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Abstract—Objective: This article discusses the evolution of 

pervasive healthcare from its inception for activity recognition 
using wearable sensors to the future of sensing implant 
deployment and data processing. Methods: We provide an 
overview of some of the past milestones and recent developments, 
categorised into different generations of pervasive sensing 
applications for health monitoring. This is followed by a review 
on recent technological advances that have allowed unobtrusive 
continuous sensing combined with diverse technologies to 
reshape the clinical workflow for both acute and chronic disease 
management. We discuss the opportunities of pervasive health 
monitoring through data linkages with other health informatics 
systems including the mining of health records, clinical trial 
databases, multi-omics data integration and social media. 
Conclusion: Technical advances have supported the evolution of 
the pervasive health paradigm towards preventative, predictive, 
personalised and participatory medicine. Significance: The 
sensing technologies discussed in this paper and their future 
evolution will play a key role in realising the goal of sustainable 
healthcare systems. 
 

Index Terms— pervasive health, wearable sensors, implantable 
sensors, health informatics. 

I. INTRODUCTION 

SCALATED incidence and costs associated with chronic 
symptoms, senescence-related dependence, lifestyle 

induced poor health (e.g. obesity), and non-communicable 
diseases such as cancer and cardiovascular diseases are major 
healthcare challenges globally. Rather than relying on delayed 
intervention and expensive treatments, the future of a 
sustainable global healthcare system is one that is specifically 
focused on prevention, early detection and minimally invasive 
management of diseases. Recent advances in sensing 
technologies have made it possible to monitor health in an 
unobtrusive and seamless manner, transforming episodic, 
largely manual sampling processes to continuous, context-
aware monitoring and intelligent intervention. Figure 1 
outlines the evolution of allied technologies in the last 10 
years. Three factors in particular have contributed to these 
advances: 1) increased data processing power, 2) faster 
wireless communications with higher bandwidth, and 3) 
improved design of microelectronics and sensor devices. The 
first two represent general trends in computing, whereas the 
third is of particular interest to pervasive health. Advances in 
sensor electronics have supported the development of a wide 
range of embedded systems, as well as devices that are small, 
lightweight and can be comfortably worn by an individual or 

ubiquitously placed in the environment with minimal power 
consumption. 

Thus far, wearable devices are widely used to measure key 
health indicators such as electrocardiogram (ECG), heart rate, 
blood pressure, blood oxygen saturation (SpO2), body 
temperature, postures and physical activities (see Table I). 
Likewise, ambient sensing systems are now embedded in 
homes and affixed to doors, beds [1], mattresses [2], toilets 
[3], wardrobes [4] and electrical appliances [5]. The wearable 
systems supported by ambient sensing have the capability to 
continuously monitor human physiology and dysfunction 
enabling critical events such as myocardial infarction, 
arrhythmias and strokes to be captured and consequently 
expediting treatments and saving lives [6]. Health and 
wellbeing can be similarly monitored and seamlessly tracked, 
motivating high-risk groups such as people with higher than 
normal body mass indices to engage in physical activity and 
adopt a change in lifestyle. These relatively simple 
interventions may improve cardiovascular and bone health, 
reduce dependence, escalated healthcare costs and morbidity 
of lifestyle-induced poor health.  

Advances in technologies are largely underpinned by recent 
improvements in low-power micro-electronics, fabrication, 
and packaging for device miniaturisation. In addition to 
developments in micro-fabrication and nanofabrication, new 
designs in biocompatible materials and sensors for minimising 
foreign body reactions to implants, adaptive management of 
sensor drift and accelerated data transmission from inside the 
body, have propelled recent advances in implantable 
biosensors. Clinically, implantable sensors can better address 
the challenges of chronic disease monitoring, capture critical 
events, enhance personalisation of surgically implanted 
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prosthetics and critically accelerate the detection of failing 
implants thereby minimising healthcare hazards. Patients with 
diabetes would no longer have to undergo painful blood 
capillary tests or inject insulin if an intelligent implantable 
device could sense blood glucose levels and respond 
accordingly. White blood cells and neutrophil counts could be 
continually monitored in patients undergoing chemotherapy 
cycles such that the earliest sign of neutropenia could be 
coupled with granulocyte stimulation to prevent sepsis. 
Implantable sensors that monitor the axial load on an 
individual subject’s spine may lead to personalised 
orthopaedic prostheses. Similarly, analgesic drug delivery may 
be tailored to the individual based on data from implanted 
sensors in the central and peripheral nervous systems. Rapid 
automated detection of failing prosthetics may prevent health 
risks such as that exemplified by Poly Implant Prothèse (PIP) 
implants in which breast prostheses with a significantly higher 
risk of rupture were implanted into thousands of women 
worldwide. Fabricating sensors within implants may have 
accelerated detection of rupture and may have provided rapid 
reassurance to those women with intact prostheses. Regardless 
of the healthcare application, or whether the sensors are 
wearable, implantable or placed in the ambient surroundings, 
three different generations of development can be considered 
as shown in Figure 2. In the following sections, we discuss the 
evolution of the pervasive health paradigm as well as the 
technical implications, with a particular focus on the future of 
pervasive health monitoring. 

II. EVOLUTION OF PERVASIVE HEALTH APPLICATIONS 

A. First Generation 

In first generation applications, the architectural system 
typically consists of a single sensing modality with wireless 
connectivity being able to make predictions about activities or 
health status. Notable first generation devices applications 
include daily activity recognition from wearable motion 
sensors or sensors embedded in the environment [7]; gait 
analysis from wearable sensors [8] or those embedded in the 
flooring of a smart house [9]. Whilst the amount of data 
processed from wearable sensors that can be stored is limited 
to several megabytes, applications based on video and/or 
audio signals can generate up to hundred megabytes of data 
[10]. Processing is typically performed centrally, relying on 
off-line, retrospective batch processing. 

B. Second Generation 

The second generation of wireless monitoring devices 
emerged as a result of advances in sensing technology that 
facilitate continuous monitoring with multiple sensors, each of 
them being responsible for providing inference, either from 
wearable or ambient sensors. With this generation, we 
introduce the concept of agents, which are processing entities 
that, in addition to sensing, may take the necessary actions 
towards an objective. These actions can be based on an 
autonomous interaction with the environment or cooperation 
with other agents. Integrating the outputs from a diverse range 

of intelligent agents therefore requires a higher level of 
reasoning than in first generation devices. The objective is to 
reduce the uncertainty of predictions by fusing multimodal 
information and/or providing a sense of context-awareness, 
which can improve the level of integration of the application 
with the monitored scenario. For instance, a sleep disorder 
monitoring was developed in [11] using a combination of 
wearable, light sensors and video recordings in order to detect 
the most relevant events during sleep and allow long-term 
monitoring. In another example, a fall detection system using 
information from wearable motion and ambient vision sensor 
as well as energy consumption (appliances and lights turned 
on and off) was able to appreciate the context of a fall in order 
to recognise environmental hazards [12].  Typically, the data 
acquired from such applications may be up to several 
hundreds of megabytes or even several gigabytes [13]. 

