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Abstract—The concept of high-order ramp analog-to-digital
converter and its design aiming at medium-high resolution (12-
14 bits) are presented. Design methods that give rise to various
Nyquist rate schemes resembling incremental converters are
described. Since for Nyquist rate achieving noise shaping is not
the goal, the design care is just maintaining good stability to avoid
performance degradation. Different architectures for second and
third-order ramp converters are presented and verified at the
behavioral level. Simulation results show how the use of extra
quantizers and multi-bit resolutions reduces integrators output
swing and enhances overall performance. Finally, possible digital
assistance actions are presented and discussed.

I. INTRODUCTION

Instrumentation and measurement applications require
monotonic analog-to-digital converters (ADCs) with high res-
olution and good linearity. Incremental converters, directly
derived from Σ∆ schemes, are particularly suitable for those
needs. Although showing the same structure of a Σ∆, the
incremental ADC uses resets across each integrator of the ar-
chitecture for erasing the history information at the beginning
of each conversion cycle.

Since the reset prevents exploiting the information of past
samples, there is no need to describe the quantization error
as noise and to operate for giving rise to shaping of the
quantization noise. Thus, indeed, an incremental converter is
a Nyquist-rate type. The input is supposed constant during
the entire conversion cycle, otherwise the digital converted
output refers to a weighed average of input with an action
that resembles the one of an input filter.

The incremental ADC concept based on high-order Σ∆
converters achieves very high resolution, [1], [2]. The use
of feedforward paths leads to single digital-to-analog (DAC)
schemes, thus avoiding possible limits caused by gain mis-
match between DAC paths. However, if the modulator is 3rd-
order or higher [1], the requirements of stability and high-order
noise shaping reduce the resolution because it is necessary
to use attenuations factors with different extents along the
accumulating path.

This paper does not looks for noise shaping but just searches
for architectures that have a limited swing at the output of
sampled-data accumulators. The resulting schemes are named
high-order ramp because that is the type of input waveform
determined by a cascade of accumulators. There are many

design options; an effective solution described below uses a
digital filter assisted technique.

Depending on the resolution target, it is possible to employ
multi-bit quantizers. The results are compact and potentially
power efficient structures. The use of dynamic element match-
ing (DEM), [3], or smart-DEM techniques moderates the limit
of accuracy caused by unity element mismatch. The paper
presents and studies at the behavioral level possible solutions
for second and third order converters with single and multi-bit
quantizers.

II. INCREMENTAL CONVERTER REVISITED

The incremental ADC was firstly introduced by van de
Plassche in 1978, based on a Σ∆ architecture and imple-
mented in bipolar technology [4]. In 1985, this concept was
applied to a CMOS technology and, as far as we know, it is the
first time that the term “incremental” was formally introduced,
[5]. Fig. 1 shows a block digram of a 1st-order incremental
ADC. This modulator consists of an integrator with one-clock-
cycle delay, followed by a comparator and a 1-bit DAC along
the feedback path.

At the beginning of a new conversion cycle, a periodical
signal resets the output of the integrator. Supposing the input
signal Vin constant, after N clock cycles, the residue value at
the output of the integrator is

Vres =

N∑
i=1

Vin(i) −
N∑
i=1

Vout(i) (1)

Since the loop filter is supposed to be stable, the value of
Vres is limited within a limited range. The input signal can
be, hence, estimated as follows

_
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Fig. 1. A 1st-order incremental ADC.
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Vin =

∑N
i=1 Vout(i)

N
− Vres

N
(2)

that gives the resolution 1st-order incremental scheme

R1−ord = log2(N). (3)

The second term of the above equation gives the differential
non-linearity

DNL = −Vres

N
(4)

it is lower than 1-LSB if the residual is less that the reference
used by the DAC (the full scale of the converter).

Increasing the resolution requires augmenting the number of
clock periods or using more effective schemes with cascade
of accumulator, as done in high-order Σ∆. They become
incremental converter by the simple addition of a reset of
sampled-data integrators at the beginning of the conversion
cycle. The key point is to increase the accumulation efficiency,
while maintain the stability of conversion loop together with a
minimized Vres [2] [6]. The maximum achievable resolution
for a 2nd-order or 3rd-order modulator can be calculated as

R2−ord = log2
N(N + 1)

2!
+ bq (5)

R3−ord = log2
N(N + 1)(N + 2)

3!
+ bq (6)

where bq is the resolution of the quantizer and N is the number
of conversion cycles.

