
Accelerated Federated Optimization with Quantization

Yeojoon Youn† Bhuvesh Kumar† Jacob Abernethy†

† Georgia Institute of Technology {yjyoun92,bhuvesh,prof}@gatech.edu

Abstract

Federated optimization is a new form of distributed training on very large datasets that leverages many
devices each containing local data. While decentralized computation can lead to significant speed-ups due
to parallelization, some centralization is still required: devices must aggregate their parameter updates
through synchronization across the network. The potential for communication bottleneck is significant.
The two main methods to tackle this issue are (a) smarter optimization that decreases the frequency of
communication rounds and (b) using compression techniques such as quantization and sparsification
to reduce the number of bits machines need to transmit. In this paper, we provide a novel algorithm,
Federated optimization algorithm with Acceleration and Quantization (FedAQ), with improved theoretical
guarantees by combining an accelerated method of federated averaging, reducing the number of training
and synchronization steps, with an efficient quantization scheme that significantly reduces communication
complexity. We show that in a homogeneous strongly convex setting, FedAQ achieves a linear speedup in
the number of workers M with only Õ(M

1
3 ) communication rounds, significantly smaller than what is

required by other quantization-based federated optimization algorithms. Moreover, we empirically verify
that our algorithm performs better than current methods.

1 Introduction

Federated learning (FL) has attracted much attention from both academia and industry due to the increasing
demand for large-scale distributed machine learning systems and preserving privacy-sensitive data on local
devices such as smartphones and IoT devices. In federated learning, a number of clients collaboratively learn the
global objective function by communicating with a central server without sharing any locally stored data in each
local device. The research in Federated learning has identified four major challenges: communication efficiency,
systems heterogeneity, statistical heterogeneity, and privacy [19]. In this paper, we focus on communication
efficiency that is of primary interest in cross-device settings when there is a heavy communication burden with
many edge computing devices and limited network bandwidth. Two of the most widely used methods to reduce
the communication cost are federated averaging optimization and randomized compression techniques.

In federated averaging (FedAvg) [26], also called local SGD, each client locally updates its model with
multiple stochastic gradient descent (SGD) steps, and a server aggregates model updates of clients. The server
updates its own model parameters by averaging client models and then broadcasts the server parameters to all
clients. This enables FL systems to achieve high communication efficiency with infrequent synchronization while
showing better performance than distributed large mini-batch SGD [25]. Due to the significant empirical success

Copyright 2023 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

79



Table 14: Summary of Results on the Convergence Rate and Communication Required for Linear Speedup. M is
the number of devices, T is the number of total parallel iterations, and K is the number of communication rounds,
q is a quantization parameter (Assumption 1), dquant is the number of bits used to quantize, dfull is the number of
bits required when there is no quantization (dfull ≫ dquant). [43] and FedAQ send two iterates per communication
round as other algorithms to achieve acceleration (See line 11 in Algorithm 3), we multiply dfull and dquant by 2
for bits communicated for a linear speedup. The presented results of [9] are newly obtained (section 5.5).

Algorithm Convergence rate Communication rounds for Õ( 1
T
)

convergence with linear speedup
Bits communicated for

linear speedup

FedPAQ [27] O( 1+q
K

+ T
K2 ) Not possible Not possible

FedCOMGATE [9] Õ( 1+q
MT

+ 1
TK

) Õ( M
1+q

) Õ( M
1+q

) · dquant

FedAC [43] Õ( 1
MT

+ 1
TK3 ) Õ(M

1
3 ) Õ(M

1
3 ) · 2dfull

FedAQ (Corollary 23) Õ( 1+q
MT

+ 1+q
TK3 ) Õ(M

1
3 ) Õ(M

1
3 ) · 2dquant

of FedAvg, researchers have proposed an interesting theoretical question: To what extent can we minimize the
number of synchronizations in order to both guarantee convergence and achieve linear speedup in the number of
workers M1? For the strongly-convex and homogeneous settings, [15] was able to achieve a linear speedup in M
with Õ(M) communication rounds, which is the state-of-the-art result for FedAvg convergence analysis. However,
even with this progress on theoretical guarantees of FedAvg, it remains unclear whether further improvements on
convergence time and communication efficiency can be achieved.

Applying acceleration methods to FL has led to improved convergence, with [43] providing a faster version
of FedAvg with provably stronger bounds. For the strongly-convex and homogeneous setting, their algorithm
achieves a linear speedup in M with only Õ(M

1
3 ) communication rounds. Hence, the accelerated version

of federated averaging requires a much smaller number of communication rounds than FedAvg to achieve
the same accuracy. At present, this remains the best result for strongly-convex and homogeneous local data
distribution settings. In addition to reducing the required number of communication rounds, another powerful
way to build communication-efficient FL systems is to reduce the number of bits that need to be transmitted at
each synchronization. [27, 9] have shown that such compression techniques, which include quantization, reduce
communication costs and guarantee convergence (See Table 14).

In this work, we provide a novel algorithm, Federated optimization algorithm with Acceleration and
Quantization (FedAQ), to solve the severe communication bottleneck problem in FL systems. FedAQ is the first
federated optimization algorithm that successfully incorporates multiple local update schemes, acceleration, and
quantization for master-worker topology. Although these three key desiderata of Federal Learning systems have
individually been shown to build communication-efficient FL systems, it is not obvious if or how acceleration
techniques can lead to faster convergence even for quantization-based methods. We answer this question by
showing that FedAQ converges for strongly-convex and homogeneous local data distribution settings without any
additional strong assumptions.

Let T be the number of total parallel iterations, K be the number of total communication rounds. We compare
our results to previous methods in Table 14, and highlight the following contributions:

1. FedAQ has a convergence rate of Õ( 1+q
MT + 1+q

TK3 ) which is better than the Õ( 1+q
MT + 1

TK ) convergence of
[9], the state of the art in quantization based methods. Here q is a parameter that measures the effectiveness
of the quantization scheme (see Assumption 1). This allows FedAQ to obtain linear speedup with only
Õ(M

1
3 ) communication rounds whereas [9] requires Õ( M

1+q ) rounds. The faster convergence in number of

1Linear speedup in the number of workers is a desirable property in parallel computing which implies that the task takes half as much
time if the number of workers are doubled.

80



communication rounds also implies that FedAQ can achieve better convergence than [9] by using many
fewer communication rounds. Thus, although FedAQ sends two iterates in each communication round, that
is the bits communicated in each round are twice many compared to [9] for the same level of quantization,
FedAQ requires much smaller total communication costs due to the large reduction in synchronization
rounds.

2. When comparing FedAQ to Accelerated Federated learning, we observe that FedAQ has similar convergence
and requires the same number of communication rounds as [43]. In each communication round of [43], every
client sends the complete iterates to the server without any quantization. To effectively obtain a convergence
rate of Õ( 1

MT ), it needs to send each value with a precision of Õ( 1
MT ), requiring dfull = O(log (MT ))

bits. In comparison, if we use the low precision quantizer (See section 3 Example 1) given by [1], FedAQ
needs to send only dquant = O(log 1

q ) bits 2 for each value. Since q is a constant, dquant ≪ dfull. The extra
1 + q term in the convergence for FedAQ can be offset by scaling the number of local updates by 1 + q,
which is cheaper than expensive data communication. Thus, FedAQ obtains the same convergence as [43]
using as many communication rounds but by sending many fewer bits per round.

Finally, we empirically verify that our algorithm exhibits better performance than baselines, FedPAQ [27],
FedCOMGATE [9], FedAC [43], and FedAvg [26] on classical vision datasets such as MNIST [18] and CIFAR-
10 [17].

2 Related Works

The first guarantee for FedAvg, showing that it converges at the same rate as mini-batch SGD in strongly
convex scenarios, was shown by [30] in the IID setting. The further convergence analysis of FedAvg for non-
convex functions was laid out in a number of published works [36, 8, 42]. Followup work has managed to
remove unnecessary assumptions, such as uniformly bounded gradients, to achieve better convergence rates
[36, 31, 7, 15, 40]. Moreover, [20, 10, 21, 15, 14] define scenarios that depart from the IID framework, analyzing
the convergence of FedAvg and its variants in settings with heterogeneous data distributions.

Reducing the transmitted bits between a server and clients through compression techniques is pivotal to saving
communication costs in federated learning. This motivates researchers to develop various compression techniques
such as sparsification and quantization without significantly sacrificing accuracy [16, 1, 32, 39, 4, 34, 33, 11, 3, 28].
[27] shows near-optimal theoretical guarantees of the first federated optimization algorithm that incorporates
federated averaging, partial node participation, and quantization in homogeneous local data distribution settings.
[9] further provide improved convergence rates for both homogeneous and heterogeneous settings.

We can achieve better communication efficiency by applying acceleration methods into client updates. [43] has
proposed the first provable acceleration of FedAvg that achieves a linear speedup with the fewest communication
rounds. Several other works aim to achieve communication efficiency by using momentum or adaptive optimizers
[41, 13, 37]. It is important to note that our work is not the first to combine acceleration and quantization. [23, 24],
for example, propose compressed and accelerated distributed optimization methods that are neither stochastic
nor FedAvg variants. [29] proposes communication efficient momentum SGD for decentralized optimization.
[22, 38] show that distributed and federated versions of adaptive optimizers along with gradient compression can
lead to similar convergence rates as their non-compressed counterparts. But these works do not achieve the core
result of the present paper, which is the reduced communication complexity via a faster convergence rate and a
linear speedup with the small number of communication rounds. To the best of our knowledge, FedAQ is the first
accelerated version of federated averaging for master-worker topology that successfully integrates a quantization
scheme and provides rigorous convergence guarantees.

2More details on this are discussed in section 5.5.3

81



3 Problem Setup

In this paper, we build our algorithm based on federated learning with captain-worker topology where M
local devices contain their own local data, and a server aggregates local parameter updates without sharing any
data during synchronization rounds. Since we focus on homogeneous local data distribution settings for the
convergence analysis of our algorithm, we define the distributed stochastic optimization problem as below.

min
w∈Rd

F (w) := Ez∼D[f(w; z)]

In our convergence analysis, we assume F is strongly-convex. Each client can access F at w via oracle∇f(w; z)
because all clients have the same loss function f . Also, every local device has the same local data distribution D.
Moreover, we use the full participation of nodes for local updates and synchronizations.

3.1 Assumptions

Let us clarify assumptions on the unbiased quantizer Q, the global objective function F , and the unbiased gradient
estimator∇f .

Assumption 1: The variance of the unbiased quantizer Q is bounded by the squared of l2-norm of its argument,
i.e., E[Q(x)|x] = x, E[∥Q(x)− x∥2|x] ≤ q∥x∥2.

For example, a well-known randomized quantizer which satisfies Assumption 1 is low-precision quantizer in [1].
Example 1. (Low-precision quantizer) Given x ∈ Rd, the quantizer Q : Rd → Rd is defined by

Qi(x) = sign(xi) · ∥x∥ · ξi(x, s), i ∈ [d]

ξi is defined as below.

ξi(x, s) =

{
l+1
s , with probability |xi|

∥x∥s− l
l
s , o/w

s is the number of quantization levels. l ∈ [0, s) is an integer which satisfies |xi|
∥x∥ ∈ [ ls ,

l+1
s ).

Assumption 2: F is µ-strongly convex, i.e., F (w1) ≥ F (w2) + ⟨∇F (w2), w1 − w2⟩+ 1
2µ∥w1 − w2∥2 for any

w1, w2 ∈ Rd.

Assumption 3: F is L-smooth, i.e., F (w1) ≤ F (w2)+ ⟨∇F (w2), w1−w2⟩+ 1
2L∥w1−w2∥2 for any w1, w2 ∈

Rd.

Assumption 4: ∇f(w; ξ) is unbiased and variance bounded, i.e., Eξ[∇f(w; ξ)] = ∇F (w), Eξ[∥∇f(w; ξ) −
∇F (w)∥2] ≤ σ2 for any w ∈ Rd.

3.2 Notation

We use τ,K to respectively denote the number of local updates and total communication rounds, which means
the total number of iterations T at each node satisfies T = Kτ . Since we consider a strongly-convex case, we
can find the optimal point w∗ and denote the optimal function value as F ∗ := F (w∗). The local parameter wm

k,t

indicates the parameter of the m-th local model after kth synchronization followed by t local SGD updates. There
are other types of parameters such as wag,m

k,t and wmd,m
k,t , and we obtain two types of parameters wk and wag

k in the
server side after kth synchronization. More details on these parameters will be discussed in the next section.

82



4 FedAQ Algorithm

We propose a novel communication efficient algorithm that combines an accelerated variant of federated averaging
and an efficient quantization scheme. Our FedAQ algorithm has two main parts: (1) multiple accelerated local
updates and (2) communication with quantization. Both components contribute to achieving better communication
efficiency than other previous federated algorithms. The entire process is summarized in Algorithm 3.

4.1 Multiple Accelerated Local Updates

The FedAvg algorithm, proposed by [26], is widely used for federated learning to improve communication
efficiency by reducing communication rounds with multiple local SGD updates. [43] provide FedAC that replaces
the stochastic gradient updates of FedAvg by accelerated version of SGD by [6] resulting in a linear speedup in
M with fewer communication rounds than FedAvg.

Thus, we apply the FedAC scheme to multiple updates of each local model. Since previous quantization-based
federated optimization algorithms are FedAvg variants with no acceleration, the accelerated method enables our
algorithm to gain better communication efficiency than others.

As you can see in Algorithm 3, we need two more local parameters wag,m
k,t and wmd,m

k,t for acceleration in
addition to the main local parameter wm

k,t. w
ag,m
k,t aggregates the past iterates, and the gradients are queried at

the auxiliary parameter wmd,m
k,t . While typical FL algorithms without acceleration only have a learning rate η as

their hyperparameter, the general acceleration scheme makes our algorithm flexible due to four hyperparameters
α, β, η, γ. α, β are hyperparameters related to coupling coefficients, and η, γ stand for learning rates respectively
for wag,m

k,t , wm
k,t. The flexibility of hyperparameters enables the fast convergence speed of FedAQ, but naively

chosen hyperparameters also cause unstable training of FedAQ. We discuss the exact choice of hyperparameters
in section 5. Unlike FedAC, that requires each client to communicate the exact iterates to the server with high
precision, we discuss in the following subsection how FedAQ incorporates quantization techniques to reduce
communication cost.

4.2 Communication with Quantization

In cross-device federated learning, a large amount of communicated messages from a number of devices
and the limited communication bandwidth can lead to severe communication bottlenecks. Therefore, in this
scenario, an efficient quantization scheme can significantly reduce the size of communicated messages and make
communication between local devices and a server faster. We apply the same unbiased quantizer used in [9] that
satisfies Assumption 1.

In contrast with other quantization-based federated optimization algorithms [27, 9], the algorithmic novelty
of FedAQ is based on applying quantization to two model parameter updates, which is required in order to
simultaneously reduce the frequency of communication and the volume of communicated bits. To the best of
our knowledge, this is the first quantization-based method that achieves the accelerated rate with the dramatic
reduction in communication cost. To be specific on the communication process, after each client m obtains
wm
k,τ , w

ag,m
k,τ through τ accelerated local iterations, each client quantizes the difference between wm

k,τ , w
ag,m
k,τ and

the most recent server models wk, w
ag
k . Then, a server aggregates Q(wm

k,τ −wk), Q(w
ag,m
k,τ −w

ag
k ) from all clients.

