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prosthetics and critically accelerate the detectdnfailing
implants thereby minimising healthcare hazardsieRt with
diabetes would no longer have to undergo painfulodl
capillary tests or inject insulin if an intelligemnplantable
device could sense blood glucose levels and
accordingly. White blood cells and neutrophil cauobuld be
continually monitored in patients undergoing chemeoapy
cycles such that the earliest sign of neutropemialdc be
coupled with granulocyte stimulation to prevent sep
Implantable sensors that monitor the axial load a@m
individual subject’'s spine may lead
orthopaedic prostheses. Similarly, analgesic deliyery may
be tailored to the individual based on data fronplanted
sensors in the central and peripheral nervous mgst&apid
automated detection of failing prosthetics may pravhealth
risks such as that exemplified by Poly Implant Rése (PIP)
implants in which breast prostheses with a sigaiftty higher
risk of rupture were implanted into thousands ofmea
worldwide. Fabricating sensors within implants magve
accelerated detection of rupture and may have geavrapid
reassurance to those women with intact prosth&agardless
of the healthcare application, or whether the senswe
wearable, implantable or placed in the ambientosumdings,
three different generations of development can desidered
as shown in Figure 2. In the following sections, digcuss the
evolution of the pervasive health paradigm as vesllthe
technical implications, with a particular focus e future of
pervasive health monitoring.

A. First Generation

EVOLUTION OF PERVASIVE HEALTH APPLICATIONS

In first generation applications, the architectural system

typically consists of aingle sensing modalitwith wireless
connectivity being able to make predictions abativdies or
health status. Notable first generation devicesliegtpns
include daily activity recognition from wearable tiom
sensors or sensors embedded in the environmentgfdi;
analysis from wearable sensors [8] or those emlzkdd¢he
flooring of a smart house [9]. Whilst the amount ddta
processed from wearable sensors that can be s®ledited
to several megabytes, applications based on videtoa
audio signals can generate up to hundred megabytdata
[10]. Processing is typically performed centraltglying on
off-line, retrospective batch processing.

B. Second Generation

The second generatiornof wireless monitoring devices
emerged as a result of advances in sensing teadyadkat
facilitate continuous monitoringvith multiple sensors, each of
them being responsible for providing inferencehesitfrom
wearable or ambient sensors. With this generatiae,
introduce the concept @fgents which are processing entities
that, in addition to sensing, may take the necgsaations
towards an objective. These actions can be basedmon
autonomous interaction with the environment or @vafion
with other agents. Integrating the outputs fromweide range

of intelligent agents therefore requires a highevel of
reasoning than in first generation devices. Thedhbje is to
reduce the uncertainty of predictions by fusing timddal
information and/or providing a sense ofntext-awareness

respowthich can improve the level of integration of thgpkcation

with the monitored scenario. For instance, a sldsprder
monitoring was developed in [11] using a combinatiof
wearable, light sensors and video recordings irmota detect
the most relevant events during sleep and allovg-tenm
monitoring. In another example, a fall detectiosteyn using

to personalisethformation from wearable motion and ambient visg@nsor

as well as energy consumption (appliances andsligiined
on and off) was able to appreciate the contextfaflan order
to recognise environmental hazards [12]. Typicalhe data
acquired from such applications may be up to sévera
hundreds of megabytes or even several gigabytés [13

Sensors

Fig. 2. A schematic overview of the three generetiof advances isenso
technology(left side) anddata analytics and intelligent systeimght side)
On the left, the figure displays small low-powerszhsors (% layer), ultra-
low powered micro-sensors "f2layer), and biologically-powered micro-
implants and nano-scale device¥ [@yer). On the right, the figure represe
single sensor monitoring systems® (tayer), continuous monitoring wi
multiple sensors in an environment enabling coraevareness (2layer) an
pervasive health combined with other big data healburces enablil
integrate: care (™ layer)

C. Third Generation

Thethird generationis a nascent research area that aims to
combine continuous health monitoring with otherrsea of
medical knowledge. In addition to the aforementtbne
pervasive sensing modalities of the first and sdcon
generations, the objective in third-generation &gfibns is to
integrate intelligent agents that implement tecbgias such
as stream processing, data mining, genetic andi-onlits
data. These agents are thus responsible for exigact
information from a variety of sources including nitial
research, patient records, laboratory generated d¢ag.
genomics, proteomics, metabonomics). Through efect
fusion of multi-modal information, the system exaps
patients from a system level with all compoundirgtérs
taken into account [34]. This will support the dgan-making
process governed by the latest evidence in biorakdind
health informatics. Integrating knowledge from ripié
sources has great potential to improve and pernsendinical
care.