 

 

C. Third Generation 

The third generation is a nascent research area that aims to 
combine continuous health monitoring with other sources of 
medical knowledge. In addition to the aforementioned 
pervasive sensing modalities of the first and second 
generations, the objective in third-generation applications is to 
integrate intelligent agents that implement technologies such 
as stream processing, data mining, genetic and multi-omics 
data. These agents are thus responsible for extracting 
information from a variety of sources including clinical 
research, patient records, laboratory generated data (e.g. 
genomics, proteomics, metabonomics). Through effective 
fusion of multi-modal information, the system examines 
patients from a system level with all compounding factors 
taken into account [34]. This will support the decision-making 
process governed by the latest evidence in biomedical and 
health informatics. Integrating knowledge from multiple 
sources has great potential to improve and personalise clinical 
care.  

 
Fig. 2.  A schematic overview of the three generations of advances in sensor 
technology (left side) and data analytics and intelligent systems (right side). 
On the left, the figure displays small low-powered sensors (1st layer), ultra-
low powered micro-sensors (2nd layer), and biologically-powered micro-
implants and nano-scale devices (3rd layer). On the right, the figure represents 
single sensor monitoring systems (1st layer), continuous monitoring with 
multiple sensors in an environment enabling context-awareness (2nd layer) and 
pervasive health combined with other big data health sources enabling 
integrated care (3rd layer). 
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TABLE I   
EXEMPLAR WEARABLE AND IMPLANTABLE SENSORS DEVELOPED IN RECENT YEARS AND THEIR CLINICAL APPLICATIONS 

Sensor placement  Sensors type Key technical features TRL  Clinical focus 

Chest, torso 

� ECG/PPG (CardioMem®,[14, 15])  � Electrodes on conductive fabric/flexible “heart sock”. � 9 (CardioMem®), 
6 [14, 15] 

� Cardiac arrhythmia [14, 15] 

� Glucose (Dexcom®)  
� Adenosine triphosphate [16]  
� Accelerometer [17] 
� Galvanic skin response (GSR) [15]  
� Temperature [18] 

� Glucose needle patch. 
� Tested on mouse model with air pouch. 
� Flexible system with middleware. 
� “Smart Vest” with multi-parameter monitoring. 
� Temperature patch. 

� 9 
� 9 
� 6 
� 6 
� 6 

� Diabetes. (Dexcom®) 
� Inflammation [16] 
� Rehabilitation [17] 
� Obesity [15] 
� Infection  [18] 

H
ea

d 

Eye � Intraocular pressure (IOP) [19] 
� Glucose (Google® contact lens) 

� IOP by change in corneal curvature. 
� RFID readout. 

� 6 
� 5 

� Glaucoma [19] 
� Diabetes (Google®) 

Brain 
� Impact force (ChecklightTM)  
� Glucose/lactate (PinnacleTM) 
� EEG (NeuroProTM)  

� Impact logging.   
� Rat head capsule with multichannel potentiostat. 
� 8 channel EEG. 

� 9 
� 9 
� 7 

� Concussion (ChecklightTM) 
� Trauma/haemorrhage (PinnacleTM) 
� Epilepsy (NeuroProTM) 

Ear 
� Acceleration [8, 20] 
� Audio [21]  

� Three axis accelerometer behind the ear.  
� Binaural hearing aid. 

� 8 
� 6 

� Clinical gait analysis [8, 20] 
� Hearing loss  [21]  

Tooth 
� Bacteria [22] � Anti-microbial peptide coated grapheme as bacterial sensor. Read 

out with battery-less wireless interrogation.  
� 6  � Infection [22] 

M
us

cu
lo

sk
el

et
al

  

Wrist/arm 

� Activity levels/energy expenditure (Nike® ) 
� Skin conductance [23] 
� Accelerometer [24, 25] 
� Gyroscope and magnetometer[26]  
� EMG and EEG [25] 

� Custom metric for energy expenditure. 
� Soft wrist band for electrodermal activity. 
� Accelerometer network on limbs. 
� Wrist/elbow mounted motion tracker. 
� Multi-modal flexible/conformal patch. 

� 9 
� 6 
� 6 
� 6 
� 6 

� Obesity (Nike® ) 
� Emotional stress  [23] 
� Parkinson’s disease [24, 25] 
� Stroke rehabilitation [26] 
� Neo-natal ICU [25] 

Feet 
� Accelerometer [24, 27]  
� Gyroscopes  force, bend and pressure, 

electric field height, air pressure [28] 

� Posture/activity from heel acceleration and planar pressure.  
� Gait shoe monitors in-shoe air pressure for ground contact force. 

� 6 
� 6 

 

� Obesity [24, 27] 
� Clinical gait analysis [28] 

 

Hand/fingers 
� Blood pressure, SpO2  (iHealth®)  
� Accelerometer [29, 30]  
� Bend/force [30] 

� Wireless finger cap and pressure cuff. 
� Sensor network on glove for hand gesture analysis. 
� Pressure sensor network glove measuring range of motion. 

� 9  
� 6 
� 6 

� Hypertension (iHealth®) 
� Surgical training [29, 30] 
� Arthritis [30] 

Hip � Vibration [31] � Hip prosthesis tested with artificial thigh. � 6 � Hip prosthesis [31] 

Implantable/Ingestible 
wireless 
sensors/stimulators 
 

� pH [32] 
� Temperature, HR/respiration (VitalSense®)  
� Heart rhythm (EveraTM)  
� Auditory nerve (Cochlear®)  
� Visible light (SecondSight®)  
� Brain stimulator (Soletra®)  
� Medicine ingestion (Proteus®) 
� Force sensor [33]  
� Pressure sensor (CarmatTM) 

� pH capsule attached to oesophageal wall. 
� Ingestible capsule for wireless core temperature. 
� Implantable defibrillator. 
� Auditory nerve stimulation with wireless powering. 
� Retinal ganglion cells (RGC) stimulation.  
� Single lead implantable neurostimulator. 
� Ingestible pill with wireless interrogation for ingestion signatures. 
� Battery-less piezoelectric energy harvester knee implant. 
� Complete artificial heart. 