After dequantizing those messages, the server obtains the following new models wk+1, w
ag
k+1 and broadcasts them

back to each client.

83



Algorithm 3 Federated Accelerated SGD with Quantization (FedAQ)

1: Input: α, β, η, γ, initial vector w0 = w
ag,m
0,0 = wm

0,0 for all devices m ∈ [M ]
2: for k = 0, · · · ,K − 1 do
3: for each client m in parallel do
4: wm

k,0 ← wk, w
ag,m
k,0 ← w

ag
k

5: for t = 0, · · · , τ − 1 do
6: wmd,m

k,t ← β−1wm
k,t + (1− β−1)w

ag,m
k,t

7: gmk,t ← ∇f(w
md,m
k,t , ξmk,t)

8: w
ag,m
k,t+1 ← wmd,m

k,t − ηgmk,t
9: wm

k,t+1 ← (1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t
10: send Q(wm

k,τ − wk), Q(w
ag,m
k,τ − w

ag
k )

11: server finds wk+1 ← wk +
1
M

M∑
m=1

Q(wm
k,τ − wk), w

ag
k+1 ← w

ag
k + 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k )

5 Convergence Analysis

The rigorous theoretical guarantees of reducing communication complexity under strongly-convex and ho-
mogeneous assumptions should come first to ensure the significance of FedAQ as one of the standards of
communication-efficient federated optimization algorithms. Proving convergence guarantees of FedAQ even
under these assumptions requires careful consideration of the approximation error induced by the quantization
scheme combined with the convergence analysis of acceleration based methods. To recall, in FedAQ the server
aggregates two quantized local updates Q(wm

k,τ − wk), Q(w
ag,m
k,τ − w

ag
k ) from all clients (See line 11 in Algo-

rithm 3) in each round. If we simply try to generalize the convergence guarantee of FedAC to incorporate the
quantization variance costs, the proof techniques from earlier quantization-based methods cannot be directly
applied, as we now have two additional quantization error terms that contribute to the overall cost. A significant
amount of additional effort is required in order to account for this new quantization error.

In this section, we first define two condition sets of hyperparameters used for the convergence analysis
of FedAQ. Then, we provide the proof sketch of FedAQ under one such condition set that leads to the better
convergence rate Õ( 1+q

MT + 1+q
TK3 ). The full proofs of lemmas, theorems, and corollaries under both condition sets

are elaborated in section 5.3 and section 5.4. Finally, we discuss how we obtain the new convergence rate for [9]
and look into more theoretical details on contribution 2 in Introduction.

5.1 Two Parameter Condition Sets

We carefully determine two parameter condition sets that theoretically ensure the convergence guarantees. The
first one is

η, γ ∈
(
0,

1

L

]
, γ = max

(√ η

µτ
, η
)
, α =

1

γµ
, β = α+ 1 (34)

We add one more condition γ ∈ (0, 1
L ] to the FedAC-I condition [43] and create our parameter condition set (34).

The second one is

η, γ ∈
(
0,

1

L

]
, γ = max

(√ η

µτ
, η
)
, α =

3

2γµ
− 1

2
, β =

2α2 − 1

α− 1
, γµ ≤ 3

4
(35)

We add two more conditions γ ∈ (0, 1
L ] and γµ ≤ 3

4 to the FedAC-II condition to build our parameter condition
set (35). Even though quantization adds complexity to the algorithm, these weak assumptions are the only

84



additional requirements for showing the convergence of FedAQ. Moreover, although the better convergence rate
Õ( 1+q

MT + 1+q
TK3 ) is obtained from the condition set (35), we also analyze the convergence of FedAQ under the

condition set (34) because this set empirically leads to more stable training and better performance in experiments
than the condition set (35) (See Strongly convex case in section 6.2.1). The intuition of the less stable training
of FedAQ under the condition set (35) comes from larger α, β than those of the condition set (34). If α, β
are too large, α−1, β−1 in Algorithm 3 cannot be used as proper coupling coefficients for local parameters
wm
k,t, w

ag,m
k,t , wmd,m

k,t . This results in aggressive updates and less stable training behavior.

5.2 Proof Sketch of FedAQ Under Condition Set (35)

The decentralized potential Φk,t [43] is used for our convergence analysis. People commonly use this potential
for acceleration analysis [2].

Φk,t = F (w̄
ag
k,t)− F

∗ +
1

6
µ∥w̄k,t − w∗∥2

w̄k,t and w̄ag
k,t is respectively the average of wm

k,t and wag, m
k,t for all m. Here, we additionally define Φk as below.

Φk := Φk,0 = F (w
ag
k )− F ∗ +

1

6
µ∥wk − w∗∥2

Since wk and wag
k are parameters obtained after kth synchronization in a server side, Φk can be considered as the

potential of server models. Φk is essential to show the convergence of FedAQ because there is the computation
of the quantizer between Φk−1,τ and Φk,0. Thus, we should not naively track Φk,t but track Φk for our analysis.
Obtaining Φk ≤ ϵ would imply that F (wag

k ) − F ∗ ≤ ϵ and since F ∗ ≤ F (w
ag
k ), it would also imply that

∥wk − w∗∥2 = O(ϵ), thus obtaining convergence in terms of both the objective value and the iterate.
Our goal is to show the convergence of FedAQ and derive the simplified convergence rate so that we can

get the number of communication rounds to achieve a linear speedup in M . As the first step to show this, we
prove Lemma 5 which represents the relationship between two consecutive server potential functions Φk and
Φk+1. The quantization scheme amplifies the instability to the convergence of FedAQ in addition to the effect of
acceleration. Despite this challenge, we derive Lemma 5 with the help of subtle Propositions (See section 5.4.1).

Lemma 5: Let F be µ-strongly convex, and assume Assumption 1, 2, 3, 4, then for α = 3
2γµ−

1
2 , β = 2α2−1

α−1 , γ ∈
[η,

√
η
µ ], η, γ ∈ (0, 1

L ], γµ ≤
3
4 , τ ≥ 2, FedAQ yields

E[Φk+1] ≤ D(γ, τ)E[Φk] + (
η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
q

M
(
γ2µ

3
+ η2L)τσ2 +

q

2M

(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2︸ ︷︷ ︸

additional terms due to quantization

Where D(γ, τ) is defined as

D(γ, τ) = (1− 1

3
γµ)τ +

q

M

(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2︸ ︷︷ ︸

additional terms due to quantization

We get the inequality between Φk and Φk+1 by finding the upper bounds of error terms due to multiple(τ )
local steps and the quantization step. The upper bound of the error caused by multiple local steps is obtained

85



with the help of the analysis in [43] (See Proposition 19). Also, we get the tight upper bound of the error due
to quantization with our new proof techniques (See Proposition 20, 21, 22). The key challenge in bounding the
quantization error terms comes from representing the upper bound of variances of the quantizer Q on two local
updates wm

k,τ − wk, w
ag,m
k,τ − w

ag
k in the form of a server potential Φk. Some terms in Lemma 5 are similar to

those in Lemma C.2 of the FedAC paper [43], but our lemma contains additional terms that emerge from the
quantization scheme.

For the next step, by telescoping Lemma 5, we obtain the main theoretical result Theorem 6. Theorem 6
represents how ΦK decreases from the initial potential Φ0 as a communication round K increases. Since we
aim to telescope Lemma 5, D(γ, τ) should be smaller than 1. Specifically, we show D(γ, τ) ≤ 1− 1

6γµτ with
condition (36) (See section 5.4.2). That’s why Theorem 6 requires the learning rate γ to satisfy the certain
condition (36).

Theorem 6: Let F be µ-strongly convex, and assume Assumption 1, 2, 3, 4, then for the parameter condition set
(35), τ ≥ 2, if the learning rate γ satisfies(

1

9
µ2 +

q

M

(
µ(

8

3
µ+ 2L) + 2L(

µ

3
+ L)

))
γτ ≤ 1

6
µ (36)

FedAQ yields

E[ΦK ] ≤ exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)Kτ

)
Φ0 +

2(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
8(q + 25)η2L2τσ2

µ

+
3q
(
µ2(µ3 + L

4 ) + L(µ3 + L)2
)
η

3
2 τ

1
2σ2

µ
5
2M

+
3qL(µ3 + L)2η3τ2σ2

µM

We get the convergence rate of FedAQ with respect to η under the condition set (35). The final step is to tune
η appropriately and obtain a more intuitive form of convergence rate that we can easily analyze a linear speedup
in M . The exact form of this can be found in Corollary 23. Here, we introduce the simplified form of Corollary
23.

Corollary 7: (Simplified form of Corollary 23) Note that T = Kτ . For η = min( 1L , Θ̃( τ
µT 2 )), FedAQ yields

E[ΦK ] ≤ min
(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0 + Õ(

(1 + q)σ2

µMT︸ ︷︷ ︸
I

+
(1 + q)L2τ3σ2

µ3T 4︸ ︷︷ ︸
II

+
qL3τ2σ2

µ4MT 3︸ ︷︷ ︸
III

)

The convergence rate of FedAQ under the condition set (34) is obtained in a similar way. The convergence
analysis under the condition set (34) is elaborated as Lemma 10, Theorem 16, and Corollary 17 in section 5.3.

Remark 8: The above convergence rate is worse than the convergence rate of FedAC-II according to Theorem
C.13 in [43] because there are additive terms related to the quantization noise q in our case. Let’s figure out the
dominant terms with Õ notation from the above convergence rate. Here, we replace τ with T

K . At first, we can
ignore the first term because it decreases exponentially. The second term I would be Õ( 1+q

MT ). Then, the third term

II becomes Õ( (1+q)τ3

T 4 ) = Õ( 1+q
TK3 ). Finally, the last term III turns into Õ( qτ2

MT 3 ) = Õ( q
MTK2 ). Thus, the overall

convergence rate of FedAQ under the condition set (35) would be Õ( 1+q
MT + 1+q

TK3 ). Similarly, we obtain the
simplified convergence rate of FedAQ under the condition set (34) from three terms (14), (15), (16) of Corollary
17. In this case, the convergence rate of FedAQ is Õ( 1+q

MT + 1
TK2 ), and the required number of communication

rounds to achieve a linear speedup in M is Õ(( M
1+q )

1
2 ).

86



Remark 9: As we mention above, FedAQ converges at rate Õ( 1+q
MT + 1+q

TK3 ), which is better than the convergence
rate of [9] Õ( 1+q

MT + 1
TK ). To our knowledge, [9] obtain the best convergence rate among previous quantization-

based federated optimization algorithms. Actually, in the strongly-convex and homogeneous case, [9] provide
different convergence rate O( 1

γ2τ
+ (q+1)

( q
M

+1)τM
) = O( K

γ2T
+ (q+1)K

( q
M

+1)TM
), where γ is a learning rate for the server

updates. They achieve this convergence rate by tuning η = 1
2L( q

M
+1)τγ

. However, we cannot say this algorithm

achieves a linear speedup in this scenario. That’s why we provide a new convergence rate Õ( 1+q
MT + 1

TK ) for [9]
by tuning η in a different way. This new η makes this algorithm achieve a linear speedup. Why the original η
cannot achieve a linear speedup and how we get new η can be found in section 5.5.

5.3 Proof Details for FedAQ under Condition Set (34)

Before diving into proof details, we define w̄k,τ , w̄
ag
k,τ ,Ψ

m
k,t,Ψk,t,Ψk, A

m
k,t as below.

w̄k,τ =
1

M

M∑
m=1

wm
k,τ

w̄
ag
k,τ =

1

M

M∑
m=1

w
ag,m
k,τ

Ψm
k,t = F (w

ag,m
k,t )− F ∗ +

1

2
µ∥wm

k,t − w∗∥2

Ψk,t =
1

M

M∑
m=1

F (w
ag,m
k,t )− F ∗ +

1

2
µ∥w̄k,t − w∗∥2

Ψk : = Ψk,0 = F (w
ag
k )− F ∗ +

1

2
µ∥wk − w∗∥2

Am
k,t =

γ2µ2(µ+ L)

(1 + γµ)2
∥wm

k,t − w
ag,m
k,t ∥

2 + γ2(µ+ L)
2L

1 + γµ
Ψm

k,t

The above notations are essential to our convergence analysis. Intuitively, if the FedAQ algorithm converges to
the optimal point, w̄k,τ , w̄

ag
k,τ become w∗, and Ψm

k,t,Ψk,t,Ψk, A
m
k,t become 0. In order to denote the σ-algebra

generated by {wm
k′,t′ , w

ag,m
k′,t′ }(k′<k) or (k′=k,t′≤t),m∈[M ], we use Fk,t.

5.3.1 Proof of Lemma 10

Lemma 10: Let F be µ-strongly convex, and assume Assumption 1, 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ ∈

[η,
√

η
µ ], η, γ ∈ (0, 1

L ], τ ≥ 2, FedAQ yields

E[Ψk+1] ≤ C(γ, τ)E[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2

+ γµLτ · max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥]

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2︸ ︷︷ ︸

Additional terms due to quantization

87



Where C(γ, τ) is defined as

C(γ, τ) = (1− γµ)τ + q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2︸ ︷︷ ︸

Additional terms due to quantization

In this section, we first introduce five crucial Propositions for proving Lemma 10. Then, we prove Lemma 10
by using Propositions in the last part of this section.