An incremental converter can use a single or a multi-bit
quantizer. With a single-bit quantizer, the modulator does
not suffer from non-linearity of the DAC. Nevertheless, the
modulator which uses a single-bit quantizer has a relatively
large swings along the incremental paths and this may result
in operational amplifiers working in slewing mode. The non-
linearity of the multi-bit DAC can be compensated for with
static or dynamic calibration methods. However, the well know
DEM, [3], approach must be carefully considered. Its use
in Σ∆ modulator achieves shaping of the spectrum of the
mismatch error, but, as already stated, the incremental is a
Nyquist-rate converter that does not increase the resolution
with oversampling but just uses many clock periods to de-
termine the conversion. Possible solutions to this issue are
presented in [7], which uses an intrinsic linear DAC in a 2nd-
order modulator, and in [8], where a smart dynamic element
matching technique is proposed.

A Σ∆ architecture possibly uses distributed feedback and
feedforward paths to make stable the loop. The errors in the
feedforward coefficients affect the signal path and give rise
to a signal error. Having a constant input signal ensures that
the error is just a gain factor. Errors in feedback coefficients
are more difficult to analyze because the feedback signal
varies in time and with distributed feedback there are multiple
injections.
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Fig. 2. A 2nd-order incremental ADC.

III. HIGH-ORDER RAMP CONVERTER

The above analysis of incremental converters determines
indications on how to design optimal architectures. Results are
high-order ramp converters, with possibly multi-bit quantizer,
designed according to the following guidelines:
• The structure does not use analog feedforward paths

which lead to extra analog blocks.
• The coefficients along the accumulation path should not

decrease the resolution.
• There should be only one feedback path in which a DEM

algorithm can be effectively used.
These guidelines lead to architectures in which digital

filters perform digital assisted functions aimed at controlling
the voltage swings at the output of the op-amp used. The
following subsections describe architecture and features of
possible schemes of high-order ramp converters.

A. The 2nd-Order Scheme

A second-order ramp converter is the cascade of two ac-
cumulators. As it happens for time-invariant schemes, it is
necessary to control the cascade of more than one accumulator
for keeping constrained the output of intermediate nodes. The
request is not ensuring stability as needed in filters or Σ∆
architectures; however, since a similar action is required, the
designer can take advantage of the method used in time-
invariant schemes.

Second order Σ∆ architectures use an auxiliary injection
at input of the second accumulator or employ feedforward
branches toward the quantizer. The latter solution is not
optimal, because for multi-bit schemes, it is necessary using
extra analog efforts (and power) for adding the feedforward
branches. The use of an auxiliary injection, as shown in Fig. 2,
can be used at two purposes: optimize the output swing at the
op-amp outputs or improve the feedback factor of integrators.
There is an additional degree of freedom on the choice of the
coefficients k1and k2. The real benefits are, indeed, limited.
The use of k1 = 1/2 and k2 = 0.75 reduces the maximum
swing of the op-amps by 15% and, obviously, improves the
feedback factor of the second integrator, provided that the
subtraction is performed with different SC circuits.

Fig. 3 shows an alternatively solution that avoids inter-
mediate injection without feedforward paths. The use of a
transversal filter and the proper choice of coefficients c1 and
c2 control the signal swing of the two integrators. The choice
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Fig. 3. A 2nd-order ramp ADC with 1-digital-feedback path.

of the coefficients can be done with the help of the z transfer
function of the time-invariant equivalent.

The study in the z-domain gives rise to a denominator in
the noise transfer function (NTF) and signal transfer function
(STF) given by

D2(z) = 1 + (c1 − 2)z−1 + (c2 + 1)z−2. (7)

The position of poles of the time-invariant counterpart inside
the unity circle verifies stability. Moreover, their placement can
bring about possible reduction of the op-amp swings.

Fig. 4 shows a third possible architecture. It uses two
quantizers at the output of accumulators. The signal fed back
at the input is the addition of the two digital outputs. The
use of an extra quantizer is a limited cost because the power
consumed by a comparator is much less than the one of an
op-amp with same speed. Removing the intermediate injection
improves the feedback factor of the second integrator, thus
allowing to spare power.

The study of the time-invariant equivalent shows four zeros
that are inside the unity circle if k1 < 1.5. Simulations show
that k1 = 0.75 optimizes the variation of output swing at
the input of the quantizer. Fig. 5 compares the output swings
of an incremental converter (top), its version with k1 and k2
(see Fig. 2) (mid) and the scheme of Fig. 4 (bottom) with
k1 = 0.8 and k2 = 1 (scheme of Fig. 3 does not grant
benefits). The swing in the last case is almost half the one of
the incremental converter. The waveform is around the input
amplitude; however, simple circuitry enables an amplitude
shift around zero. Therefore, a small swing corresponds to
relaxed slewing request, low dynamic range and reduced
number of comparators in the flash.
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Fig. 4. A 2nd-order ramp ADC with two quantizers.
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Fig. 5. Swing of the second integrator for three different second-order ramp
converters. The input signal range is ±XFS/2.