� 9 
� 9 
� 9 
� 9 
� 9 
� 9 
� 8 
� 6 
� 6 

� GERD [32] 
� Infection (VitalSense®) 
� Cardiac arrhythmia  (EveraTM) 
� Deafness (Cochlear®) 
� Blindness (SecondSight®) 
� PD, Tremor (Soletra®) 
� Tablet ingestion management  (Proteus®) 
� Knee replacement surgery [33] 
� Heart replacement (CarmatTM) 

Wearable for ambient 
environment 

� Ozone Chlorine, Methane, Carbon 
monoxide, humidity, temperature 
(Sensordrone®) 

� Environmental sensing link with smartphones. � 9 � Poisoning (Sensordrone®) 
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For example, family history data combined with personal 
genome analysis has the potential to integrate disease risks 
across multiple known polymorphisms [35]. In particular, 
variants of known pharmacogenetic importance may lower or 
raise the threshold for treatments [36]. Patients at seemingly 
low risk of cardiovascular disease can be identified for 
treatment once family history, global genetic risk and genomic 
predictors of response to therapy are considered. Identifying 
patients with a disease variants known for drug resistance may 
lead to decisions to alter pharmacological interventions or 
increase the dose of medication (e.g. CYP2C19 and 
clopidogrel [35]).  

III.   ADVANCES IN SENSING AND HARDWARE DESIGN 

Due to consumer demand and a shift in research landscape, 
the evolution of sensing hardware in the past decade has been 
accelerated. In Table I, we summarise some of the state-of-
the-art developments in sensing hardware covering devices 
used in research as well as products available from the 
industry. The table is organised into categories according to 
sensor placements, from torso mounted wearable sensors to 
sensors placed on a finger. The clinical relevance of each 
reported sensing hardware is included at the end of each row. 
This ranges from activity recognition to tackle obesity to 
potential infection detection by measuring core body 
temperatures. In addition to wearable sensors, implantable and 
ingestible wireless sensing hardware examples are equally 
included. The main application of these implantable sensors is 
to act as loss-of-function replacement prosthesis or for chronic 
disease management. For each category, the example devices 
are arranged in decreasing Technological Readiness Levels 
(TRL) with TRL=4 indicating in-lab component validation 
through to TRL=9 where technology is in its final form, being 
used under operational conditions. Platform technologies that 
underpin the advance of sensing hardware can be categorised 
as developments in sensor embodiment technology, micro-
electronics and fabrication processes, and the availability of 
wireless power delivery towards miniaturised implantable 
sensors. In the following sections, we summarise these 
technological advancements that give rise to current state-of-
the-art sensing systems and beyond. 

A. Sensors and Sensor Embodiment 

Traditionally, wireless sensing nodes comprised of sensors, 
processing and wireless electronics assembled on printed 
circuit boards (PCBs) made of glass-refined epoxy laminate 
(FR4). Recently, flexible materials such as polyimide [37, 38] 
have been used for sensor node platforms. These flexible 
sensor node assemblies facilitate flexible sensor embodiment 
and ultimately allow easier sensor application on the human 
body in the form of a conformal “patch”. On the other hand, a 
recent trend in low-cost sensor patch embodiments is to realise 
microfluidic channels, printed sensors and electronics on the 
same engineered paper substrate [39]. Thus liquid flow 
systems are constructed on paper by taking advantage of 
hydrophilic channels. In this case, liquid is driven by capillary 
forces, therefore eliminating the need for pumps used in 

traditional bulk-based microfluidic devices. Biochemical 
sensing of ions, glucose, and lactate have been demonstrated 
on a paper microfluidic device for point-of-care diagnostic 
applications [40]. For the low-cost integration of electronic 
components, various nanoparticles have been printed to 
construct conductive tracks and passive electronic components 
as well as strain/temperature sensors [41]. A related trend to 
paper based microfluidic sensors concerns smart textiles, 
where force, chemical, humidity and temperature sensors have 
been realised in wearable fabrics. Two approaches exist in 
functionalising fabric for sensing purposes; one being the 
attachment of discrete sensors to existing fabrics while the 
other one involves applying coatings to the fabric via means 
such as screen/ink-jet printing and electrodeposition. Sensor 
read-out circuits can also be integrated into fabrics through 
weaving or knitting conductive threads with conventional 
fabric materials [42]. Recent advances in material science 
have also enabled the realisation of epidermal electronics and 
sensors [43] for monitoring tissues and organs in an 
implantable device setting. These are thin film sensor devices 
fabricated on substrates with only ~20µm thickness. A range 
of sensors including pH, temperature, strain, ECG, and PPG 
are integrated with microstructures to provide electrical, 
thermal and optical stimulation. These sensors and stimulators 
are all assembled on the same flexible-conformal substrate for 
cardiac monitoring [14].  

Soft lithography is the key enabling technology behind 
epidermal sensors [44]. These were developed specifically for 
micro/nano-processing of flexible thin film materials such as 
polymers as opposed to traditional lithography techniques 
mainly used for processing bulk silicon for integrated circuits. 
Notable soft lithography techniques include moulding, 
embossing, and transfer-printing with polymeric stamps. 
These techniques have been used to successfully integrate 
sensor electrodes with microfluidic devices in the micro-nano 
scale [45]. Soft lithography processing has been used in 
conjunction with traditional lithography processing such as 
photolithography and physical vapour metal deposition to 
realise bioresorbable devices [46]. These bioresorbable 
sensing platforms are engineered by depositing organic 
semiconductor materials or thin film semiconductor materials 
on biodegradable substrates to form complete systems of 
sensors and electronic components. These systems are thus 
dissolvable in salt solutions given exposure times from a few 
hours to weeks. As well as wireless-wearable sensing, 
bioresorbable sensors and electronics have tremendous 
potential in the area of transient implants where only short-
term implantation is required to monitor post-operative 
infection. Another area of active research in advanced 
materials for sensors is self-healing structures [47]. These are 
largely based on self-adhesion on flexible substrates by 
conductive particle embedded organic polymers. These 
polymers consist of reversible hydrogen-bonding networks 
that can dynamically associate/dissociate with external 
disturbances, providing the self-healing capabilities. These 
self-healing materials will facilitate the development of next 
generation, fully integrated, robust sensing platforms with 
minimum sensor drift and ambiguity, as well as self-powered 
electronic readouts. 
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B. Micro-electronics and Fabrication  