Proposition 11: Let Assumption 1 hold and consider any k synchronization round. Then, we can decompose
the expectation as follows:

E[∥wk+1 − w∗∥2] = E[∥wk+1 − w̄k,τ∥2] + E[∥w̄k,τ − w∗∥2]

E[F (wag
k+1)− F

∗] = E[F (wag
k+1)−

1

M

M∑
m=1

F (w
ag,m
k,τ )] + E[

1

M

M∑
m=1

F (w
ag,m
k,τ )− F ∗]

Proof of Proposition 11 The second equality is trivial. Let’s focus on the first equality. By Assumption 1,
the quantizer Q is unbiased and we get,

EQ[wk+1] = wk +
1

M

M∑
m=1

EQQ(wm
k,τ − wk) =

1

M

M∑
m=1

wm
k,τ = w̄k,τ

Thus, we finally obtain

E[∥wk+1 − w∗∥2] = E[∥wk+1 − w̄k,τ + w̄k,τ − w∗∥2]
= E[∥wk+1 − w̄k,τ∥2] + E[∥w̄k,τ − w∗∥2]

Proposition 12: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ ∈

[η,
√

η
µ ], η ∈ (0, 1

L ], FedAQ yields

E[Ψk,τ ] ≤ (1− γµ)τE[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥]

Proof of Proposition 12 We refer to the proof of Lemma B.2 in [43]. There is no quantization between Ψk,τ

and Ψk. Thus, we can directly apply useful inequalities in the proof of Lemma B.2 in [43] to our proof. Then, we
obtain

E[Ψk,t+1|Fk,t] ≤ (1− γµ)Ψk,t +
1

2
(η2L+

γ2µ

M
)σ2 + γµL

· 1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥

88



From the above relationship between Ψk,t+1 and Ψk,t, we get

E[Ψk,τ ] ≤ (1− γµ)τE[Ψk] +
( τ−1∑

t=0

(1− γµ)t
)1
2
(η2L+

γ2µ

M
)σ2 + γµL ·

τ−1∑
t=0

{
(1− γµ)τ−t−1

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥]

}
≤ (1− γµ)τE[Ψk] +

1

2
(η2L+

γ2µ

M
)τσ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥]

Proposition 13: Let Assumption 1 hold. Then, we have

E[∥wk+1 − w̄k,τ∥2] ≤
q

M2

M∑
m=1

E[∥wm
k,τ − wk∥2]

E[F (wag
k+1)−

1

M

M∑
m=1

F (w
ag,m
k,τ )] ≤ qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proof of Proposition 13 First, let’s consider the first inequality. According to Assumption 1, we get

E[∥wk+1 − w̄k,τ∥2] = E[∥wk +
1

M

M∑
m=1

Q(wm
k,τ − wk)−

1

M

M∑
m=1

wm
k,τ∥2]

= E[∥ 1

M

M∑
m=1

Q(wm
k,τ − wk)− (wm

k,τ − wk)∥2]

=
1

M2

M∑
m=1

E[∥Q(wm
k,τ − wk)− (wm

k,τ − wk)∥2] ≤
q

M2

M∑
m=1

E∥wm
k,τ − wk∥2

The third equality comes from the unbiasedness of Q, and the last inequality stems from the variance assumption
of Q. Similarly, we obtain

89



E[F (wag
k+1)−

1

M

M∑
m=1

F (w
ag,m
k,τ )] = E[F (wag

k +
1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k ))− 1

M

M∑
m=1

F (w
ag,m
k,τ )]

= E[
1

M

M∑
m=1

F (w
ag
k +

1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k ))− F (wag,m

k,τ )]

≤ E
[ 1

M

M∑
m=1

⟨∇F (wag,m
k,τ ),

1

M

M∑
m=1

(
Q(w

ag,m
k,τ − w

ag
k )− (w

ag,m
k,τ

− wag
k )

)
⟩+ L

2
∥ 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k )− (w

ag,m
k,τ − w

ag
k )∥2

]
=
L

2
E[∥ 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k )− (w

ag,m
k,τ − w

ag
k )∥2]

=
L

2M2

M∑
m=1

E[∥Q(w
ag,m
k,τ − w

ag
k )− (w

ag,m
k,τ − w

ag
k )∥2]

≤ qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proposition 14: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ ∈

[η,
√

η
µ ], η, γ ∈ (0, 1

L ], we get

E[Am
k,t] ≤ E[Am

k,0] +
((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
·
(
1− (1− γµ+

γµ

1 + γµ
)t
)
σ2

Proof of Proposition 14 From the notation mentioned in the beginning of section 5.3,

E[Am
k,t+1|Fk,t] =

γ2µ2(µ+ L)

(1 + γµ)2
E[∥wm

k,t+1 − w
ag,m
k,t+1∥

2|Fk,t] + γ2(µ+ L)
2L

1 + γµ
E[Ψm

k,t+1|Fk,t] (37)

Thus, let’s sequentially compute E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] and E[Ψm
k,t+1|Fk,t].

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] = E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w
md,m
k,t + ηgmk,t∥2|Fk,t]

= E[∥(1− α−1)(wm
k,t − w

md,m
k,t )− (γ − η)gmk,t∥2|Fk,t] (← γ ≥ η)

= ∥(1− α−1)(wm
k,t − w

md,m
k,t )− (γ − η)∇F (wmd,m

k,t )∥2

+ (γ − η)2E[∥∇F (wmd,m
k,t )− gmk,t∥2|Fk,t]

≤ (1− α−1)2∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2∥∇F (wmd,m
k,t )∥2

+ (γ − η)2σ2 − 2(γ − η)⟨(1− α−1)(wm
k,t − w

md,m
k,t ),∇F (wmd,m

k,t )⟩

≤ (1− α−1)2(1 + γµ)∥wm
k,t − w

md,m
k,t ∥

2

+ (γ − η)2(1 + 1

γµ
)∥∇F (wmd,m

k,t )∥2 + (γ − η)2σ2

=
(1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ
∥∇F (wmd,m

k,t )∥2 + (γ − η)2σ2

90



Here, we need to bound ∥∇F (wmd,m
k,t )∥2.

∥∇F (wmd,m
k,t )∥2 ≤ 2L(F (wmd,m

k,t )− F ∗) (∵ Assumption 3)

≤ 2L
(
β−1(F (wm

k,t)− F (w∗)) + (1− β−1)(F (w
ag,m
k,t )− F ∗)

)
≤ β−1L2∥wm

k,t − w∗∥2 + 2(1− β−1)L(F (w
ag,m
k,t )− F ∗)

=
γµL2

1 + γµ
∥wm

k,t − w∗∥2 + 2L

1 + γµ
(F (w

ag,m
k,t )− F ∗)

≤ µL

1 + γµ
∥wm

k,t − w∗∥2 + 2L

1 + γµ
(F (w

ag,m
k,t )− F ∗) =

2L

1 + γµ
Ψm

k,t (38)

The last inequality comes from the fact γ ∈ [0, 1
L). Therefore, we finally get

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] ≤
(1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ
∥∇F (wmd,m

k,t )∥2 + (γ − η)2σ2

≤ (1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ

( 2L

1 + γµ
Ψm

k,t

)
+ (γ − η)2σ2

(39)

Now, let’s compute E[Ψm
k,t+1|Fk,t]. We need to compute E[∥wm

k,t+1 − w∗∥2|Fk,t] and E[F (wag,m
k,t+1)− F

∗|Fk,t]
first.

E[∥wm
k,t+1 − w∗∥2|Fk,t] = E[∥(1− α−1)wm

k,t + α−1wmd,m
k,t − γgmk,t − w∗∥2|Fk,t]

≤ ∥(1− α−1)wm
k,t + α−1wmd,m

k,t − w∗∥2 + γ2∥∇F (wmd,m
k,t )∥2 + γ2σ2

− 2γ⟨(1− α−1)wm
k,t + α−1wmd,m

k,t − w∗,∇F (wmd,m
k,t )⟩

≤ (1− α−1)∥wm
k,t − w∗∥2 + α−1∥wmd,m

k,t − w∗∥2 + γ2∥∇F (wmd,m
k,t )∥2 + γ2σ2

− 2γ⟨(1− α−1(1− β−1))wm
k,t + α−1(1− β−1)w

ag,m
k,t − w

∗,∇F (wmd,m
k,t )⟩

= (1− γµ)∥wm
k,t − w∗∥2 + γµ∥wmd,m

k,t − w∗∥2 + γ2∥∇F (wmd,m
k,t )∥2 + γ2σ2

− 2γ⟨ 1

1 + γµ
wm
k,t +

γµ

1 + γµ
w

ag,m
k,t − w

∗,∇F (wmd,m
k,t )⟩

E[F (wag,m
k,t+1)−F

∗|Fk,t]

≤ E[F (wmd,m
k,t ) + ⟨∇F (wmd,m

k,t ), w
ag,m
k,t+1 − w

md,m
k,t ⟩+

L

2
∥wag,m

k,t+1 − w
md,m
k,t ∥

2 − F ∗|Fk,t]

≤ F (wmd,m
k,t )− F ∗ − η∥∇F (wmd,m

k,t )∥2 + η2L

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

≤ F (wmd,m
k,t )− F ∗ − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2 (∵ 1− ηL

2
≥ 1

2
← η ∈ [0,

1

L
])

= (1− α−1)(F (w
ag,m
k,t )− F ∗) + α−1(F (wmd,m

k,t )− F ∗)

+ (1− α−1)(F (wmd,m
k,t )− F (wag,m

k,t ))− η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

91



≤ (1− α−1)(F (w
ag,m
k,t )− F ∗)− µα−1

2
∥wmd,m

k,t − w∗∥2 + α−1⟨∇F (wmd,m
k,t ), wmd,m

k,t − w∗⟩

+ (1− α−1)⟨∇F (wmd,m
k,t ), wmd,m

k,t − wag,m
k,t ⟩ −

η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

= (1− α−1)(F (w
ag,m
k,t )− F ∗)− µα−1

2
∥wmd,m

k,t − w∗∥2 − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

+ α−1⟨∇F (wmd,m
k,t ), αβ−1wm

k,t + (1− αβ−1)w
ag,m
k,t − w

∗⟩

= (1− γµ)(F (wag,m
k,t )− F ∗)− γµ2

2
∥wmd,m

k,t − w∗∥2 − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

+ γµ⟨ 1

1 + γµ
wm
k,t +

γµ

1 + γµ
w

ag,m
k,t − w

∗,∇F (wmd,m
k,t )⟩

Then, we bound E[Ψm
k,t+1|Fk,t] by using the above results.

E[Ψm
k,t+1|Fk,t] =

µ

2
E[∥wm

k,t+1 − w∗∥2|Fk,t] + E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ (1− γµ)Ψm
k,t −

η − γ2µ
2

∥∇F (wmd,m
k,t )∥2 + γ2µ+ η2L

2
σ2

≤ (1− γµ)Ψm
k,t +

γ2µ+ η2L

2
σ2 (∵ γ ≤

√
η

µ
)

≤ (1− γµ)Ψm
k,t +

γ2(µ+ L)

2
σ2 (40)

Plugging (39), (40) in (37) yields,

E[Am
k,t+1|Fk,t]

≤ γ2µ2(µ+ L)

(1 + γµ)2

(
(1− γµ)2

1 + γµ
∥wm

k,t − w
ag,m
k,t ∥

2 + (γ − η)2 1 + γµ

γµ

( 2L

1 + γµ
Ψm

k,t

)
+ (γ − η)2σ2

)
+ γ2(µ+ L)

2L

1 + γµ

(
(1− γµ)Ψm

k,t +
γ2(µ+ L)

2
σ2

)
=

(1− γµ)2

1 + γµ
· γ

2µ2(µ+ L)

(1 + γµ)2
∥wm

k,t − w
ag,m
k,t ∥

2 +
(γµ(γ − η)2(µ+ L)

1 + γµ
+ γ2(µ+ L)(1− γµ)

) 2L

1 + γµ
Ψm

k,t

+
(γ2µ2(γ − η)2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
σ2 (41)

Since η ≤ γ, we get (γ − η)2 ≤ γ2. By using this fact, we obtain

γµ(γ − η)2(µ+ L)

1 + γµ
+ γ2(µ+ L)(1− γµ) ≤ γ3µ(µ+ L)

1 + γµ
+ γ2(µ+ L)(1− γµ)

= γ2(µ+ L)(1− γµ+
γµ

1 + γµ
) (42)

It is easy to show that 1− γµ+ γµ
1+γµ < 1. Also, we get

(1− γµ)2

1 + γµ
< 1− γµ < 1− γµ+

γµ

1 + γµ
(43)

92



From (41), (42), and (43) we finally get

E[Am
k,t+1|Fk,t] ≤ (1− γµ+

γµ

1 + γµ
)Am

k,t +
(γ2µ2(γ − η)2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
σ2

From this relationship between Am
k,t+1 and Am

k,t, we obtain the result of Proposition 14.

E[Am
k,t]

≤ (1− γµ+
γµ

1 + γµ
)tE[Am

k,0] +
(γ2µ2(γ − η)2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
σ2 ·

1− (1− γµ+ γµ
1+γµ)

t

1− (1− γµ+ γµ
1+γµ)

= (1− γµ+
γµ

1 + γµ
)tE[Am

k,0] +
((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
σ2 ·

(
1− (1− γµ+

γµ

1 + γµ
)t
)

≤ E[Am
k,0] +

((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
·
(
1− (1− γµ+

γµ

1 + γµ
)t
)
σ2

Proposition 15: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ ∈

[η,
√

η
µ ], η, γ ∈ (0, 1

L ], τ ≥ 2, FedAQ yields

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2E[Ψk] + (γ2µ+ η2L)τσ2

+
((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)τ3σ2
2

Proof of Proposition 15 Let’s first bound E[∥wm
k,τ − wk∥2] and E[∥wag,m

k,τ − w
ag
k ∥

2] individually.

E[∥wm
k,τ − wk∥2] = E[∥(wm

k,τ − wm
k,τ−1) + · · ·+ (wm

k,1 − wm
k,0)∥2]

= E
[∥∥∥ τ−1∑

t=0

(
(1− α−1)wm

k,t + α−1wmd, m
k,t − wm

k,t − γgmk,t
)∥∥∥2]

= E
[∥∥∥α−1

τ−1∑
t=0

(wmd,m
k,t − wm

k,t)− γ
τ−1∑
t=0

gmk,t

∥∥∥2]
≤ 2α−2E[∥

τ−1∑
t=0

(wmd,m
k,t − wm

k,t)∥2] + 2γ2E[∥
τ−1∑
t=0

gmk,t∥2]

≤ 2α−2τ

τ−1∑
t=0

E[∥wmd,m
k,t − wm

k,t∥2] + 2γ2E[∥
τ−1∑
t=0

∇F (wmd,m
k,t )∥2]

+ 2γ2E[∥
τ−1∑
t=0

(gmk,t −∇F (w
md,m
k,t ))∥2]

≤ 2α−2(1− β−1)2τ

τ−1∑
t=0

E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2γ2τ
τ−1∑
t=0

E[∥∇F (wmd,m
k,t )∥2]

+ 2γ2
τ−1∑
t=0

E[∥gmk,t −∇F (w
md,m
k,t )∥2]

= τ
( τ−1∑

t=0

2α−2(1− β−1)2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2γ2E[∥∇F (wmd,m
k,t )∥2]

)
+ 2τγ2σ2

93



E[∥wag,m
k,τ − w

ag
k ∥

2] = E[∥
τ−1∑
t=0

(w
ag,m
k,t+1 − w

ag,m
k,t )∥2]

= E[∥
τ−1∑
t=0

(wmd,m
k,t − wag,m

k,t − ηg
m
k,t)∥2]

≤ 2E[∥
τ−1∑
t=0

(wmd,m
k,t − wag,m

k,t )∥2] + 2η2E[∥
τ−1∑
t=0

gmk,t∥2]

= 2β−2E[∥
τ−1∑
t=0

(wm
k,t − w

ag,m
k,t )∥2] + 2η2E[∥

τ−1∑
t=0

∇F (wmd,m
k,t )∥2]

+ 2η2E[∥
τ−1∑
t=0

(gmk,t −∇F (w
md,m
k,t ))∥2]

≤ 2β−2τ

τ−1∑
t=0

E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2η2τ

τ−1∑
t=0

E[∥∇F (wmd,m
k,t )∥2]

+ 2η2
τ−1∑
t=0

E[∥gmk,t −∇F (w
md,m
k,t )∥2]

= τ
( τ−1∑

t=0

2β−2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2η2E[∥∇F (wmd,m
k,t )∥2]

)
+ 2τη2σ2

Thus, by using the above results, we get

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
τ−1∑
t=0

{(
µα−2(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + (γ2µ+ η2L)E[∥∇F (wmd,m
k,t )∥2]

}
+ (γ2µ+ η2L)τσ2

≤ τ
τ−1∑
t=0

{(
µα−2(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + (γ2µ+ η2L)
2L

1 + γµ
E[Ψm

k,t]
}

+ (γ2µ+ η2L)τσ2 (∵ (38))

≤ τ
τ−1∑
t=0

{γ2µ2(µ+ L)

(1 + γµ)2
E[∥wm

k,t − w
ag,m
k,t ∥

2] + γ2(µ+ L)
2L

1 + γµ
E[Ψm

k,t]
}
+ (γ2µ+ η2L)τσ2

= τ
( τ−1∑

t=0

E[Am
k,t]