B. The 3rd-Order Ramp ADC

Methods similar to the one discussed for the second-order
ramp converter can be extended to higher order. Fig. 6 shows
a 3rd-order ramp ADC scheme with single digital DAC and
FIR filter along quantizer loop. The digital filter uses three
taps with two delays. Parameters c1, c2 and c3 of the filter
can be critical for stability. The z transfer functions of the
time-invariant counterpart has a denominator given by

D3(z) = 1 + (c1 − 3) + (c2 + 3)z−2 + (c3 − 1)z−3 (8)

whose zeros must be in the unity circle.
Extensive simulations show that the choice of coefficients

benefit the swing at the output of each integrator. With c1 = 3,
c2 = −3 and c3 = 1 there is an improvement with respect
to the incremental counterpart of about 23%. The number of
levels of the DAC remains unchanged but, as it happens for the
incremental scheme, the DAC dynamic range must be larger
than the input to accommodate the larger error due to the
difficulty in controlling a cascade of three integrators.

Fig. 7 shows the block diagram of a 3rd-order ramp ADC
with multiple quantizers. The strategy is more effective in
controlling the integrator output voltages because there is a
monitor of each of them. The resolution of the three ADCs is
supposed to be the same.

The choice of the parameters k1, k2 and k3 can give
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Fig. 6. A 3nd-order ramp ADC with 3-digital-feedback paths.
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Fig. 7. A 3rd-order ramp ADC with three quantizers.

rise to unstable situations or reduce the swing at output of
accumulators. The study of the time-invariant scheme outlines
a denominator of the transfer functions whose zeros must be
inside the unity circle. Simulations that change the parameters
within the stability range identify the optimum set.

Notice that different values of the k parameters weight in a
different manner the control of the accumulator outputs. Since
a large swing in one of them affects the following, it is logical
to assume k1 = k2 = k3. Simulations with 3-bit ADCs give
rise to minimum swings with k1 = k2 = k3 = 1.

Fig. 8 compares the signal swing at the output of the third
integrator for a conventional incremental converter (top) and
the ramp converter of Fig. 7 (mid). It is the one with best
results between the third-order ramp converters considered
above. The obtained swing is less than 50% than the incremen-
tal counterpart. The bottom diagram of Fig. 8 reports the DAC
signal. Despite the addition of three ADCs with three bits, the
dynamic range of the DAC is not higher than the one of the
incremental scheme. The reduction of the error at the output
of the third accumulator gives rise to the room required by
the errors at the output of the other accumulators. Moreover,
overall limited swings require using a number of comparators
that is less than the expected 3 · 23.

Remind that the output of the third accumulator after the
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Fig. 8. Signal at the output of the third accumulator for a conventional 3rd-
order incremental converter (top) and for the scheme of Fig. 7 (mid). Signal
at the output of the DAC for the scheme of Fig. 7 (bottom). The input signal
range is ±XFS/2.

last A/D conversion is a residual that, divided by the input
amplification, measures the INL. The swing roughly indicates
the DNL. Thus, the scheme of Fig. 8 ensures better INL and
DNL than the incremental counterpart.

IV. DIGITAL ASSISTED ACTIONS

The operation of the proposed high-order ramp converters,
in addition to the foreseen processing, can be suitably assisted
with a number of actions. They concern the digital measure
of mismatches, digital calibration and the shift of signals to
keep them in the most effective region.

An architecture with limited output swing in the integrators
improves the overall performances.That result is naturally
achieved by multi-bit quantizers that limit the error in the
signal estimation. However, there are two key problems: the
linearity of the DAC that must be better than the overall
resolution; the need of shifting signals around the quies-
cent amplitude. The first issue involves the measure of the
mismatch, possibly done in a foreground fashion using the
converter itself. The digital measures of the mismatch, stored
in a memory, are the input of a digital calibration. The method
is a good alternative to the dynamic matching used in multi-
bit Σ∆ modulators because the DEM technique is not for
Nyquist-rate converters.

A level shift at the input of the flash results if the input of
the DAC is

Y ′DAC = YDAC −Xin (9)

where Xin is a quantized version of input. This is done
with the added gray subtractor of Fig. 7. Since the input is
constant for the entire conversion cycle, its quantization can be
performed before starting the conversion cycle. The conversion
is done at zero cost by one of the two ADCs used by the
architecture and stored in a temporary memory.
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