Advances in Application Specific Integrated Circuit (ASIC) 
technology [48] have paved the way for wireless sensing 
platform development towards minimum size, minimum 
power consumption as well as minimising measurement 
uncertainty. A typical System-on-Chip (SoC) ASIC consists of 
sensor signal conditioning circuits, microcontroller, and radio 
communication circuitry supporting devices applications 
throughout generations I-III. The available silicon resource 
facilitates the deployment of low-power, mixed-mode, 
analogue/digital on-node processing to maximise the mutual 
information between the input signals and the output variables 
and support data reduction at source. With the advent and 
increased availability of microfabrication techniques, the 
sensor ASIC can also be used as a substrate for fabricating 
additional sensors. This leaves the overall sensor and 
processing/radio circuitry footprint being not much larger than 
the typical ASIC die, which is in the region of less than 1cm2. 
Specifically, special fabrication processes integrate physical 
microelectromechanical (MEMs) sensors [49] such as strain 
gauge, pressure sensors and inertia sensors on the same ASIC 
silicon substrate [50]. It is also not uncommon to carry out 
post-processing to deposit biochemical sensing elements on 
top of ASICs [51]. Example applications of biochemical 
sensor integration include “on-chip” sensors for DNA 
detection, as well as neurotransmitter and proteomic 
measurements through on-chip sensing microstructures such 
as nanowires and carbon nanotubes [52-54]. The signal 
transduction process for DNA detection involves immobilised 
oligonucleotides on a metal surface (e.g. gold). The specific 
binding of the target oligonucleotide to the probe creates a 
change in charge or capacitance at the electrode surface. This 
change in charge or capacitance is then sensed by the read-out 
circuitry. In many cases, the metal probe residing the 
immobilised oligonucleotides consists of modified metal 
tracks on a micro fabricated integrated circuit. This setup with 
close proximity between the sensors and interfacing ASIC also 
improves sensor signal integrity. In the case where the sensors 
and ASIC can only be fabricated using their respective 
optimum technologies, advanced integration processes known 
as System-in-Package (SiP) [55, 56] are used to drastically 
reduce sensing system footprint compared to traditional 
horizontal assembly with PCBs. To this end, SiPs employ 
vertical stacking of silicon bare-dies or packaged 
sensors/chips.   

C. From Wearables to Implantables 

Recent interests in published materials and patents on 
technologies related to wearable-implantable sensors are 
shown in Figure 3. Smart sensing and stimulation implant 
technologies are essential for managing a large number of 
critical chronic diseases. They also play an increasingly 
important role in post-surgical infection prevention.  As an 
example, in the UK alone tens of thousands of pacemakers are 
implanted each year [57]. On the other hand, despite 
increasing sophistication of surgical interventions, surgical site 
infection occurs in 2-5% of all surgical hospitalisations, 
accounts for 17% of all hospital acquired infections and 
burdens approximately 20% of high-risk surgical patients [58]. 
The deployment of wearable/implanted sensors serves to help 

understand, model, predict and ultimately minimise post-
operative complications and avoid patient readmission. The 
challenge of chronic sensing implants remains to be in the 
areas of long-term sensor stability, power management of 
active implants, and biocompatibility of embodiment. To this 
end, active sensor management schemes can be used to 
mitigate sensor degradation due to biofouling [59]. For active 
implants requiring an energy source, wireless power 
transmission ultrasultra [60] or ultrasonic [61] links doubling 
as a data-communication path can be deployed as a wireless 
battery charger for critical/non-interruptible implants such as a 
pacemaker. Biocompatible materials such as Parylene and 
Liquid Crystal Polymer (LCP) [62] can be used to encapsulate 
the sensor implant. Implants capable of sensing post-surgical 
infection and monitoring tissue healing should be transient in 
nature and must be extracted without the need for re-operative 
intervention. To this end, biodegradable [46] technologies 
serve as a promising platform for further investigation.  

 

D. Data Management and Sensor Informatics  

The evolution of the sensing devices towards pervasive data 
capture and heterogeneous data integration has introduced 
significant challenges in data management and analytics for 
decision support. Early systems involved relatively small-scale 
data, often processed via off-line, retrospective analysis. The 
ability of real-time data capture and the need for integration 
with a diverse range of heterogeneous data sources has 
presented unique challenges in sensor informatics [63].  

The management of preeclampsia (a pregnancy-related 
disorder which if allowed to progress to eclampsia potentially 
risks the life of the mother and foetus), for example, may be 
optimised by incorporating mobile home-monitoring data, 
physiological knowledge and disease factors such as risks and 
treatment side effects [64]. For Intensive Care Units (ICU), it 
is possible to fuse information from all bedside sensors, lab 
results and electronic patient records [65].  

 Increasingly, we are dealing with big databases and clinical 
decision support is no longer limited to isolated data sources 
and data abstraction can start right from the node level, 

 

Fig. 3. Evolution of academic publication trends (left) and issued patent trends 
(right) in sensor hardware in the last 20 years, showing the rapid development 
in ASIC design and biodegradable sensor in both academic and commercial 
sectors. Publication data were collected from the following databases: IEEE 
Explorer, ACM Digital library, PubMed (National Library of Medicine, 
Bethesda, MD), Web of Science and Scopus. Patent data were collected from 
the European Patent Office master documentation database (called DOCDB). 
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allowing on-node processing combined with the latest 
advances in mixed signal ASIC with algorithms mapped 
directly to the silicon level to achieve ultra-low-power high-
throughput processing. 

E. Sources of Data and Heterogeneity  

The integration of multiple information databases to 
combine with information from pervasive health sensors 
provides several opportunities as well as important challenges. 
Effective integration of the myriad of sensing data with 
existing biomedical databases requires specific considerations. 
Electronic health records (EHRs) describing treatments and 
patient outcomes are rich but under-utilised. Mining local 
information included in EHR data-aware houses has already 
proved an effective way of managing a wide range of 
healthcare challenges such as supporting disease management 
system [66, 67], pharmacovigilance [68], building models for 
predicting health risk assessment [69, 70], communicating 
survival rates [71, 72], making therapeutic recommendations 
[71, 73], discovering co-morbidities and building support 
systems for clinical trial recruitment [74]. When longitudinal 
health data are sampled in a continuous fashion, meaningful 
and rich time-series can be collected in order to enable 
temporal data mining. This feature can be useful to identify 
patterns in patient trajectories through treatments, diseases and 
intervention timelines.  