)
+ (γ2µ+ η2L)τσ2

94



By Proposition 14 and the fact Ψm
k,0 = Ψk, we obtain

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
{ τ−1∑

t=0

E[Am
k,0] +

((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)
·
(
1− (1− γµ+

γµ

1 + γµ
)t
)
σ2

}
+ (γ2µ+ η2L)τσ2

= τ2
(γ2µ2(µ+ L)

(1 + γµ)2
E[∥wk − wag

k ∥
2] + γ2(µ+ L)

2L

1 + γµ
E[Ψk]

)
+ τ

((γ − η)2(µ+ L)

1 + γµ
+
γ2(µ+ L)2L

µ2

)( τ−1∑
t=0

1− (1− γµ+
γµ

1 + γµ
)t
)
σ2 + (γ2µ+ η2L)τσ2

Before we get to the final result, let’s find the upper bound for ∥wk − wag
k ∥

2,
∑τ−1

t=0

(
1− (1− γµ+ γµ

1+γµ)
t
)

∥wk − wag
k ∥

2 = ∥wk − w∗ − (w
ag
k − w

∗)∥2

≤ 2∥wk − w∗∥2 + 2∥wag
k − w

∗∥2

≤ 2∥wk − w∗∥2 + 2 · 2
µ

(
F (w

ag
k )− F ∗ − ⟨∇F (w∗), w

ag
k − w

∗⟩
)

= 2∥wk − w∗∥2 + 4

µ
(F (w

ag
k )− F ∗) =

4

µ
Ψk

τ−1∑
t=0

(
1− (1− γµ+

γµ

1 + γµ
)t
)
= τ −

τ−1∑
t=0

(1− γµ+
γµ

1 + γµ
)t

= τ −
1− (1− γµ+ γµ

1+γµ)
τ

1− (1− γµ+ γµ
1+γµ)

≤ τ −
1− (1− γ2µ2

1+γµτ + ( γ2µ2

1+γµ)
2 τ(τ−1)

2 )

γ2µ2

1+γµ

=
γ2µ2

1 + γµ
· τ(τ − 1)

2
≤ γ2µ2

1 + γµ
· τ

2

2

Therefore, we conclude as below

µ

2
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2E[Ψk] + (γ2µ+ η2L)τσ2

+
((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)τ3σ2
2

Proof of Lemma 10 By the definition of Ψk,Ψk,t and Proposition 11,

E[Ψk+1] = E[Ψk,τ ] +
µ

2
E[∥wk+1 − w̄k,τ∥2] + E[F (wag

k+1)−
1

M

M∑
m=1

F (w
ag,m
k,τ )]

95



Applying Proposition 12 and Proposition 13, we have

E[Ψk+1]

≤ (1− γµ)τE[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2

+ γµLτ · max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥]

+
qµ

2M2

M∑
m=1

E[∥wm
k,τ − wk∥2] +

qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

≤ (1− γµ)τE[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2

+ γµLτ · max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥]

+
q

M

[(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2E[Ψk] + (γ2µ+ η2L)τσ2

+
((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)τ3σ2
2

]
=

{
(1− γµ)τ + q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2
}
E[Ψk] +

1

2
(η2L+

γ2µ

M
)τσ2

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2

+ γµLτ · max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥]

The second inequality comes from Proposition 15. Then, let’s define C(γ, τ) as

C(γ, τ) = (1− γµ)τ + q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2

Finally, we obtain

E[Ψk+1] ≤ C(γ, τ)E[Ψk] +
1

2
(η2L+

γ2µ

M
)τσ2 +

q

M
(γ2µ+ η2L)τσ2

+
q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥]

5.3.2 Proof of Theorem 16

Theorem 16: Let F be µ-strongly convex, and assume Assumption 1, 2, 3, 4, then for α = 1
γµ , β = α+ 1, γ =

max(η,
√

η
µτ ), η, γ ∈ (0, 1

L ], τ ≥ 2, if the learning rate γ satisfies(
µ2 +

q

M
(µ+ L)(4µ+ 2L)

)
γτ ≤ 1

2
µ (44)

96



FedAQ yields

E[ΨK ] ≤ exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)Kτ

)
Ψ0 + (2q + 1)(

η
1
2σ2

µ
1
2Mτ

1
2

+
ησ2

M
) + 14η2Lτσ2

+
(780 + 2q

M )η
3
2Lτ

1
2σ2

µ
1
2

+
(µ+ L)(µ2 + µL+ L2)qη

3
2 τ

1
2σ2

µ
5
2M

+
qη3τ2(µ+ L)2Lσ2

µM

Proof of Theorem 16 At first, due to the condition (44) in Theorem 16, we get

C(γ, τ) = (1− γµ)τ + q

M

(4γ2µ(µ+ L)

(1 + γµ)2
+

2Lγ2(µ+ L)

1 + γµ

)
τ2

≤ 1− γµτ + γ2µ2τ2 +
q

M
γ2(µ+ L)(4µ+ 2L)τ2

= 1− γµτ +
(
µ2 +

q

M
(µ+ L)(4µ+ 2L)

)
γ2τ2

≤ 1− 1

2
γµτ (∵ condition (44))

The first inequality comes from the fact that (1− γµ)τ ≤ e−γµτ ≤ 1− γµτ + γ2µ2τ2 when 0 ≤ γµ ≤ 1. Also,
it is trivial that γ = max(η,

√
η
µτ ) ∈ [η,

√
η
µ ]. Thus, we can use Lemma 10. By using Lemma 10 and the above

result, we obtain

E[Ψk+1] ≤ (1− 1

2
γµτ)E[Ψk] +

1

2
(η2L+

γ2µ

M
)τσ2

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2 + γµLτ

· max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥] (45)

By the Lemma B.3 in [43], we know that the below quantity is bounded.

max
0≤t<τ

E[
1

M

M∑
m=1

∥w̄md
k,t − w

md,m
k,t ∥∥

1

1 + γµ
(w̄k,t − wm

k,t) +
γµ

1 + γµ
(w̄

ag
k,t − w

ag,m
k,t )∥] ≤ B

B =

7ηγτσ2
(
1 + 2γ2µ

η

)2τ
, if γ ∈

(
η,
√

η
µ

]
7η2τσ2, if γ = η

Telescoping (45) yields

E[ΨK ] ≤ (1− 1

2
γµτ)KΨ0 +

(K−1∑
k′=0

(1− 1

2
γµτ)k

′
)
·
[1
2
(η2L+

γ2µ

M
)τσ2 + γµLτB

+
q

M
(γ2µ+ η2L)τσ2 +

q

2M

((γ − η)2γ2µ2(µ+ L)

(1 + γµ)2
+
γ4(µ+ L)2L

1 + γµ

)
τ3σ2

]
≤ exp

(
− γµτK

2

)
Ψ0 +

η2Lσ2

γµ
+
γσ2

M
+ 2LB + 2q

(γσ2
M

+
η2Lσ2

γµM

)
+

q

M

((γ − η)2γµ(µ+ L)

(1 + γµ)2
+
γ3(µ+ L)2L

(1 + γµ)µ

)
τ2σ2

97



The last inequality comes from the fact that
∑K−1

k′=0(1−
1
2γµτ)

k′ ≤ 2
γµτ . Since we plug in γ = max(η,

√
η
µτ ),

we can use Lemma B.4 in [43]. Therefore, we obtain

E[ΨK ] ≤ exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)Kτ

)
Ψ0 +

η
1
2σ2

µ
1
2Mτ

1
2

+
ησ2

M
+

780η
3
2Lτ

1
2σ2

µ
1
2

+ 14η2Lτσ2

+max
( 2qη

1
2σ2

Mµ
1
2 τ

1
2

,
2qησ2

M

)
+min

(2qη 3
2 τ

1
2Lσ2

Mµ
1
2

,
2qηLσ2

Mµ

)
+
qτ2σ2

M
max

(η 3
2µ(µ+ L)

µ
3
2 τ

3
2

+
η

3
2 (µ+ L)2L

µ
5
2 τ

3
2

,
η3(µ+ L)2L

µ

)
The first term stems directly from Lemma B.4 in [43]. Also, the last term comes from the fact that

(γ − η)2γµ(µ+ L)

(1 + γµ)2
+
γ3(µ+ L)2L

(1 + γµ)µ
≤

{
γ3µ(µ+ L) + γ3(µ+L)2L

µ , if γ ̸= η
η3(µ+L)2L

µ , if γ = η

Therefore, by simple inequalities such as max(a, b) ≤ a+ b and min(a, b) ≤ a, we ultimately get

E[ΨK ] ≤ exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)Kτ

)
Ψ0 +

(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
(2q + 1)ησ2

M
+ 14η2Lτσ2

+
(780 + 2q

M )η
3
2Lτ

1
2σ2

µ
1
2

+
(µ+ L)(µ2 + µL+ L2)qη

3
2 τ

1
2σ2

µ
5
2M

+
qη3τ2(µ+ L)2Lσ2

µM
(46)

5.3.3 Proof of Corollary 17

Corollary 17: Let C1, C2, and η0 as below. Note that T = Kτ .

C1 =
(µ+ L)(µ2 + µL+ L2)q

µ
5
2

, C2 =
q(µ+ L)2L

µ

η0 =
4τ

µT 2
log2

(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
)

Then for η = min( 1L , η0), FedAQ yields

E[ΨK ] ≤ min
(
exp(−µT

2L
), exp(− µ

1
2T

2L
1
2 τ

1
2

)
)
Ψ0

+
7(2q + 1)σ2

µMT
log2

(
e+

µMTΨ0

(2q + 1)σ2

)
(47)

+
(6465 + 16q

M )Lτ2σ2

µ2T 3
log4

(
e+

µ2T 3Ψ0

Lτ2σ2

)
(48)

+
9(µ

3
2C1 + 8C2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
(49)

Proof of Corollary 17 Let’s decompose the final result (46) of the Theorem 16 into a decreasing term and an

98



increasing term. We denote the decreasing term ψ1 and the increasing term ψ2 as below.

ψ1(η) = exp
(
− 1

2
max(ηµ,

√
ηµ

τ
)T

)
Ψ0

ψ2(η) =
(2q + 1)η

1
2σ2

µ
1
2Mτ

1
2

+
(2q + 1)ησ2

M
+

(780 + 2q
M )η

3
2Lτ

1
2σ2

µ
1
2

+ 14η2Lτσ2

+
(µ+ L)(µ2 + µL+ L2)qη

3
2 τ

1
2σ2

µ
5
2M

+
qη3τ2(µ+ L)2Lσ2

µM

Since ψ1 is the decreasing term, we have

ψ1(η) ≤ ψ1(
1

L
) + ψ1(η0) (50)

where

ψ1(
1

L
) = min

(
exp(−µT

2L
), exp(− µ

1
2T

2L
1
2 τ

1
2

)
)
Ψ0

ψ1(η0) ≤ exp
(
− 1

2

√
η0µ

τ
T
)

=
(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
)−1

Ψ0

≤ (2q + 1)σ2

µMT
+
Lτ2σ2

µ2T 3
+

(µ
3
2C1 + 8C2)τ

2σ2

µ3MT 3

Since ψ2 is the increasing term, we have

ψ2(η)

≤ ψ2(η0)

≤ 2(2q + 1)σ2

µMT
log

(
e+

µMTΨ0

(2q + 1)σ2

)
+

4(2q + 1)τσ2

µMT 2
log2

(
e+

µMTΨ0

(2q + 1)σ2

)
+

8(780 + 2q
M )Lτ2σ2

µ2T 3
log3

(
e+

µ2T 3Ψ0

Lτ2σ2

)
+

224Lτ3σ2

µ2T 4
log4

(
e+

µ2T 3Ψ0

Lτ2σ2

)
+

8C1τ
2σ2

µ
3
2MT 3

log3
(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
+

64C2τ
5σ2

µ3MT 6
log6

(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
≤ 6(2q + 1)σ2

µMT
log2

(
e+

µMTΨ0

(2q + 1)σ2

)
+

(6464 + 16q
M )Lτ2σ2

µ2T 3
log4

(
e+

µ2T 3Ψ0

Lτ2σ2

)
+

8(µ
3
2C1 + 8C2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
(51)

99



The last inequality comes from τ
T ≤ 1. Therefore, by combining (50) and (51), we finally get

E[ΨK ] ≤ ψ1(η) + ψ2(η)

≤ ψ1(
1

L
) + ψ1(η0) + ψ2(η0)

≤ min
(
exp(−µT

2L
), exp(− µ

1
2T

2L
1
2 τ

1
2

)
)
Ψ0 +

7(2q + 1)σ2

µMT
log2

(
e+

µMTΨ0

(2q + 1)σ2

)
+

(6465 + 16q
M )Lτ2σ2

µ2T 3
log4

(
e+

µ2T 3Ψ0

Lτ2σ2

)
+

9(µ
3
2C1 + 8C2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
5.3.4 Why the Condition (44) is Satisfied

The synchronization rounds K required for linear speedup in M for FedAQ is Õ(( M
1+q )

1
2 ) (See Remark 8). Since

we derive this result from Theorem 16, we should show that K = Õ(( M
1+q )

1
2 ) satisfies the condition (44) in

Theorem 16. (
µ2 +

q

M
(µ+ L)(4µ+ 2L)

)
γτ ≤ 1

2
µ

We rewrite the above condition as below.

γτ ≤ µ

2µ2 + 2q
M (µ+ L)(4µ+ 2L)

(52)

We know γ = max(η,
√

η
µτ ) and η = min( 1L , η0). Since η0 becomes smaller and smaller as T increases, we

assume η = η0 here. Therefore, we get

γτ = max(η0τ,

√
η0τ

µ
)

= max
( 4τ2

µT 2
log2

(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
)
,

2τ

µT
log

(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
))

Note that K = T
τ = Õ(( M

1+q )
1
2 ) = C( M

1+q )
1
2 log(T ) because Õ contains hidden multiplicative polylog factors

with respect to T . We can assume T is sufficiently large here. Then, we have

γτ = max
( 4(1 + q)

µC2M log2(T )
log2

(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
)
,

2(1 + q)
1
2

µCM
1
2 log(T )

log
(
e+min(

µMTΨ0

(2q + 1)σ2
,
µ2T 3Ψ0

Lτ2σ2
,

µ3MT 3Ψ0

(µ
3
2C1 + 8C2)τ2σ2

)
))

≤ max
( 4(1 + q)

µC2M log2(T )
log2

( 2µMTΨ0

(2q + 1)σ2

)
,

2(1 + q)
1
2

µCM
1
2 log(T )

log
( 2µMTΨ0

(2q + 1)σ2

))

100



For an arbitrary constant k1 > 0, it is easy to show that limT→∞
log(k1T )
log(T ) = 1. Thus, we obtain

γτ ≤ max
( 4(1 + q)

µC2M log2(T )
log2

( 2µMTΨ0

(2q + 1)σ2

)
,

2(1 + q)
1
2

µCM
1
2 log(T )

log
( 2µMTΨ0

(2q + 1)σ2

))
≃ max

(4(1 + q)

µC2M
,
2(1 + q)

1
2

µCM
1
2

)
≤ µ

2µ2 + 2q
M (µ+ L)(4µ+ 2L)

Finally, we conclude that there exists a constant C that meets the last inequality. Therefore, K = Õ(( M
1+q )

1
2 )

satisfies the condition (44).

