ in decrements of 0.02 until the runtime exceeded one

hour for the Upgrade dataset and three hours for the larger Adult dataset. As with decision trees, we

computed the information gain of IDS by comparing the predicted values of the outcome attribute with

the true values.

Figure 1 plots the average information gain using Upgrade (left) and Adult (right) as a function of the

number of patterns (or, in the case of decision trees, the number of leaves). Decision trees are represented as

individual points on the graphs, corresponding to the numbers of leaves we were able to obtain using the grid

search explained above. Similarly, IDS results are represented as individual points that indicate the best possible

information gain we could obtain using the above grid search. On the other hand, SURPRISE and Cover allow

us to control the number of patterns, so these are represented as lines. We conclude that explanation tables

outperform all other approaches in terms of information gain, except for small numbers of patterns (below 8) on

the Adult data set, in which case SURPRISE has a slightly higher information gain. This is likely due to the

fact that explanation tables explicitly optimize for information content. On the other hand, decision trees and

SURPRISE are restricted to non-overlapping patterns; Cover optimizes for the number of patterns that cover

all the positive examples without considering information gain; and IDS is a classifier that optimizes jointly for

predictive power, conciseness and interpretability.

In terms of running time, it took 47 seconds on Upgrade and 252 seconds on Adult to generate explana-

tion tables with 50 patterns. SURPRISE cmp took roughly the same time (by design), whereas SURPRISE bst

2https://github.com/lvhimabindu/interpretable decision sets

50

was 2-4 times slower and Cover bst was 5-8 times slower. On the other hand, decision trees and IDS took much

longer (several hours) since they had to be executed multiple times with different parameter values in order to

obtain a desired number of patterns.

4 Discussion

We emphasize that our problem is different from prediction since explanation conciseness is also critical. Hence,

instead of focusing on prediction accuracy we focus on interpretability, which is a relative notion that captures

an inherent trade-off between accuracy and conciseness: given two explanations, E and E′, if E is at least as

accurate as E′ and E is more concise than E′, we say that E is more interpretable than E′. While there exist

some classifiers that could be considered human-interpretable as a secondary goal (e.g., decision trees and partial

monotonic functions), in practice they are used in ensembles which hinders their interpretability. Therefore,

explanation tables may have a potentially interesting role to play when the outcome attribute corresponds to the

predictions from an ensemble method, or from an even more opaque model such as variants of neural networks,

since they may enable auditing or debugging the model. This application would be an interesting direction

to explore for future work. Future work could also include a user study to evaluate the explanatory power of

explanation tables for various tasks (e.g., why was this example classified as such?) as well as the extension to

(unordered) categorical outcome attributes.

References

[1] A. Berger: The improved iterative scaling algorithm: A gentle introduction, 1997.

[2] J. N. Darroch and D. Ratcliff: Generalized iterative scaling for log-linear models. The Annals of Mathematical

Statistics, 1470-1480, 1972.

[3] M. Das, S. Amer-Yahia, G. Das and C.Yu: MRI: Meaningful Interpretations of Collaborative Ratings, 1063–1074,

2011.

[4] D. Fabbri and K. LeFevre: Explanation-Based Auditing. PVLDB 5(1): 1–12 (2012)

[5] G. Feng, L. Golab, D. Srivastava: Scalable Informative Rule Mining. ICDE 2017: 437-448

[6] K. El Gebaly, P. Agrawal, L. Golab, F. Korn, D. Srivastava: Interpretable and Informative Explanations of Outcomes.

PVLDB 8(1): 61-72 (2014)

[7] K. El Gebaly, L. Golab, J. Lin: Portable In-Browser Data Cube Exploration. IDEA workshop at KDD 2017: 35-39

[8] L. Golab, H. Karloff, F. Korn, D. Srivastava, B. Yu: On Generating Near-optimal Tableaux for Conditional Functional

Dependencies. PVLDB 1(1): 376-390 (2008)

[9] L. Golab, F. Korn, D. Srivastava: Efficient and Effective Analysis of Data Quality using Pattern Tableaux. IEEE Data

Eng. Bull. 34(3): 26-33 (2011)

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten: The WEKA Data Mining Software: An

Update. SIGKDD Explorations, 11(1): 10-18 (2009)

[11] H. Lakkaraju, S. H. Bach, J. Leskovec: Interpretable Decision Sets: A Joint Framework for Description and Predic-

tion. KDD 2016: 1675-1684

[12] S. Roy, L. Orr, D. Suciu: Explaining Query Answers with Explanation-Ready Databases. PVLDB 9(4): 348–359

(2015)

[13] S. Sarawagi: User-Cognizant Multidimensional Analysis. VLDB Journal 10(2-3): 224-239 (2001)

[14] X. Wang, X. L. Dong, A. Meliou: Data X-Ray: A Diagnostic Tool for Data Errors. SIGMOD 2015: 1231–1245

51