Clinical research databases can be used to provide rapid 
answers to queries such as possible drug interactions, risk 
factors, indicator thresholds and disease signatures. A good 
example of a clinical research database is ClinicatTrials.gov 
[75]. Trials are usually performed in multiple study sites and 
analysis might be provided by diverse labs. This issue brings 
more complexity to an already heterogeneous dataset. 
Multiple participants can be recruited simultaneously and 
equipped with a pervasive health monitoring system that can 
be set-up to automatically collect the desired data in 
distributed but synchronized schedules, removing the effect of 
different environmental conditions and seasons. This 
streamlines and accelerates data collection protocols.  Data 
mining over trial data has been proposed as a method to 
identify predictive biomarkers of a treatment effect [76] or 
determining relevant groups of interest [77] by combining the 
details from several studies. These indicators may serve to 
specify the set of biomedical markers of interest where a 
pervasive health monitoring system can subsequently place 
special emphasis on.  

Multi-omics acquisition and profiling will enable the full 
potential of EHR to be realised. Combining the effect of these 
new features with pervasive health monitoring may enable 
rapid gathering of necessary information to understand 
sequence variances in the human genome. Although 
genotyping is still a relatively new field in EHR, it has great 
potential for genetic stratification in patient screening, for 
instance in the case of factors arising from genotyping such as 
high-risk DNA mutations, milk and gluten intolerance and 
mucoviscidosis. In current practice, screening for genetic 
anomalies takes several weeks, and often requires a priori 
information regarding the mutation to be screened. The delays 
incurred not uncommonly restrict treatment options and 
impact on decision-making.  The cost and time required for 

genotyping and genome sequencing have both reduced. 
Indeed, in recent years there has been major interest in lab-on-
a-chip approaches for DNA sensing [78]. This sensing 
modality aims at detecting disease-related nucleotide 
variations which could, for example, contribute to disease 
susceptibility or reaction to pathogens and drugs.  Consider a 
patient diagnosed in her forties with unilateral breast cancer 
(receptor triple negative) who also has a strong family history 
of breast and ovarian cancer, prompting her surgeon to 
consider whether or not to prophylactically treat her ‘healthy’ 
contralateral breast. Currently, she would qualify for gene 
testing but the results may take over a month leading to 
inevitable treatment delays. Faced with this dilemma she may 
decide to have unilateral surgery and delay testing. 
Subsequently she is found to have a high-risk breast cancer 
mutation (e.g. BRCA1) and undergoes a delayed contralateral 
mastectomy. In the future, on-chip sequencing would enable 
rapid detection of risk mutations simultaneous with a cancer 
diagnosis and the patient can better decide whether to undergo 
simultaneous bilateral mastectomy and reconstruction. Such a 
patient if found to have a risk mutation may want to rapidly 
access the location of support groups and other sufferers in an 
extended network. 

One important yet emerging source of information for 
pervasive health is the one provided by social network data. In 
healthcare, social network data have helped understand the 
evolution of diseases and unhealthy habits from geographical, 
behavioural and time viewpoints. For example, collective 
dynamics from people suffering from obesity and smokers, 
have been assessed using social network [79]. It has also been 
used in health crises and epidemic studies such as in the case 
of severe acute respiratory syndrome, H1N1 influenza, 
tuberculosis outbreaks [80, 81], and more recently muted to 
track Ebola [82]. The rapid availability of social network data 
can be effectively combined with pervasive health monitoring, 
for example assessing the current health status of a patient 
with their interactions with other individuals and the effects 
that these ones induce in their health status. 

F. Data Processing and Analysis 

Figure 4 shows the research trends in the data analysis 
frameworks used for clinical decision support systems with an 
exponential increase in interest in this area and a greater 
variety in the frameworks used. Whilst the development of 
intelligent medical systems is still an intensive research area, 
parts of this intelligence are implemented in low-resource 
processing platforms. This is driven by an explosion of data 
volume, because in order for pervasive sensing to be 
sustainable for managing large population groups, it is 
necessary to reduce the data at source through effective on-
node processing. To this end, the mapping of analytical 
algorithms directly to ultra-low power µC (microcontrollers) 
and implantable sensors has been pursued. Musiani et al. [83] 
argued that a signal analysis based on a Hilbert transform 
implemented in a Shimmer programmable sensor [84] node 
required over 100 MIPS (million instructions per second). 
Common operations used in machine learning and signal 
processing such as matrix inversions and decompositions, 
have a complexity order of approximately O(n3). This means 
that for just 100 samples, a simple algebraic operation would 
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require around 1 million internal loop instructions, without 
accounting for additional operator instructions such as floating 
point products. Nevertheless, simple and light-weight 
processes have been implemented for elemental processing 
parts of online algorithms such as noise filters, feature 
extraction and peak detectors.. For instance, in Hulzink et al 
[85] a continuous wavelet transform based algorithm is 
implemented on-board in an ad-hoc low-resource integrated 
platform that enables running pre-compiled C scripts to detect 
ECG heartbeats. For the recognition of physiological 
activities, some studies have proposed to reduce the on-node 
implementation to the inference process of a pre-trained model 
[86]. 

 
Concurrent advances in high-performance computing have 

made it possible to process high volumes of data in large 
repositories more efficiently. In particular, map-reduce 
frameworks with sophisticated models of data caching and in-
memory processing have played a key role from a software 
viewpoint. Likewise, advances in hardware including co-
processors and GPU accelerators such as Xeon Phi and Nvidia 
Tesla have enabled highly intensive operations and 

transformations to be performed in parallel. Machine learning 
algorithms that have benefited from these advances include 
deep learning, which can also be used to learn a set of 
artificially generated features. Ensemble learning is another 
interesting framework aimed at combining inferences from 
many algorithms trained with subsets of the data via a voting 
strategy, which can run as parallel processes. 

G. Machine Learning 

Continuous sensing data in real-life environment is beset 
with artifact, missing data and uncertainties. Bayesian 
estimation provides an intuitive and formal foundation to 
express learning models in terms of uncertainty. For this 
reason, graphical models based on hierarchical and non-
hierarchical Bayesian networks (BN) have become popular in 
clinical research. The inclusion of temporal data has raised 
interest in Dynamic Bayesian Networks (DBN), which were 
previously more commonly applied to areas such as robotics, 
sensing and speech recognition. To obtain an inference based 
on multiple sources and therefore a large amount of 
heterogeneous dimensions, models able to integrate the 
conditional dependencies and relationships between these 
factors are appealing. Thus, in clinical applications, causal 
modelling has been suggested as a method to facilitate the 
specification of BNs with many parent variables [96]. When 
the purpose is to model the causality of concurrent dynamical 
systems in continuous time, learning probabilistic graphical 
models considering all unmeasured confounding factors can 
become challenging, but the availability of continuous (rather 
than episodic) context-aware sensing data offers unique 
opportunities to address this issue. 