5.4 Proof Details for FedAQ under Condition Set (35)

We use notations defined in section 5.3 here as well. We newly define Φm
k,t,Φk,t,Φk, B

m
k,t as below.

Φm
k,t = F (w

ag,m
k,t )− F ∗ +

1

6
µ∥wm

k,t − w∗∥2

Φk,t = F (w̄
ag
k,t)− F

∗ +
1

6
µ∥w̄k,t − w∗∥2

Φk : = Φk,0 = F (w
ag
k )− F ∗ +

1

6
µ∥wk − w∗∥2

Bm
k,t =

(µα−2

3
(1− β−1)2 + Lβ−2

)
∥wm

k,t − w
ag,m
k,t ∥

2 + γ2(
µ

3
+ L)

2α2 − α
2α2 − 1

· 2LΦm
k,t

The flow of proof is similar to section 5.3. We need one more condition γµ ≤ 3
4 to show the convergence of

FedAQ under the parameter condition set (35).

5.4.1 Proof of Lemma 5

In order to prove Lemma 5, we first introduce five crucial Propositions for proving Lemma 5. Then, we prove
Lemma 5 by using Propositions in the last part of this section.

Proposition 18: Let Assumption 1 hold and consider any k synchronization round. Then, we can decompose
the expectation as follows:

E[∥wk+1 − w∗∥2] = E[∥wk+1 − w̄k,τ∥2] + E[∥w̄k,τ − w∗∥2]
E[F (wag

k+1)− F
∗] = E[F (wag

k+1)− F (w̄
ag
k,τ )] + E[F (w̄ag

k,τ )− F
∗]

Proof of Proposition 18 The second equality is trivial. The first equality is the same as one in Proposition 11.

Proposition 19: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 3
2γµ −

1
2 , β =

2α2−1
α−1 , γ ∈ [η,

√
η
µ ], η ∈ (0, 1

L ], FedAQ yields

E[Φk,τ ] ≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M

+ γτ · max
0≤t<τ

E[∥∇F (w̄md
k,t)−

1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

101



Proof of Proposition 19 We refer to the proof of Lemma C.2 in [43]. There is no quantization between Φk,τ

and Φk. Thus, we can directly apply useful inequalities in the proof of Lemma C.2 in [43] to our proof. Then, we
obtain

E[Φk,t+1|Fk,t] ≤ (1− 1

3
γµ)Φk,t + (

η2L

2
+
γ2µ

6
)
σ2

M
+ γ∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2

From the above relationship between Φk,t+1 and Φk,t, we get

E[Φk,τ ] ≤ (1− 1

3
γµ)τE[Φk] +

( τ−1∑
t=0

(1− 1

3
γµ)t

)
· (η

2L

2
+
γ2µ

6
)
σ2

M

+ γ
τ−1∑
t=0

{
(1− 1

3
γµ)τ−t−1E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

}
≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M

+ γτ · max
0≤t<τ

E[∥∇F (w̄md
k,t)−

1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

Proposition 20: Let Assumption 1 hold. Then, we have

E[∥wk+1 − w̄k,τ∥2] ≤
q

M2

M∑
m=1

E[∥wm
k,τ − wk∥2]

E[F (wag
k+1)− F (w̄

ag
k,τ )] ≤

qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

Proof of Proposition 20 The first inequality is the same as one in Proposition 13. The proof of the second
inequality is similar to Proposition 13 as well.

E[F (wag
k+1)− F (w̄

ag
k,τ )] = E[F (wag

k +
1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k ))− F ( 1

M

M∑
m=1

w
ag,m
k,τ )]

≤ E
[
⟨∇F ( 1

M

M∑
m=1

w
ag,m
k,τ ),

1

M

M∑
m=1

(
Q(w

ag,m
k,τ − w

ag
k )

− (w
ag,m
k,τ − w

ag
k )

)
⟩+ L

2
∥ 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k )− (w

ag,m
k,τ − w

ag
k )∥2

]
=
L

2
E[∥ 1

M

M∑
m=1

Q(w
ag,m
k,τ − w

ag
k )− (w

ag,m
k,τ − w

ag
k )∥2]

=
L

2M2

M∑
m=1

E[∥Q(w
ag,m
k,τ − w

ag
k )− (w

ag,m
k,τ − w

ag
k )∥2]

≤ qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

102



Proposition 21: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 3
2γµ −

1
2 , β =

2α2−1
α−1 , γ ∈ [η,

√
η
µ ], η, γ ∈ (0, 1

L ], γµ ≤
3
4 , we get

E[Bm
k,t] ≤ E[Bm

k,0] +

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
·
1 + 1

2α
−1

1
4α

−2
·
(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2

Proof of Proposition 21 From the notation mentioned in the beginning of section 5.4,

E[Bm
k,t+1|Fk,t] =

(µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wm

k,t+1 − w
ag,m
k,t+1∥

2|Fk,t]

+ γ2(
µ

3
+ L)

2α2 − α
2α2 − 1

· 2LE[Φm
k,t+1|Fk,t] (53)

Thus, let’s sequentially compute E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] and E[Φm
k,t+1|Fk,t].

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t] = E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w
md,m
k,t + ηgmk,t∥2|Fk,t]

= E[∥(1− α−1)(wm
k,t − w

md,m
k,t )− (γ − η)gmk,t∥2|Fk,t] (← γ ≥ η)

= ∥(1− α−1)(wm
k,t − w

md,m
k,t )− (γ − η)∇F (wmd,m

k,t )∥2

+ (γ − η)2E[∥∇F (wmd,m
k,t )− gmk,t∥2|Fk,t]

≤ (1− α−1)2∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2∥∇F (wmd,m
k,t )∥2

+ (γ − η)2σ2 − 2(γ − η)⟨(1− α−1)(wm
k,t − w

md,m
k,t ),∇F (wmd,m

k,t )⟩

≤ (1− α−1)2(1 + 2α−1)∥wm
k,t − w

md,m
k,t ∥

2

+ (γ − η)2(1 + α

2
)∥∇F (wmd,m

k,t )∥2 + (γ − η)2σ2

Here, we need to bound ∥∇F (wmd,m
k,t )∥2.

∥∇F (wmd,m
k,t )∥2 ≤ 2L(F (wmd,m

k,t )− F ∗) (∵ Assumption 3)

≤ 2L
(
β−1(F (wm

k,t)− F (w∗)) + (1− β−1)(F (w
ag,m
k,t )− F ∗)

)
≤ β−1L2∥wm

k,t − w∗∥2 + 2(1− β−1)L(F (w
ag,m
k,t )− F ∗)

=
α− 1

2α2 − 1
L2∥wm

k,t − w∗∥2 + 2L · 2α
2 − α

2α2 − 1
(F (w

ag,m
k,t )− F ∗)

≤
µ
3 (2α

2 − α)
2α2 − 1

L∥wm
k,t − w∗∥2 + 2L · 2α

2 − α
2α2 − 1

(F (w
ag,m
k,t )− F ∗)

=
2α2 − α
2α2 − 1

· 2LΦm
k,t (54)

It is easy to show (α− 1)L ≤ µ
3 (2α

2 − α) by using the fact γL ≤ 1. Therefore, we finally get

E[∥wm
k,t+1 − w

ag,m
k,t+1∥

2|Fk,t]

≤ (1− α−1)2(1 + 2α−1)∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2(1 + α

2
)∥∇F (wmd,m

k,t )∥2 + (γ − η)2σ2

≤ (1− α−1)2(1 + 2α−1)∥wm
k,t − w

md,m
k,t ∥

2 + (γ − η)2(1 + α

2
)(
2α2 − α
2α2 − 1

· 2LΦm
k,t)

+ (γ − η)2σ2 (55)

103



Now, let’s compute E[Φm
k,t+1|Fk,t]. We need to compute E[∥wm

k,t+1 − w∗∥2|Fk,t] and E[F (wag,m
k,t+1)− F

∗|Fk,t]
first.

E[∥wm
k,t+1 − w∗∥2|Fk,t]

= E[∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γgmk,t − w∗∥2|Fk,t]

≤ ∥(1− α−1)wm
k,t + α−1wmd,m

k,t − γ∇F (wmd,m
k,t )− w∗∥2 + γ2σ2

≤ (1 +
1

2
α−1)∥(1− α−1)wm

k,t + α−1wmd,m
k,t − γ∇F (wmd,m

k,t )− w∗∥2 + γ2σ2

= (1 +
1

2
α−1)∥(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗∥2 + γ2(1 +

1

2
α−1)∥∇F (wmd,m

k,t )∥2

− 2γ(1 +
1

2
α−1)⟨(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗,∇F (wmd,m

k,t )⟩+ γ2σ2

≤ (1 +
1

2
α−1)

(
(1− α−1)∥wm

k,t − w∗∥2 + α−1∥wmd,m
k,t − w∗∥2

)
+ γ2(1 +

1

2
α−1)

· ∥∇F (wmd,m
k,t )∥2 − 2γ(1 +

1

2
α−1)⟨(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗,∇F (wmd,m

k,t )⟩+ γ2σ2

It is easy to show (1 + 1
2α

−1)(1− α−1) < 1− 1
2α

−1, 1 + 1
2α

−1 ≤ 3
2 . Due to these facts, we obtain

E[∥wm
k,t+1 − w∗∥2|Fk,t]

≤ (1− 1

2
α−1)∥wm

k,t − w∗∥2 + 3

2
α−1∥wmd,m

k,t − w∗∥2 + 3

2
γ2∥∇F (wmd,m

k,t )∥2

− 2γ(1 +
1

2
α−1)⟨(1− α−1)wm

k,t + α−1wmd,m
k,t − w∗,∇F (wmd,m

k,t )⟩+ γ2σ2

≤ (1− 1

2
α−1)∥wm

k,t − w∗∥2 + 3

2
α−1∥wmd,m

k,t − w∗∥2 + 3

2
γ2∥∇F (wmd,m

k,t )∥2

− 2γ(1 +
1

2
α−1)⟨(1− α−1(1− β−1))wm

k,t + α−1(1− β−1)w
ag,m
k,t − w

∗,∇F (wmd,m
k,t )⟩+ γ2σ2

Next, we compute the upper bound of E[F (wag,m
k,t+1)− F

∗|Fk,t].

E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ E[F (wmd,m
k,t ) + ⟨∇F (wmd,m

k,t ), w
ag,m
k,t+1 − w

md,m
k,t ⟩+

L

2
∥wag,m

k,t+1 − w
md,m
k,t ∥

2 − F ∗|Fk,t]

≤ F (wmd,m
k,t )− F ∗ − η∥∇F (wmd,m

k,t )∥2 + η2L

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

≤ F (wmd,m
k,t )− F ∗ − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2 (∵ 1− ηL

2
≥ 1

2
← η ∈ [0,

1

L
])

= (1− 1

2
α−1)(F (w

ag,m
k,t )− F ∗) +

1

2
α−1(F (wmd,m

k,t )− F ∗)

+ (1− 1

2
α−1)(F (wmd,m

k,t )− F (wag,m
k,t ))− η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

≤ (1− 1

2
α−1)(F (w

ag,m
k,t )− F ∗)− µα−1

4
∥wmd,m

k,t − w∗∥2 + 1

2
α−1⟨∇F (wmd,m

k,t ), wmd,m
k,t − w∗⟩

+ (1− 1

2
α−1)⟨∇F (wmd,m

k,t ), wmd,m
k,t − wag,m

k,t ⟩ −
η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

= (1− 1

2
α−1)(F (w

ag,m
k,t )− F ∗)− µα−1

4
∥wmd,m

k,t − w∗∥2 − η

2
∥∇F (wmd,m

k,t )∥2 + η2L

2
σ2

+
1

2
α−1⟨∇F (wmd,m

k,t ), 2αβ−1wm
k,t + (1− 2αβ−1)w

ag,m
k,t − w

∗⟩

104



It is easy to show 1
2α

−1 = γµ
3 (1 + 1

2α
−1). Then, we bound E[Φm

k,t+1|Fk,t] by using the above results.

E[Φm
k,t+1|Fk,t] =

µ

6
E[∥wm

k,t+1 − w∗∥2|Fk,t] + E[F (wag,m
k,t+1)− F

∗|Fk,t]

≤ (1− 1

2
α−1)Φm

k,t −
2η − γ2µ

4
∥∇F (wmd,m

k,t )∥2 + 1

2
(
γ2µ

3
+ η2L)σ2

≤ (1− 1

2
α−1)Φm

k,t +
1

2
(
γ2µ

3
+ η2L)σ2 (∵ γ ≤

√
η

µ
)

≤ (1− 1

2
α−1)Φm

k,t +
γ2

2
(
µ

3
+ L)σ2 (56)

Plugging (55), (56) in (53) yields,

E[Bm
k,t+1|Fk,t]

≤
(µα−2

3
(1− β−1)2 + Lβ−2

)(
(1− α−1)2(1 + 2α−1)∥wm

k,t − w
md,m
k,t ∥

2

+ (γ − η)2(1 + α

2
) · (2α

2 − α
2α2 − 1

· 2LΦm
k,t) + (γ − η)2σ2

)
+ γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L
(
(1− 1

2
α−1)Φm

k,t +
γ2

2
(
µ

3
+ L)σ2

)
= (1− α−1)2(1 + 2α−1)

(µα−2

3
(1− β−1)2 + Lβ−2

)
∥wm

k,t − w
md,m
k,t ∥

2

+

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2(1 + α

2
) + (1− 1

2
α−1)γ2(

µ

3
+ L)

)
· (2α

2 − α
2α2 − 1

· 2LΦm
k,t) +

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
σ2 (57)

We can show that both coefficients of ∥wm
k,t − w

md,m
k,t ∥

2 and 2α2−α
2α2−1

· 2LΦm
k,t are upper bounded by 1− 1

2α
−1 +

1
2
α−1

1+ 1
2
α−1 .

(1− α−1)2(1 + 2α−1) ≤ 1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
(< 1) (58)

⇔ 1− 1

4
α−2 +

1

2
α−1 − (1− α−1)2(1 + 2α−1)(1 +

1

2
α−1) ≥ 0

Let’s define g1(α−1) = 1− 1
4α

−2 + 1
2α

−1 − (1− α−1)2(1 + 2α−1)(1 + 1
2α

−1). Then, it is easy to check that
g1(α

−1) ≥ 0 for 0 < α−1 ≤ 1. Moreover, we would like to show the below inequality.(µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2(1 + α

2
) + (1− 1

2
α−1)γ2(

µ

3
+ L)

≤
(µα−2

3
(1− β−1)2 + Lβ−2

)
γ2(1 +

α

2
) + (1− 1

2
α−1)γ2(

µ

3
+ L)

≤ (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)γ2(

µ

3
+ L) (59)

Since µα−2

3 (1− β−1)2 + Lβ−2 = µ
3 (

2α−1
2α2−1

)2 + L( α−1
2α2−1

)2 ≤ (µ3 + L
4 )(

2α−1
2α2−1

)2, it is enough to show

(
µ

3
+
L

4
)(

2α− 1

2α2 − 1
)2γ2(1 +

α

2
) ≤

1
2α

−1

1 + 1
2α

−1
γ2(

µ

3
+ L)

105



We also know that
µ
3
+L

µ
3
+L

4

= 4− 1
1
3
+L

µ
· 1
4

> 16
7 (∵ L

µ > 1). Then, we only need to show

(
2α− 1

2α2 − 1
)2(1 +

α

2
) ≤ 16

7
·

1
2

α+ 1
2

⇔ 8

7
(2α2 − 1)2 − (2α− 1)2(1 +

α

2
)(α+

1

2
) ≥ 0

Let’s define g2(α) = 8
7(2α

2 − 1)2 − (2α− 1)2(1 + α
2 )(α+ 1

2). Then, it is easy to check g2(α) ≥ 0 for α ≥ 3
2 .

As we assume γµ ≤ 3
4 , we can say α = 3

2γµ −
1
2 ≥

3
2 . This indicates that the inequality (59) is satisfied. Thus,

from (57), (58), and (59) we finally get

E[Bm
k,t+1|Fk,t] ≤ (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)Bm

k,t

+

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
σ2

From this relationship between Bm
k,t+1 and Bm

k,t, we obtain the result of Proposition 21.

E[Bm
k,t] ≤ (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)tE[Bm

k,0] +

((µα−2

3
(1− β−1)2 + Lβ−2

)
(γ − η)2

+ γ4(
µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
σ2 ·

1− (1− 1
2α

−1 +
1
2
α−1

1+ 1
2
α−1 )

t

1− (1− 1
2α

−1 +
1
2
α−1

1+ 1
2
α−1 )

≤ E[Bm
k,0] +

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
·
1 + 1

2α
−1

1
4α

−2
·
(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2

Proposition 22: Let F be µ-strongly convex, and assume Assumption 2, 3, 4, then for α = 3
2γµ −

1
2 , β =

2α2−1
α−1 , γ ∈ [η,

√
η
µ ], η, γ ∈ (0, 1

L ], γµ ≤
3
4 , τ ≥ 2, FedAQ yields

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2E[Φk]

+ (
γ2µ

3
+ η2L)τσ2

+
(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)τ3σ2
2

Proof of Proposition 22 We use the same upper bounds for E[∥wm
k,τ − wk∥2] and E[∥wag,m

k,τ − w
ag
k ∥

2] as in
Proposition 15.

E[∥wm
k,τ − wk∥2] ≤ τ

( τ−1∑
t=0

2α−2(1− β−1)2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2γ2E[∥∇F (wmd,m
k,t )∥2]

)
+ 2τγ2σ2

E[∥wag,m
k,τ − w

ag
k ∥

2] ≤ τ
( τ−1∑

t=0

2β−2E[∥wm
k,t − w

ag,m
k,t ∥

2] + 2η2E[∥∇F (wmd,m
k,t )∥2]

)
+ 2τη2σ2

106



Thus, by using the above results, we get

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
τ−1∑
t=0

{(µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + (
γ2µ

3
+ η2L)E[∥∇F (wmd,m

k,t )∥2]
}

+ (
γ2µ

3
+ η2L)τσ2

≤ τ
τ−1∑
t=0

{(µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wm

k,t − w
ag,m
k,t ∥

2] + γ2(
µ

3
+ L)

2α2 − α
2α2 − 1

2LE[Φm
k,t]

}
+ (

γ2µ

3
+ η2L)τσ2 (∵ (54))

= τ
( τ−1∑

t=0

E[Bm
k,t]

)
+ (

γ2µ

3
+ η2L)τσ2

By Proposition 21 and the fact Φm
k,0 = Φk, we obtain

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤ τ
{ τ−1∑

t=0

E[Bm
k,0] +

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
(γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
1 + 1

2α
−1

1
4α

−2

(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2

}
+ (

γ2µ

3
+ η2L)τσ2

= τ2
((µα−2

3
(1− β−1)2 + Lβ−2

)
E[∥wk − wag

k ∥
2] + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2LE[Φk]

)
+ τ

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
1 + 1

2α
−1

1
4α

−2

·
( τ−1∑

t=0

1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
σ2 + (

γ2µ

3
+ η2L)τσ2

Before we get to the final result, let’s find the upper bound for ∥wk−wag
k ∥

2,
∑τ−1

t=0

(
1− (1− 1

2α
−1+

1
2
α−1

1+ 1
2
α−1 )

t
)

∥wk − wag
k ∥

2 = ∥wk − w∗ − (w
ag
k − w

∗)∥2

≤ (1 +
1

3
)∥wk − w∗∥2 + (1 + 3)∥wag

k − w
∗∥2

≤ 4

3
∥wk − w∗∥2 + 4 · 2

µ

(
F (w

ag
k )− F ∗ − ⟨∇F (w∗), w

ag
k − w

∗⟩
)

=
4

3
∥wk − w∗∥2 + 8

µ
(F (w

ag
k )− F ∗) =

8

µ
Φk

107



τ−1∑
t=0

(
1− (1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t
)
= τ −

τ−1∑
t=0

(1− 1

2
α−1 +

1
2α

−1

1 + 1
2α

−1
)t

= τ −
1− (1− 1

2α
−1 +

1
2
α−1

1+ 1
2
α−1 )

τ

1− (1− 1
2α

−1 +
1
2
α−1

1+ 1
2
α−1 )

≤ τ −
1− (1−

1
4
α−2

1+ 1
2
α−1 τ + (

1
4
α−2

1+ 1
2
α−1 )

2 τ(τ−1)
2 )

1
4
α−2

1+ 1
2
α−1

=
1
4α

−2

1 + 1
2α

−1
· τ(τ − 1)

2
≤

1
4α

−2

1 + 1
2α

−1
· τ

2

2

Therefore, we obtain

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2]

≤
(8
3
α−2(1− β−1)2 +

8L

µ
β−2 + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L
)
τ2E[Φk] + (

γ2µ

3
+ η2L)τσ2

+

((µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

)
· τ

3σ2

2
(60)

Moreover, we can simplify the above inequality by replacing α, β with γ, µ. It is easy to show 2α2−α
2α2−1

≤
1, 2α−1

2α2−1
≤ 1

α = 2γµ
3−γµ ≤ γµ. Then, we can further show

8

3
α−2(1− β−1)2 +

8L

µ
β−2 + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L

=
8

3
(
2α− 1

2α2 − 1
)2 +

8L

µ
(
α− 1

2α2 − 1
)2 + γ2(

µ

3
+ L)

2α2 − α
2α2 − 1

· 2L

≤(8
3
+

2L

µ
)(

2α− 1

2α2 − 1
)2 + γ2(

µ

3
+ L)2L

≤(8
3
+

2L

µ
)α−2 + γ2(

µ

3
+ L)2L

≤γ2µ(8
3
µ+ 2L) + 2γ2L(

µ

3
+ L) (61)

We also get (µ
3
(
2α− 1

2α2 − 1
)2 + L(

α− 1

2α2 − 1
)2
)
· (γ − η)2 + γ4(

µ

3
+ L)2

2α2 − α
2α2 − 1

L

≤(µ
3
+
L

4
)(

2α− 1

2α2 − 1
)2(γ − η)2 + γ4(

µ

3
+ L)2L

≤(γ − η)2γ2µ2(µ
3
+
L

4
) + γ4(

µ

3
+ L)2L (62)

108



Finally, from (60), (61), and (62), we conclude as below

µ

6
E[∥wm

k,τ − wk∥2] +
L

2
E[∥wag,m

k,τ − w
ag
k ∥

2] ≤
(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2E[Φk]

+ (
γ2µ

3
+ η2L)τσ2

+
(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)τ3σ2
2

Proof of Lemma 5 By the definition of Φk,Φk,t and Proposition 18,

E[Φk+1] = E[Φk,τ ] +
µ

6
E[∥wk+1 − w̄k,τ∥2] + E[F (wag

k+1)− F (w̄
ag
k,τ )]

Applying Proposition 19 and Proposition 20, we have

E[Φk+1]

≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
qµ

6M2

M∑
m=1

E[∥wm
k,τ − wk∥2] +

qL

2M2

M∑
m=1

E[∥wag,m
k,τ − w

ag
k ∥

2]

≤ (1− 1

3
γµ)τE[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
q

M

[(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2E[Φk] + (

γ2µ

3
+ η2L)τσ2

+
(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)τ3σ2
2

]
= D(γ, τ)E[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
q

M
(
γ2µ

3
+ η2L)τσ2 +

q

2M

(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2

The second inequality comes from Proposition 22. D(γ, τ) is defined as below.

D(γ, τ) = (1− 1

3
γµ)τ +

q

M

(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2

5.4.2 Proof of Theorem 6

Proof of Theorem 6 At first, due to the condition (36) in Theorem 6, we get

D(γ, τ) = (1− 1

3
γµ)τ +

q

M

(
γ2µ(

8

3
µ+ 2L) + 2γ2L(

µ

3
+ L)

)
τ2

≤ 1− 1

3
γµτ +

1

9
γ2µ2τ2 +

q

M
γ2

(
µ(

8

3
µ+ 2L) + 2L(

µ

3
+ L)

)
τ2

= 1− 1

3
γµτ +

(
1

9
µ2 +

q

M

(
µ(

8

3
µ+ 2L) + 2L(

µ

3
+ L)

))
γ2τ2

≤ 1− 1

6
γµτ (∵ condition (36))

109



It is trivial that γ = max(η,
√

η
µτ ) ∈ [η,

√
η
µ ]. Thus, we can use Lemma 5. By using Lemma 5 and the above

result, we obtain

E[Φk+1]

≤ (1− 1

6
γµτ)E[Φk] + (

η2L

2
+
γ2µ

6
)
τσ2

M
+ γτ · max

0≤t<τ
E[∥∇F (w̄md

k,t)−
1

M

M∑
m=1

∇F (wmd,m
k,t )∥2]

+
q

M
(
γ2µ

3
+ η2L)τσ2 +

q

2M

(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2 (63)

By the Lemma C.14 in [43], we know that the below quantity is bounded.

max
0≤t<τ

E[∥∇F (w̄md
k,t)−

1

M

M∑
m=1

∇F (wmd,m
k,t )∥2] ≤ B′

B′ =

4η2L2τσ2
(
1 + γ2µ

η

)2τ
, if γ ∈

(
η,
√

η
µ

]
4η2L2τσ2, if γ = η

Telescoping (63) yields

E[ΦK ] ≤ (1− 1

6
γµτ)KΦ0 +

(K−1∑
k′=0

(1− 1

6
γµτ)k

′
)
·
[
(
η2L

2
+
γ2µ

6
)
τσ2

M
+

q

M
(
γ2µ

3
+ η2L)τσ2

+
q

2M

(
(γ − η)2γ2µ2(µ

3
+
L

4
) + γ4(

µ

3
+ L)2L

)
τ3σ2 + γτB′

]
≤ exp

(
− γµτK

6

)
Φ0 +

3η2Lσ2

γµM
+
γσ2

M
+

6B′

µ
+ 2q

(γσ2
M

+
3η2Lσ2

γµM

)
+

3q

M

(
(γ − η)2γµ(µ

3
+
L

4
) +

γ3(µ3 + L)2L

µ

)
τ2σ2

The last inequality comes from the fact that
∑K−1

k′=0(1−
1
6γµτ)

k′ ≤ 6
γµτ . Since we plug in γ = max(η,

√
η
µτ ),

we can use Lemma C.15 in [43]. Therefore, we obtain

E[ΦK ] ≤ exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)Kτ

)
Φ0 +

2(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
4(2q + 1)η2L2τσ2

µ

+
24e2η2L2τσ2

µ
+

3qτ2σ2

M
max

(η 3
2µ(µ3 + L

4 )

µ
3
2 τ

3
2

+
η

3
2 (µ3 + L)2L

µ
5
2 τ

3
2

,
η3(µ3 + L)2L

µ

)
The first term stems directly from Lemma C.15 in [43]. Also, the last term comes from the fact that

(γ − η)2γµ(µ
3
+
L

4
) +

γ3(µ3 + L)2L

µ
≤

γ3µ(µ3 + L
4 ) +

γ3(µ
3
+L)2L

µ , if γ ̸= η
η3(µ

3
+L)2L

µ , if γ = η

Therefore, by simple inequalities such as max(a, b) ≤ a+ b and min(a, b) ≤ a, we ultimately get

E[ΦK ] ≤ exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)Kτ

)
Φ0 +

2(2q + 1)η
1
2σ2

µ
1
2Mτ

1
2

+
8(q + 25)η2L2τσ2

µ

+
3q
(
µ2(µ3 + L

4 ) + L(µ3 + L)2
)
η

3
2 τ

1
2σ2

µ
5
2M

+
3qL(µ3 + L)2η3τ2σ2

µM
(64)

110



5.4.3 Proof of Corollary 23

Corollary 23: Let D1, D2, and η0 as below. Note that T = Kτ .

D1 =

(
µ2(µ3 + L

4 ) + L(µ3 + L)2)
)
q

µ
5
2

, D2 =
q(µ3 + L)2L

µ

η0 =
36τ

µT 2
log2

(
e+min(

µMTΦ0

(2q + 1)σ2
,

µ3T 4Φ0

(q + 25)L2τ3σ2
,

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
)

Then for η = min( 1L , η0), FedAQ yields

E[ΦK ] ≤ min
(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0

+
13(2q + 1)σ2

µMT
log2

(
e+

µMTΦ0

(2q + 1)σ2

)
(65)

+
10369(q + 25)L2τ3σ2

µ3T 4
log4

(
e+

µ3T 4Φ0

(q + 25)L2τ3σ2

)
(66)

+
649(µ

3
2D1 + 216D2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Φ0

(µ
3
2D1 + 216D2)τ2σ2

)
(67)

Proof of Corollary 23 Let’s decompose the final result (64) of the Theorem 6 into a decreasing term and an
increasing term. We denote the decreasing term ϕ1 and the increasing term ϕ2 as below.