Instead of using probabilities, fuzzy logic is a framework 
that is based on the concept of “degree of truth”. Fuzzy set 
memberships enable the input to interpolate between the crisp 
set of classical logic, allowing a soft transition of the degree 
from false to true. These soft assumptions are helpful as they 
allow formalising vagueness in the inference of clinical 
decision support systems. In order to model uncertainty, 
general type-2 fuzzy sets implement the same operators as 
type-1 fuzzy sets but the membership function is made three-
dimensional, therefore enabling to account for uncertainty in 

TABLE II 
EXEMPLAR TECHNOLOGIES FOR THE FIVE V’S OF BIG DATA IN PERVASIVE HEALTH 

 Causes Technological solutions Relevant research areas 

Volume 
� Large population and biological 

datasets. 
� Growing streaming data.  

� Large-scale processing frameworks. 
� Scalable and flexible data storage. 

 

� Map-reduce (in-memory) frameworks.[87]    
� Scalable distributed databases and cloud 

computing. [87]   

Velocity 

� Continuous streaming data. 
� High frequency data sources  

(e.g. pervasive sensors, social 
media). 

� Light-weight processing models. 
� High performance computing 

(HPC). 
 

� Low-complexity algorithms, very fast machine 
learning and on-node processing. [88] 

� Grid computing, parallel programming and 
coprocessors. [87]   

Variety 

� Integration of multiple health 
sources. 

� Distinct labelling strategies across  
institutions.  

� Metadata protocols. 
� Semantic web models of data 

integration.  

� Non-relational databases. [89]  
� Formal ontologies and semantic web. [90] 
� Multi-agent systems. [91] 

Veracity 
� Measurement imprecision, 

confounding factors. 
� Inference certitude of output. 

� Uncertainty quantification. 
� Causality. 
 

� Uncertainty analysis (Bayesian probabilities or 
fuzzy sets). [92] 

� Causal modelling. [93] 

Variability 

� Non-stationary systems. 
� Unforeseen events in health. 
� Seasonality and  behavioural 

changes. 

� Adaptation. 
� Handling concept drift. 

� Online learning models. [94] 
� Adaptive and drift-aware learning models. [95]  

    

 

 
Fig. 4.  Evolution of academic publications with respect to the data processing 
frameworks used to develop clinical decision support systems. Publication 
data were collected from the following databases: IEEE Explorer, ACM 
Digital library, PubMed (National Library of Medicine, Bethesda, MD), Web 
of Science and Scopus. 
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the primary membership. Fuzzy systems have been widely 
applied to the first [97, 98] and second-generation applications 
of pervasive health [99]. Soft-clustering algorithms based on 
fuzzy logic have been proposed as a method to scale data 
analysis to large volumes of data [100]. Data stream learning 
techniques have been proposed to process the data one-pass 
and enable adaptation [101]. More recently, similar data 
stream learning algorithms have been developed using 
different frameworks [102]. 

H. From Sensor Informatics to Big Data 

One of the bottlenecks to consider for the third generation 
of pervasive sensing platforms is to achieve rapid and scalable 
processing for large datasets. From a software point of view, 
processing big data is usually linked to programming 
paradigms such as maps reduce [103]. Several open-source 
frameworks such as Hadoop are frequently used to store a 
distributed database in a scalable architecture, as a basis for 
tools (such as Cascading, Pig, Hive) that enable developing 
applications to process vast amounts of data (by the order of 
terabytes) on commodity clusters. However, when combined 
with continuous streams of pervasive heath monitoring this 
also requires capacities for iterative and low-latency 
computations, which depends on sophisticated models of data 
caching and in-memory computation. Thus, other frameworks 
such as Storm and Spark have been created to fulfil this gap. 

For handling data variety and heterogeneity, sematic web 
technologies such as ontologies and data representation 
languages are used. They provide structural and organisational 
tools of knowledge-management, already adopted by many 
organisations [104]. Defining explicit data descriptors and 
semantics can have multiple uses such as reasoning, 
integrating heterogeneous sources, data linkages and data 
sharing. Linking data is a particularly important feature to 
provide new sensing applications with querying capabilities 
over the multiple sources for exploration and synthesis. 

 One of the common issues in sensing data is to deal with 
unforeseen events in health such as seasonal and behavioural 
changes. Some data stream algorithms have been implemented 
considering adaptation such as adaptive, very fast decision tree 

learners [105], which has been used for sleep apnoea 
monitoring [106]. Likewise, an adaptive neuro-fuzzy stream 
learning approach was proposed for the recognition of 
activities of daily living [107, 108]. Additionally, signal 
processing algorithms such as symbolic aggregate 
approximation can also implement adaptation to deal with data 
stream segmentation and approximation [109]. Adaptive 
stream data algorithms can be made resource-aware by taking 
advantages of their adaptation and online processing 
capabilities to leverage their control parameters and minimise 
the amount of input/output data processed [110].  

The above considerations can be mapped to the 5 Vs 
considered in big data research as listed in Table II. 
Regardless of the 5 Vs, almost all pervasive health 
applications raise privacy challenges. For big data 
applications, the issue is greater due to the need for 
performing linkages with other sources. This requires the use 
of identifiers that uniquely represent the data about an 
individual. The techniques for data privacy preserving analysis 
can be categorised into five groups: 1) encrypting data, i.e. 
cryptographic; 2) adding noise to data, i.e. randomised 
responses; 3) grouping data by factor/attribute, i.e. 
condensation; 4) hiding attributes in data, i.e. anonymisation; 
and 5) applying a transformation in the factors/attributes so 
that the data distributions are recovered independently, i.e.  
perturbation. In addition, pervasive sensing data can also raise 
security threats across the different stages of data transmission 
from sensors to remote databases. Sensor biometrics have 
been proposed as a solution to secure communications in body 
sensor networks [111]. 

IV. IMPLICATION ON FUTURE HEALTHCARE DELIVERY 

The developed world is experiencing a major demographic 
shift. Age-related diseases, such as cardiovascular disease, 
cerebrovascular accidents and cancer are set to become more 
prevalent [112]. Emerging evidence suggests rising ill-health 
in the elderly population with an increasing incidence of 
chronic conditions such as osteoarthritis, chronic airways 
disease and diabetes [113].  Similarly, the global burden of 

Fig 5. Geolocation information served by Tweeter followers of hashtag @totally_toxic, shown by number of tweets at international locations and within 
London (left); percentage of women who underwent breast assessment in the last three years by London borough of residence (middle); map of London 
boroughs coloured by breast assessment percentage in women population (right). 
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disease is leading to an increase in interventional procedures, 
especially surgery [114]. Whilst techniques have become 
increasingly minimally invasive, post-operative complications 
such as surgical site infection, inadequate tissue healing and 
gastrointestinal anastomotic failure persist.  