ϕ1(η) = exp
(
− 1

6
max(ηµ,

√
ηµ

τ
)T

)
Φ0

ϕ2(η) =
2(2q + 1)η

1
2σ2

µ
1
2Mτ

1
2

+
8(q + 25)η2L2τσ2

µ
+

3q
(
µ2(µ3 + L

4 ) + L(µ3 + L)2
)
η

3
2 τ

1
2σ2

µ
5
2M

+
3qL(µ3 + L)2η3τ2σ2

µM

Since ϕ1 is the decreasing term, we have

ϕ1(η) ≤ ϕ1(
1

L
) + ϕ1(η0) (68)

where

ϕ1(
1

L
) = min

(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0

ϕ1(η0) ≤ exp
(
− 1

6

√
η0µ

τ
T
)

=
(
e+min(

µMTΦ0

(2q + 1)σ2
,

µ3T 4Φ0

(q + 25)L2τ3σ2
,

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
)−1

Φ0

≤ (2q + 1)σ2

µMT
+

(q + 25)L2τ3σ2

µ3T 4
+

(µ
3
2D1 + 63D2)τ

2σ2

µ3MT 3

111



Since ϕ2 is the increasing term, we have

ϕ2(η)

≤ ϕ2(η0)

≤ 12(2q + 1)σ2

µMT
log

(
e+

µMTΦ0

(2q + 1)σ2

)
+

8 · 362(q + 25)L2τ3σ2

µ3T 4
log4

(
e+

µ3T 4Φ0

(q + 25)L2τ3σ2

)
+

3 · 63D1τ
2σ2

µ
3
2MT 3

log3
(
e+

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
+

3 · 363D2τ
5σ2

µ3MT 6
log6

(
e+

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
≤ 12(2q + 1)σ2

µMT
log

(
e+

µMTΦ0

(2q + 1)σ2

)
+

8 · 362(q + 25)L2τ3σ2

µ3T 4
log4

(
e+

µ3T 4Φ0

(q + 25)L2τ3σ2

)
+

3 · 63(µ
3
2D1 + 63D2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Φ0

(µ
3
2D1 + 63D2)τ2σ2

)
(69)

The last inequality comes from τ
T ≤ 1. Therefore, by combining (68) and (69), we finally get

E[ΦK ] ≤ ϕ1(η) + ϕ2(η)

≤ ϕ1(
1

L
) + ϕ1(η0) + ϕ2(η0)

≤ min
(
exp(−µT

6L
), exp(− µ

1
2T

6L
1
2 τ

1
2

)
)
Φ0 +

13(2q + 1)σ2

µMT
log2

(
e+

µMTΦ0

(2q + 1)σ2

)
+

10369(q + 25)L2τ3σ2

µ3T 4
log4

(
e+

µ3T 4Φ0

(q + 25)L2τ3σ2

)
+

649(µ
3
2D1 + 216D2)τ

2σ2

µ3MT 3
log6

(
e+

µ3MT 3Φ0

(µ
3
2D1 + 216D2)τ2σ2

)
5.5 More Theoretical Details about Remark 9 and Contribution 2 in Introduction

5.5.1 Why Haddadpour et al. (2021) Cannot Achieve a Linear Speedup

It is hard to say that [9] achieves a linear speedup in M in strongly-convex and homogeneous settings. Let’s first
recap Corollary D.8 in [9]. They let ηγµτ ≤ 1

2 , κ = L
µ , γ ≥ M and tune η as η = 1

2L( q
M

+1)τγ
. Here, η is the

client learning rate, and γ is the server learning rate. Other parameters are the same as we defined. Then, they
obtain the below result.

E[F (wK)− F ∗] ≤ exp(−ηγµτK)(F (w0)− F ∗) +
1

µ

[1
2
τL2η2σ2 + (1 + q)

γηLσ2

2M

]
(70)

≤ O
(
exp(− K

2( q
M + 1)κ

)(F (w0)− F ∗) +
σ2

γ2µτ
+

(q + 1)σ2

µ( q
M + 1)τM

)
= O

(
exp(− K

2( q
M + 1)κ

)(F (w0)− F ∗) +
σ2K

γ2µT
+

(q + 1)Kσ2

µ( q
M + 1)TM

)
Let’s focus on the second and third term. We assume M is large enough and represent them only with γ,K, T,M
to easily check the linear speedup of this convergence rate. Then, we obtain

O
( K

γ2T
+

K

MT

)
≤ O

( K

M2T
+

K

MT

)
(∵ γ ≥M) (71)

112



Thus, it seemingly achieves a linear speedup in M when K is just a constant. However, we are missing the
critical point in this analysis. To be specific, let’s consider the case when γ = 1. Then, the convergence rate
(71) changes into O

(
K
T + K

MT

)
that cannot achieve a linear speedup in M . This is implausible because the

convergence rate (70) becomes tighter when γ = 1 than γ ≥ M (See the last term of (70)). Actually, we can
achieve a linear speedup in M when γ = 1 if we tune η = 1

2L( q
M

+1)τM
. However, this is not an appropriate

tuning because there is M in the denominator. Similarly, [9] tunes η = 1
2L( q

M
+1)τγ

where γ ≥M . Even though
there is no M in the denominator, the condition γ ≥ M forcibly makes the convergence rate achieve a linear
speedup without any theoretical benefits of the algorithm. Therefore, we cannot say their η makes their algorithm
achieve a linear speedup in M . We should tune in a different way that does not contain M in a denominator. For
reference, our tuning parameter η for the FedAQ algorithm does not contain M in the denominator (See Corollary
17 and Corollary 23).

5.5.2 New Convergence Rate for Haddadpour et al. (2021)

We propose new η and convergence rate for [9]. This new η makes the algorithm achieve a linear speedup in M .
Let’s denote Φ0 = F (w0)− F ∗. We also know that T = Kτ . Then, we choose η as

η =
1

γµT
log

(
e+min(

γ2µ3T 2Φ0

τL2σ2
,
µ2MTΦ0

(1 + q)Lσ2
)
)

We plug in this η to (70). We bound the first term as below.

exp(−ηγµτK)(F (w0)− F ∗) =
(
e+min(

γ2µ3T 2Φ0

τL2σ2
,
µ2MTΦ0

(1 + q)Lσ2
)
)−1

Φ0

≤ τL2σ2

γ2µ3T 2
+

(1 + q)Lσ2

µ2MT

The another terms are bounded as below.

1

µ

[1
2
τL2η2σ2 + (1 + q)

γηLσ2

2M

]
≤ τL2σ2

2γ2µ3T 2
log2

(
e+

γ2µ3T 2Φ0

τL2σ2

)
+

(1 + q)Lσ2

2µ2MT
log

(
e+

µ2MTΦ0

(1 + q)Lσ2

)
Thus, we obtain a new convergence rate by combining the above two bounds.

E[F (wK)− F ∗] ≤ exp(−ηγµτK)(F (w0)− F ∗) +
1

µ

[1
2
τL2η2σ2 + (1 + q)

γηLσ2

2M

]
≤ 3τL2σ2

2γ2µ3T 2
log2

(
e+

γ2µ3T 2Φ0

τL2σ2

)
+

3(1 + q)Lσ2

2µ2MT
log

(
e+

µ2MTΦ0

(1 + q)Lσ2

)
Here, we replace τ with T

K . Then, we represent the above convergence rate with only T,K,M, q.

Õ( 1

TK
+

1 + q

MT
)

This is the new convergence rate we propose in Remark 9. We also get K = Õ( M
1+q ) communication rounds

make this algorithm achieve a linear speedup in M .

113



5.5.3 More Details on Contribution 2 in Introduction

More Details on dquant This paragraph explains why FedAQ needs to send only dquant = O(log 1
q ) bits for

each value. We use the result of Lemma 3.1 in [1]. They show the below result with a low-precision quantizer
(Example 1 in section 3)

E[∥Q(x, s)− x∥22] ≤ min(
n

s2
,

√
n

s
)∥x∥22

where n is the dimension of x, and s is the number of quantization levels. Then, we regard q as

q =

√
n

s
=

√
n

2dquant
(72)

Thus, we obtain the following conclusion.

dquant =

1
2 log n+ log 1

q

log 2
= O(log

1

q
)

Comparing FedAQ to FedAC We compare computation and communication efficiency of FedAC-II and
FedAQ under the condition set (35) to achieve the same error. Let’s recall the convergence rate of FedAC and
FedAQ. The convergence rate of FedAC and FedAQ is respectively Õ( 1

MT + 1
TK3 ) and Õ( 1+q

MT + 1+q
TK3 ). Let’s

say FedAC requires T iterations and K =M
1
3 communication rounds to achieve the error 1

MT . Then, FedAQ
requires

T ′ = (1 + q)T, K ′ =M
1
3

to achieve the same error 1
MT . This means FedAQ needs 1 + q times more local steps and the same number of

communication rounds to achieve the same error of FedAC. These local steps do no require any communication
with the server hence can be performed without any additional communication overhead.

From discussion in the previous section, if we use the simple low-precision quantizer, we need only dquant =
O(log 1

q ) bits for communicating values with enough precision that can lead to an error rate of O( 1
MT ). In

comparison, FedAC would require O(log(MT )) bits to maintain enough precision to achieve the same error rate.
In a majority of tasks in the real world, 32 bits are usually enough for dfull to achieve enough precision as we
usually don’t need converge to a very small error rate. Nonetheless, even if we compare FedAQ(8bits) with to
FedAC(32bits), we argue that the overall benefit from less communication by quantization is more influential
than the slowdown effect from quantization.

For example, if we consider a l2-regularized logistic regression model for MNIST (strongly convex experi-
ment) and quantize from 32 bits to dquant = 8 bits. Here, n = 784× 10. We get the following results by using
(72).

1 + q = 1 +

√
n

2dquant
= 1 +

√
7840

28
≃ 1.346,

On the other hand, the ratio of data communicated by FedAC and FedAQ is

32

dquant
= 4

In contribution 2, we claim 1 + q ≪ dfull
dquant

because dfull is unbounded as T goes to infinity. In the real world

example, dfull
dquant

= 4 is still much greater than 1 + q. Furthermore, since the local computation is much cheaper
than data communication, we conclude that the benefit from less communication by quantization (4 times less
bits) overwhelm the slowdown effect from quantization ((1 + q) times more local computation).

114



6 Experiments

In this section, we provide experimental results of FedAQ in homogeneous local data distribution settings. We
compare FedAQ with other quantization-based federated optimization algorithms, FedPAQ [27] and FedCOM-
GATE [9]. FedAvg [26] and FedAC [43], federated optimization algorithms without quantization, are also our
baselines. We empirically validate the performance of 5 algorithms on classical classification tasks on MNIST[18]
and CIFAR-10[17] datasets in the distributed learning environment. We consider three objective functions i) A
strongly convex objective of l2-regularized logistic regression model on the MNIST dataset, ii) A non convex
objective of training a multilayer perceptron on the MNIST data, and iii) A non convex objective of training a
convolution neural network (CNN) on the CIFAR-10 dataset.

6.1 Experimental Setup

Implementation Environment. We follow the implementation setup in [9]. We use the Distributed library
of PyTorch to implement our algorithm because this library allows us to simulate real-world communication
and distributed training. The 18 cores of Intel Xeon E5-2676 CPU are used as computing sources. Each core is
considered as one local client. We use 16 cores for strongly convex MNIST, 18 cores for the non-convex MNIST,
and 8 cores for the CIFAR-10. For MNIST, the strongly convex experiment and the non-convex one respectively
run for 300 rounds of communication with 20 local updates and 50 rounds of communication with 100 local
updates. The CIFAR-10 experiment runs for 100 rounds of communication with 100 local updates.

Datasets. For image classification tasks, we choose two main classical image datasets: MNIST and CIFAR-10.
Since we assume homogeneous settings, data is distributed homogeneously among clients, which also means
each device has access to all 10 classes.

Hyperparameter Choice. The important hyperparmeters in our experiments are learning rates for each
algorithm. For the client learning rate η, we respectively use 0.002, 0.1, and 0.01 for strongly convex MNIST,
non-convex MNIST, and CIFAR-10 for all algorithms. For FedAQ and FedAC, once we set the value of µ, other
hyperparameters (γ, α, β) are automatically determined (See condition set (34) and (35)). Thus, we choose 0.1,
0.01, and 0.2 for µ value for strongly convex MNIST, non-convex MNIST, and CIFAR-10. Since too large µ leads
to slow convergence and too small µ leads to unstable training, we get these µ values by tuning µ appropriately.
FedCOMGATE has a server learning rate, and we set this value as 1 for all experiments.

Quantization Bits. We have three quantization-based federated algorithms: FedAQ, FedPAQ, FedCOMGATE.
We quantize the updates from 32 bits to 8 bits for all quantization-based algorithms in both MNIST and CIFAR-10.
Additionally, particularly for FedAQ in non-convex experiments, we consider 4 bits quantization as well. Since
FedAQ sends twice as many messages as FedPAQ or FedCOMGATE at every synchronization when we use 8
bits quantization for all cases, we apply 4 bits quantization to FedAQ to let FedAQ send the same amount of
information in each communication round as other quantization-based algorithms for a fair comparison.

New Time Metric. In our experiments, communication between CPU cores is very fast, so it is hard to say
that the environment of our experiments fully reflects the real-world federated learning when there is a heavy
communication burden. Thus, we use a linear model to estimate the execution time Tround(A) between two

115



consecutive communication rounds for real federated learning scenarios [35].

Tround(A) = Tcomm(A) + Tcomp(A), Tcomm(A) =
Sdown(A)

Bdown
+
Sup(A)

Bup

Tcomp(A) = max
j
T j

client(A) + Tserver(A), T j
client(A) = RcompT

j
sim(A) + Ccomp

Since Tserver(A) is relatively smaller than T j
client(A), we ignore Tserver(A) in our experiments. We get client

download size Sdown(A) and upload size Sup(A) from the number of neural network parameters. maxj T
j
sim(A) is

the computation time in our simulation.

Bdown ∼ 0.75MB/secs, Bup ∼ 0.25B/secs, Rcomp ∼ 7, Ccomp ∼ 10secs

[35] estimate each value of the above parameters from a real world cross-device FL system. The upload bandwidth
Bup is generally smaller than download bandwidth Bdown. We define human time as the parallel time estimated
by this new time metric.

6.1.1 Training Models

For MNIST, we use a l2-regularized logistic regression model for the strongly convex case and a multilayer
perceptron (MLP) with two hidden layers for the non-convex case. For CIFAR-10, we use a Convolutional Neural
Network (CNN). Here, we note that the number of parameters in a neural network model is directly related to the
number of communicated bits. We discuss more details as follows.

MLP Model for MNIST. We use a multilayer perceptron (MLP) with two hidden layers. Each hidden layer
consists of 200 neurons with ReLU activations. Thus, we compute the total number of parameters in this MLP
model as below.

(# of MLP parameters) = (# of input features) × (# of neurons in the 1st layer)

+ (# of neurons in the 1st layer) × (# of neurons in the 2nd layer)

+ (# of neurons in the 2nd layer) × (# of MNIST classes)

+ (# of neurons in the 1st layer) + (# of neurons in the 2nd layer)

+ (# of MNIST classes)

= 28× 28× 200 + 200× 200 + 200× 10 + 200 + 200 + 10 = 199210

Finally, we derive Sup(A)(= Sdown(A)), defined in section 6.1 (New time metric), by using the above fact. We
use 32 bits floating-point if there is no quantization.

Sup(A) = (# of device) × (# of MLP parameters) × (# of bits)

= 18× 199210× 32 = 114744960

The FedAvg algorithm follows the above calculation. If we use 8 bits quantization for FedPAQ, FedCOMGATE,
and FedAQ, (# of bits) in the above equation will respectively be 8, 8, and 16. Since FedAQ sends twice as many
messages as others at every communication round, (# of bits) for FedAQ is 16. Similarly, (# of bits) for FedAC,
which has no quantization, is 64.

116



CNN Model for CIFAR-10. We use a CNN model, which consists of two 2-dimensional convolutional layers,
two max pooling layers, and two fully connected layers. The ReLU activations are used in this CNN model. Let’s
clarify (# of input channel, # of output channel, kernel size, stride) for convolutional layers. We respectively use
(3, 20, 5, 1), (20, 50, 5, 1) for the 1st and 2nd convolutional layer. Let’s denote each convolutional layer and fully
connected layer as CONV1, CONV2, FC3, FC4. At first, the activation shape of input layer for CIFAR-10 is (32,
32, 3). Then, we get the activation shape after CONV1 and the number of parameters for CONV1.

(width of activation shape) =
(width of previous activation shape) − kernel size + 1

stride

=
32− 5 + 1

1
= 28 ⇒ activation shape = (28, 28, 20)

(# of CONV1 parameters) =
(

kernel size × kernel size

× (# of filters in the previous layer) + 1
)

× (# of filters in the current layer)

= (5× 5× 3 + 1)× 20 = 1520

The activation shape becomes (14, 14, 20) after max pooling. There are no learnable parameters in pooling layers.
We do similar calculation for CONV2.

(width of activation shape) =
(width of previous activation shape) − kernel size + 1

stride

=
14− 5 + 1

1
= 10 ⇒ activation shape = (10, 10, 50)

(# of CONV2 parameters) =
(

kernel size × kernel size × (# of filters in the previous layer)

+ 1
)
× (# of filters in the current layer)

= (5× 5× 20 + 1)× 50 = 25050

The activation shape becomes (5, 5, 50) after second max pooling. Then, we calculate the number of parameters
in FC3 and FC4 similar to the MLP case.

(# of FC3 parameters ) = (5× 5× 50)× 512 + 512 = 640512

(# of FC4 parameters ) = 512× 10 + 10 = 5130

Thus, the total number of parameters in this CNN model is

(# of CNN parameters) = (# of CONV1 parameters) + (# of CONV2 parameters)

+ (# of FC3 parameters) + (# of FC4 parameters)

= 1520 + 25050 + 640512 + 5130 = 672212

Finally, we derive Sup(A)(= Sdown(A)) in this case.

Sup(A) = (# of device) × (# of CNN parameters) × (# of bits)

= 8× 672212× 32 = 172086272

We can do the similar discussion in the MLP case when it comes to applying this to quantization-based federated
optimization algorithms.

117



6.2 Experimental Results

In our experiments on both MNIST and CIFAR-10, we verify how the global training loss and test accuracy of
five algorithms change with respect to communication rounds, the number of bits communicated between one
client and the server during the uplink, and human time. We provide both qualitative analysis and quantitative
results for plots.

6.2.1 Qualitative Analysis

Strongly Convex Case. In this experiment, we compare FedAQ under the condition set (34) and set (35)
with FedAvg, FedPAQ, FedCOMGATE, and FedAC-I. We denote each FedAQ as FedAQ-I and FedAQ-II. As
we observe the theoretical benefits of FedAQ over other methods in section 5, FedAQ-I outperforms all other
quantization-based federated optimization algorithms and FedAC-I in all plots (See each first row of Figure 1,
2). However, although FedAQ-II shows the fast convergence speed, the training process is unstable. Thus, we
only use FedAQ-I for further non-convex experiments. FedAC and FedAQ in non-convex experiments indicate
FedAC-I and FedAQ-I.

Non-Convex Case. Each second row of Figure 1, 2, and Figure 3 clearly demonstrates that FedAQ with 4 bits
quantization outperforms other algorithms in all plots. In terms of communication rounds, accelerated algorithms,
FedAQ and FedAC, converge faster than other algorithms. We also observe that quantization does not lead to
slower convergence, which means we can apply an efficient quantization scheme to make communication efficient
FL systems without sacrificing convergence speed. The plots related to communicated bits are helpful to interpret
how algorithms work well in situations with heavy communication. FedAQ with 8 bits quantization shows
comparable performance relative to FedPAQ and FedCOMGATE with the help of acceleration, even though
FedAQ sends more updates during every synchronization. When we use 4 bits quantization for FedAQ to make
the number of communicated bits the same for all quantization-based algorithms during synchronization, FedAQ
shows a much faster convergence speed with regard to the number of communicated bits. However, plots of
communicated bits fail to reflect how algorithms converge in real estimated time for FL scenarios, which consists
of both communication and computation. Thus, we further analyze algorithms with human time. We observe that
FedAQ with 8 quantization bits performs slightly better than FedPAQ and FedCOMGATE for both MNIST and
CIFAR-10. This occurs because while all quantization-based algorithms send the same number of communicated
bits, the number of communication rounds for FedAQ is much smaller than others. Then, this also indicates that
FedAQ takes less computation time than other methods while reaching the same accuracy.

6.2.2 Quantitative Results

We provide quantitative results to help readers understand plots better. To be specific, for all plots, we observe the
number of communication rounds, the number of communicated bits, and the human time required to achieve a
particular test accuracy by each federated optimization algorithm.

For the strongly convex experiment on MNIST (See the first row of Figure 2), the number of communication
rounds required to achieve 90.28% test accuracy by FedAvg, FedPAQ(8bits), FedCOMGATE(8bits), FedAC-I,
FedAQ-I(8bits), FedAQ-II(8bits) are respectively 217, 216, 260, 28, 26, 99. The number of communicated
bits required to achieve the same accuracy are respectively 5.4e7, 1.4e7, 1.6e7, 1.4e7, 3.3e6, 1.2e7. Lastly, the
required human time are respectively 3220s, 2760s, 3336s, 484s, 344s, 1323s. In this experiment, FedAQ-I(8bits)
requires the smallest number of communication rounds, the smallest number of communicated bits, and the
shortest human time to achieve the same test accuracy. These experimental results support the validity of our
theoretical analysis on strongly convex cases.

For the non-convex experiment on MNIST (See the second row of Figure 2), the number of communication
rounds required to achieve 97.6% test accuracy by FedAvg, FedPAQ(8bits), FedCOMGATE(8bits), FedAC,

118



FedAQ(8bits), FedAQ(4bits) are respectively 23, 48, 38, 18, 18, 16. The number of communicated bits required
to achieve the same accuracy are respectively 1.5e8, 7.6e7, 6.1e7, 2.3e8, 5.7e7, 2.5e7. Finally, the required human
time are respectively 2424s, 2311s, 1834s, 3327s, 1248s, 805s. Thus, we conclude that FedAQ(4bits) outperforms
other algorithms, and even FedAQ(8bits) needs smaller number of communicated bits/less human time to achieve
the goal accuracy than FedPAQ(8bits)/FedCOMGATE(8bits).

For the non-convex experiment on CIFAR-10 (See Figure 3), the number of communication rounds required
to achieve 65.4% test accuracy by FedAvg, FedPAQ(8bits), FedCOMGATE(8bits), FedAC, FedAQ(8bits),
FedAQ(4bits) are respectively 98, 89, 95, 49, 50, 48. The number of communicated bits required to achieve the
same accuracy are respectively 2.1e9, 4.8e8, 5.1e8, 2.1e9, 5.4e8, 2.6e8. Finally, the required human time are
respectively 31798s, 11526s, 12240s, 28720s, 9902s, 6464s. As with the non-convex experiment on MNIST,
FedAQ(4bits) outperforms other algorithms, and even FedAQ(8bits) requires less human time to achieve the same
accuracy than FedPAQ(8bits)/FedCOMGATE(8bits).

Remark 24: Our current experimental setup only allows us to scale the number of clients up to the number of
CPU cores in our machine. Since FedAQ achieves linear speed up in the number of workers with much fewer
communication rounds than other quantization based methods, we expect FedAQ to outperform other methods by
an even larger margin as we scale the number of workers.

(a) (b) (c)

(a) (b) (c)

Figure 1: Comparing FedAQ with FedAvg, FedPAQ, FedCOMGATE, and FedAC on MNIST with Strongly
Convex Settings (first row) and Non-Convex Settings (second row). We observe how the global training loss
changes across communication rounds (first column), communicated bits (second column), and human time (third
column). FedAQ-I(8bits) and FedAQ(4bits) respectively outperform other algorithms for strongly convex settings
and non-convex settings. FedAQ(4bits) sends the same number of communicated bits as FedPAQ(8bits) and
FedCOMGATE(8bits) in each communication round, which indicates a fair comparison (See Quantization bits in
section 6.1).

119



(a) (b) (c)

(a) (b) (c)

Figure 2: Comparing FedAQ with FedAvg, FedPAQ, FedCOMGATE, and FedAC on MNIST with Strongly
Convex Settings (first row) and Non-Convex Settings (second row). We observe how the test accuracy changes
across communication rounds (first column), communicated bits (second column), and human time (third
column). FedAQ-I outperforms other algorithms in all plots for strongly convex settings. Moreover, FedAQ(4bits)
outperforms other algorithms in all plots for non-convex settings.

7 Conclusion

To sum up, we propose a novel communication-efficient federated optimization algorithm, FedAQ, that suc-
cessfully incorporates accelerated multiple local updates and quantization with solid theoretical guarantees in
strongly-convex and homogeneous settings. In the future, further theoretical guarantees of FedAQ on convex
and non-convex functions should be discussed. Also, the convergence analysis of FedAQ on heterogeneous
settings can be an interesting topic. Even though Federated Learning systems provide some level of privacy to the
clients as their explicit data is not shared with the servers, careful examination of FL systems including FedAQ is
necessary to examine how much privacy do they actually provide as information is shared in form of the iterates.

References

[1] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd via gradient
quantization and encoding. Advances in Neural Information Processing Systems, 30:1709–1720, 2017.

[2] N. Bansal and A. Gupta. Potential-function proofs for gradient methods. Theory of Computing, 15(1):1–32,
2019.

[3] D. Basu, D. Data, C. Karakus, and S. Diggavi. Qsparse-local-sgd: Distributed sgd with quantization,
sparsification, and local computations. arXiv preprint arXiv:1906.02367, 2019.

120



(a) (b) (c)

(a) (b) (c)

Figure 3: Comparing FedAQ with FedAvg, FedPAQ, FedCOMGATE, and FedAC on CIFAR-10. We observe how
the global training loss and test accuracy change across communication rounds (first column), communicated bits
(second column), and human time (third column). We use a CNN model for CIFAR-10. Similar to the MNIST
experiment, FedAQ (4 bits) outperforms all other algorithms in every case.

[4] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: Compressed optimisation for
non-convex problems. In International Conference on Machine Learning, pages 560–569. PMLR, 2018.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[6] S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic
composite optimization i: A generic algorithmic framework. SIAM Journal on Optimization, 22(4):1469–
1492, 2012.

[7] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe. Local sgd with periodic averaging: Tighter
analysis and adaptive synchronization. In Advances in Neural Information Processing Systems, pages
11082–11094, 2019.

[8] F. Haddadpour, M. M. Kamani, M. Mahdavi, and V. Cadambe. Trading redundancy for communication:
Speeding up distributed sgd for non-convex optimization. In International Conference on Machine Learning,
pages 2545–2554. PMLR, 2019.

[9] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi. Federated learning with compression:
Unified analysis and sharp guarantees. In International Conference on Artificial Intelligence and Statistics,
pages 2350–2358. PMLR, 2021.

121



[10] F. Haddadpour and M. Mahdavi. On the convergence of local descent methods in federated learning. arXiv
preprint arXiv:1910.14425, 2019.

[11] S. Horvath, C.-Y. Ho, L. Horvath, A. N. Sahu, M. Canini, and P. Richtárik. Natural compression for
distributed deep learning. arXiv preprint arXiv:1905.10988, 2019.

[12] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, et al. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

[13] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh. Mime: Mimicking
centralized stochastic algorithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.

[14] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh. Scaffold: Stochastic controlled
averaging for federated learning. In International Conference on Machine Learning, pages 5132–5143.
PMLR, 2020.

[15] A. Khaled, K. Mishchenko, and P. Richtárik. Tighter theory for local sgd on identical and heterogeneous
data. In International Conference on Artificial Intelligence and Statistics, pages 4519–4529. PMLR, 2020.

[16] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492, 2016.

[17] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. Manuscript, 2009.

[18] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

[19] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future
directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

[20] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization in heteroge-
neous networks. arXiv preprint arXiv:1812.06127, 2018.

[21] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg on non-iid data. arXiv
preprint arXiv:1907.02189, 2019.

[22] X. Li, B. Karimi, and P. Li. On distributed adaptive optimization with gradient compression. arXiv preprint
arXiv:2205.05632, 2022.

[23] Z. Li, D. Kovalev, X. Qian, and P. Richtárik. Acceleration for compressed gradient descent in distributed
and federated optimization. arXiv preprint arXiv:2002.11364, 2020.

[24] Z. Li and P. Richtárik. Canita: Faster rates for distributed convex optimization with communication
compression. arXiv preprint arXiv:2107.09461, 2021.

[25] T. Lin, S. U. Stich, K. K. Patel, and M. Jaggi. Don’t use large mini-batches, use local sgd. arXiv preprint
arXiv:1808.07217, 2018.

[26] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR,
2017.

[27] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani. Fedpaq: A communication-
efficient federated learning method with periodic averaging and quantization. In International Conference
on Artificial Intelligence and Statistics, pages 2021–2031. PMLR, 2020.

122



[28] D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. Gonzalez, and R. Arora. Fetchsgd:
Communication-efficient federated learning with sketching. In International Conference on Machine
Learning, pages 8253–8265. PMLR, 2020.

[29] N. Singh, D. Data, J. George, and S. Diggavi. Squarm-sgd: Communication-efficient momentum sgd for
decentralized optimization. IEEE Journal on Selected Areas in Information Theory, 2021.

[30] S. U. Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767, 2018.

[31] S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for sgd with delayed gradients
and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

[32] A. T. Suresh, X. Y. Felix, S. Kumar, and H. B. McMahan. Distributed mean estimation with limited
communication. In International Conference on Machine Learning, pages 3329–3337. PMLR, 2017.

[33] T. Vogels, S. P. Karinireddy, and M. Jaggi. Powersgd: Practical low-rank gradient compression for distributed
optimization. Advances In Neural Information Processing Systems 32 (Nips 2019), 32(CONF), 2019.

[34] H. Wang, S. Sievert, Z. Charles, S. Liu, S. Wright, and D. Papailiopoulos. Atomo: Communication-efficient
learning via atomic sparsification. arXiv preprint arXiv:1806.04090, 2018.

[35] J. Wang, Z. Charles, Z. Xu, G. Joshi, H. B. McMahan, M. Al-Shedivat, G. Andrew, S. Avestimehr, K. Daly,
D. Data, et al. A field guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

[36] J. Wang and G. Joshi. Cooperative sgd: A unified framework for the design and analysis of communication-
efficient sgd algorithms. arXiv preprint arXiv:1808.07576, 2018.

[37] J. Wang, Z. Xu, Z. Garrett, Z. Charles, L. Liu, and G. Joshi. Local adaptivity in federated learning:
Convergence and consistency. arXiv preprint arXiv:2106.02305, 2021.

[38] Y. Wang, L. Lin, and J. Chen. Communication-efficient adaptive federated learning. arXiv preprint
arXiv:2205.02719, 2022.

[39] J. Wangni, J. Wang, J. Liu, and T. Zhang. Gradient sparsification for communication-efficient distributed
optimization. arXiv preprint arXiv:1710.09854, 2017.

[40] B. Woodworth, K. K. Patel, S. Stich, Z. Dai, B. Bullins, B. Mcmahan, O. Shamir, and N. Srebro. Is local sgd
better than minibatch sgd? In International Conference on Machine Learning, pages 10334–10343. PMLR,
2020.

[41] H. Yu, R. Jin, and S. Yang. On the linear speedup analysis of communication efficient momentum sgd for
distributed non-convex optimization. In International Conference on Machine Learning, pages 7184–7193.
PMLR, 2019.

[42] H. Yu, S. Yang, and S. Zhu. Parallel restarted sgd with faster convergence and less communication:
Demystifying why model averaging works for deep learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 5693–5700, 2019.

[43] H. Yuan and T. Ma. Federated accelerated stochastic gradient descent. Advances in Neural Information
Processing Systems, 33, 2020.

123