Traditional monitoring of chronic diseases and even acute 
symptoms reflects the episodic nature of the symptomatology. 
However, pathology is a continuing process and certain 
transient but important events may go undetected with such 
infrequent measurements. Despite the ability to measure 
extensive biomechanical and biochemical information, the 
diagnostic and monitoring utility is generally limited to brief 
time points and unrepresentative physiological states or 
artificially introduced tests. Transient critical abnormalities 
cannot always be captured, leading to delayed diagnoses and 
escalating healthcare costs. Important and even life-
threatening disorders can go undetected because they occur 
infrequently and only under specific situations so that they 
may not be recorded objectively. Pervasive sensors that 
provide continuous physiological monitoring offer new hope 
for complex data analysis, leading to physician alerts to 
support clinical decision-making and diagnosis.  

One good example of smart sensing combined with the 
integration of a diverse range of data sources is to revisit the 
recent PIP implant scandal as previously mentioned. As an 
example of the way in which third-generation systems may 
change the way health crises are anticipated and managed by 
public health authorities. PIP breast prostheses with a 
significantly higher risk of rupture and comprising lower 
levels of platinum and higher levels of low molecular weight 
siloxanes than medical grade silicone were implanted into 
thousands of women worldwide. Many women presented 
themselves to clinics describing pain, swelling, tenderness and 
lymphadenopathy associated with symptomatic implant 
rupture. Asymptomatic women attended requesting ultrasound 
scans to check the integrity of their implants. Others attended 
unsure if PIP implants had been inserted. Whilst robust 
evidence of a link between PIP rupture and disease is lacking, 
many attribute rupture to autoimmune diseases that were 
subsequently contracted. A recent review by the department of 
health has called for a new implant register [115] and greater 
regulation but currently there is no way of monitoring implant 
integrity without clinical assessment. 

Analysis of social media has revealed locations where the 
social interest regarding faulty breast prostheses is highly 
prevalent. Analysing the current administrative database 
offered by the National Health Service (NHS), we evaluated 
the number of women in London who underwent breast 
assessment during the last three years and classified them by 
the borough of residence as shown in Figure 5. These data 
may suggest that women at risk due to their exposure to PIP 
do not reside in areas with easy access to breast screening 
assessment centres. These data could be combined in an 
inference system to identify the geo-location of women 
affected based on social networking trends, and determine the 
likely volume of patient’s requiring assessment and treatment 
to aid workforce planning and streamline resources to 
locations of greatest need.  

It is interesting to note that with this information alone, a 
health alarm could have been triggered. Against this 

background of heightened awareness and concerns regarding 
implant ruptures, next generation of wireless low power, low 
drift sensors incorporated into the elastomer that monitor outer 
shell integrity and / or that sense silicone on the outer surface 
of the implant that may herald an intracapsular rupture. 
Automated detection of rupture is coupled with an alert sent to 
the surgeon who implanted the device. The implant is 
removed at the earliest opportunity, silicone spillage into body 
tissues is contained and capsule formation minimised.   

A. From Episodic Monitoring to Continuous Sensing and 
Integrated Care 

The devices listed in Table I represent the general trend 
from episodic monitoring to continuous sensing and integrated 
care. Accurate and timely detection of healthcare states 
facilitates early treatment, limits body trauma and prevents 
organ damage. The negative impact of episodic data capture in 
healthcare is arguably best exemplified in the management of 
cardiovascular disease, post-operative surgical care, 
monitoring of tissue healing and in cancer treatments. 
Following myocardial infarcts, life-threating arrhythmias can 
occur unpredictably without warning, and may remain 
undetected if cardiac monitoring is infrequent and intermittent. 
Sensors have already been developed for accurate methods for 
continuous monitoring of blood pressure, pulse and cardiac 
rhythm [116] such that arrhythmias can be detected in near 
real time and signals sent to a smartphone for ulterior 
processing [117]. Critical abnormalities of cardiac rhythm 
such as atrial fibrillation can be detected, recorded and rapidly 
treated.  

For monitoring post-operative issues such as sepsis [118], 
for example, there are data to suggest that aggressive early 
therapy can improve outcomes. Surgical site infections, 
dehiscence of wounds and gastrointestinal anastomosis are 
recognised complications following surgery. The severity of 
these complications can be mild necessitating oral antibiotic 
therapy and close observation in hospital but can be serious 
with life-threatening sepsis necessitating repeated surgical and 
radiological interventions with high morbidity and mortality. 
Hospital stay is inevitably prolonged, significantly inflating 
the costs of healthcare delivery. Early detection of surgical site 
infections, dehiscence and anastomotic failure are critical to 
patient management to ensure prompt instigation of 
appropriate therapy and to avoid the mortality associated with 
overwhelming sepsis, and yet in current clinical practice these 
complications tend to be detected far too late. Wound 
infection is self-evident once the patient has developed 
erythema, pain, tenderness or is discharging pus from the 
wound. By the time important changes are detectable within 
the patient’s circulation, pathological processes have, by 
definition, reached a systemic level and are likely to challenge 
the patient’s physiological reserve. Sensors built into 
dressings, embedded within catheters and anastomoses such as 
those that can detect biochemical changes in the 
microenvironment (e.g. lactate, glucose, pH) may herald SSI 
or tissue failure, prompt further investigation or corrective 
clinical action.  

It has been shown repeatedly that delayed diagnosis 
negatively impacts cancer outcomes, whereas screening saves 
lives [119]. Similarly, the episodic macroscopic and structural 
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imaging of tumours in patients undergoing neoadjuvant 
chemotherapy means that assessments of tumour response 
remains crude. Smart sensors implanted within the 
radiological marker clips, capable of monitoring at the cellular 
level and/or continually detecting cellular proliferation 
proteins may provide a more accurate assessment of 
chemotherapeutic response upon which clinicians may act to 
switch regimen or expedite surgery in case of poor response.  
 The above examples illustrate that a vast amount of clinical 
information is recorded on any given patient and the attending 
clinician may not always have easy access to this data, 
impairing quality of care. Patients with increasingly complex 
health and social needs often visit a number of healthcare 
providers, who may recommend treatments in sequence or in 
parallel without understanding the impact on the holistic needs 
of the patient. Continuous sensing may provide a convenient 
solution to the need for integrated care which describes a 
drive towards a patient-centred, co-ordinated and tailored 
service. For example, a cardiologist may prescribe a statin for 
a patient with hypertension and hypercholesterolaemia without 
realising they were taken off this treatment previously as it 
was causing severe cramps. The result is unnecessary 
readmissions and costs. The next generation of sensing may 
have the capability to minimise these vicious cycles of poor 
care by improving awareness of medication side effects 
(knowledge) and enhancing linkage between healthcare 
providers through rapid knowledge and event sharing 
(integration).  

B. Stratified Patient Management 

Clinical decision support systems able to digest and 
understand continuous personalised health data in real-time 
can improve the quality of care provision particularly in the 
field of cancer management. Clinical decision support systems 
have the advantage of being able to capitalise on a broad 
knowledge-base by data mining patient records and 
accounting for other data repositories such as genomics, 
clinical phenotypes and bio-markers. The clinical impact of 
clinical decision support systems is best exemplified by 
considering the management of a patient treated for 
malignancy. Consider a patient scheduled to receive 
chemotherapy for bladder cancer. The patient’s DNA is 
sequenced, identifying a high-risk genotype for urological 
malignancy and an appointment is scheduled with a geneticist 
to discuss the impact of the risk mutation. The clinical team 
suggest a wearable system for constant physiological 
monitoring, being able to detect poorly controlled 
hypertension and consider increasing blood pressure control.  

Following the first cycle of chemotherapy, the wearable 
sensor detects a pyrexia (body temperature > 37.6o C) and a 
low neutrophil count. This information can be used to identify 
likely side effect of chemotherapy. Once chemotherapy has 
been discontinued and clinical remission established, the 
system seeks to promote health and wellbeing and minimise 
disease recurrence. For example, wearable motion sensors can 
detect sedentary behaviour and a recommendation can be sent 
to the patient to engage in a more active lifestyle.  

C. Managing the Continuum of Health and Disease 

With the current paradigm shift towards prevention, 
prediction, personalised treatment and participatory medicine, 
it is necessary to consider health and disease as a continuum. 
For many life-style diseases, enhancing pervasive health 
systems with context-aware capabilities provides an extra set 
of contextual information about the monitored condition under 
consideration. For example, motion sensors combined with 
intelligent behaviour modification can be used to motivate 
overweight and obese individuals engage in physical activity 
to lose weight improving diabetic control, hypertension and 
reducing the risk of cancer [120]. Sensors that monitor basal 
metabolic rate and activity energy consumption can derive 
total energy expenditure. However, weight loss only occurs if 
total energy expenditure exceeds calorific intake and 
accurately calculating the latter can be challenging. Therefore, 
there is a need for sensors that can monitor both calorific 
intake and energy expenditure simultaneously and feedback 
data to the user logs of consumption and activity.  

Similarly, shifts toward prevention, predication and more 
personalised approaches are required to improve outcomes in 
major non-communicable diseases such as cancer. 
Traditionally, cancer management had relied on generic 
treatments supported by trial data such that any two patients 
with a given cancer may be similarly treated on the basis that 
they were found to have contracted the same ‘disease’. Yet, a 
critical aspect of most complex diseases such as cancer is that 
they encompass many different types of disease owing to 
differences in disease-perturbed networks [121]. Returning to 
the example to breast cancer, data from recent genomic 
analysis informs us that the phenotypic diversity of breast 
tumours is supported by similar diversity in gene expression 
resulting in an improved molecular taxonomy of breast cancer 
[122]. Improved risk modelling and identification of at risk 
mutations will lead to more widespread adoption of 
preventative strategies (e.g. risk screening, chemoprophylaxis 
and risk reducing surgical protocols). Moreover, improved 
genetic stratification of cancer may enable the pharmaceutical 
industry to develop novel drug targets. Routine collection of 
genomic, metabonomic and proteomic data in patients with 
cancer, if coupled with sensor informatics has, the potential to 
improve our understanding of resistance to chemotherapeutics. 
The future of personalised cancer treatments demands this 
improved understanding of drug choice, dose and duration to 
enhance cure, minimise adverse effects and treatment failure, 
and prevent recurrence. 

V. DISCUSSION AND CONCLUSIONS 

Over the last decade, technological advances have 
supported the evolution of a pervasive health paradigm, which 
is also captured in alternative names such as ubiquitous health 
(u-health) and mobile health (m-health).  Considered in this 
paper we discussed different generations of devices and their 
associated analytics.  

From a clinical perspective, the evolution of each 
generation of pervasive health monitoring has consisted of a 
sequence of technological steps necessary to provide 
integrated care, bridging the gap between health and disease 
management. Current healthcare services are typically 
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fragmented into many processes that are often disjoint in space 
and time.  

From a technical standpoint, there remains a need for 
horizontal advances within each generation to improve the 
quality of the involved technologies. However, vertical 
developments may see an entirely new generation of wearable 
sensing devices and smart implants that are low power, low 
drift, resistant to biofouling and that can be easily implanted 
and extracted when no longer required.  

From a data analysis perspective, long-term continuous 
sensing and the need not only to monitor but also to intervene 
in real-time brings unique challenges, as well as opportunities 
to sensor informatics. Other challenges are related to 
integrating large data sets from heterogeneous health data 
sources. Advances in high-performance computing, stream 
learning models and semantic web are therefore likely to play 
a key role in the future. These technical challenges, if 
overcome, are set to transform future healthcare delivery. Big 
data mining and social network analysis have the potential to 
manage global epidemics such as Ebola, incorporating 
geographical information systems to track cases, accelerate 
warning systems and streamline outbreak response [82]. This 
can be translated into clinical medicine progress from a 
reactive to a proactive discipline.  In our opinion, meeting 
these challenges will help address key areas of unmet clinical 
needs including management of chronic diseases such as 
diabetes and cancer, detection of nosocomial and surgical site 
infections and monitoring of surgical prostheses. More 
importantly, technological advances in sensor design coupled 
to improved data analytics will shift the focus from disease to 
prediction and prevention. Predictive medicine must capitalise 
on diverse information from a range of bioinformatics data to 
define a baseline of health (wellness) and then similarly 
employed to detect transition to disease. Mining these 
numerous data sources per individual will help create 
predictive and actionable models [121] to better tailor 
therapeutic regimens thereby improving outcomes and quality 
of life. Challenges such as data storage, analytics, and a 
cultural reluctance to rely on open-source algorithms, data 
sharing and open data policies will need to be overcome.  

Clearly, if the ultimate goal in healthcare is to be based on 
preventative, predictive, personalised and participatory 
medicine, the sensing technologies as discussed in this paper 
and their future evolution will play a key role in realising this 
goal. 
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