TABLE |
EXEMPLAR WEARABLE AND IMPLANTABLE SENSORS DEVELOPEDN RECENT YEARS AND THEIR CLINICAL APPLICATIONS

Sensor placement Sensors type Key technical f=atur TRL Clinical focus
» ECG/PPG (CardioMem®,[14, 15]) » Electrodes on conductive fabric/flexible “heartlsboc = 9 (CardioMerfl), = Cardiac arrhythmia [14, 15]
6 [14, 15]
= Glucose (Dexcom®) = Glucose needle patch. = 9 = Diabetes. (Dexcom®)
Chest, torso = Adenosine triphosphate [16] » Tested on mouse model with air pouch. = 9 * Inflammation [16]
= Accelerometer [17] » Flexible system with middleware. = 6 » Rehabilitation [17]
= Galvanic skin response (GSR) [15] = “Smart Vest” with multi-parameter monitoring. = 6 = Obesity [15]
» Temperature [18] » Temperature patch. = 6 » Infection [18]
Eve = Intraocular pressure (IOP) [19] = |OP by change in corneal curvature. = 6 = Glaucoma [19]
Yy * Glucost (Google® contact lens * RFID readou =5 = Diabetes(Google®)
* Impact force (Checklight) * Impact logging. =9 = Concussion (Checklight)
< | Brain = Glucose/lactate (Pinnach) = Rat head capsule with multichannel potentiostat. =9 = Trauma/haemorrhage (Pinnaéle
P = EEG (NeuroPrd) = 8channel EEG. - 7 = Epilepsy (NeuroPrd)
I E = Acceleration [8, 20] = Three axis accelerometer behind the ear. = 8 » Clinical gait analysis [8, 20]
ar = Audio [21] = Binaural hearing aid. = 6 = Hearing loss [21]
Tooth = Bacteria [22] = Anti-microbial peptide coated grapheme as bactegakor. Read = 6 = Infection [22]
00 out with battery-less wireless interrogation.
= Activity levels/energy expenditure (Nik§ = Custom metric for energy expenditure. = 9 = Obesity (Niké&)
= Skin conductance [23] = Soft wrist band for electrodermal activity. = 6 » Emotional stress [23]
E Wrist/arm = Accelerometer [24, 25] = Accelerometer network on limbs. = 6 = Parkinson’s disease [24, 25]
<@ = Gyroscope and magnetometer[26] =  Wrist/elbow mounted motion tracker. = 6 = Stroke rehabilitation [26]
g * EMG and EEG [25] = Multi-modal flexible/conformal patch. = 6 » Neo-natal ICU [25]
8 = Accelerometer [24, 27] = Posture/activity from heel acceleration and plgraessure. = 6 = Obesity [24, 27]
S| Feet = Gyroscopes force, bend and pressure, = Gait shoe monitors in-shoe air pressure for grazordact force. = 6 = Clinical gait analysis [28]
8 electric field height, air pressure [28]
S
S = Blood pressure, SpQ(iHealtt?) = Wireless finger cap and pressure cuff. =9 = Hypertension (iHealft)
Hand/fingers = Accelerometer [29, 30] = Sensor network on glove for hand gesture analysis. = 6 = Surgical training [29, 30]
= Bend/force [30] » Pressure sensor network glove measuring range tiémo = 6 = Arthritis [30]
Hip = Vibration [31] » Hip prosthesis tested with artificial thigh. = 6 » Hip prosthesis [31]
* pH[32] * pH capsule attached to oesophageal wall. =9 * GERD [32]
= Temperature, HR/respiration (VitalSefise = Ingestible capsule for wireless core temperature. =9 = Infection (VitalSens®
Implantable/Ingestible * Heart rhythm (Everd') * Implantable defibrillator. =9 = Cardiac arrhythmia (Evel%)
wireless = Auditory nerve (Cochle&y = Auditory nerve stimulation with wireless powering. =9 = Deafness (Cochle®y
. = Visible light (SecondSigh) = Retinal ganglion cells (RGC) stimulation. =9 = Blindness (SecondSight
sensors/stimulators = Brain stimulator (Soletf% = Single lead implantable neurostimulator. =9 = PD, Tremor (Soletf3
= Medicine ingestion (Protefis = Ingestible pill with wireless interrogation for iegtion signatures. = 8 = Tablet ingestion management (Profjus
» Force sensor [33] = Battery-less piezoelectric energy harvester kngsain. = 6 = Knee replacement surgery [33]
= Pressure sensor (Carfigt = Complete artificial heart. "= 6 = Heart replacement (Carm¥y
Wearable for ambient " Ozone Chlorine, Methane, Carbon = Environmental sensing link with smartphones. =9 = Poisoning (Sensordrofie

. monoxide, humidity, temperature
environment (Sensordror®




For example, family history data combined with peid
genome analysis has the potential to integrateadeseisks
across multiple known polymorphisms [35]. In parta,
variants of known pharmacogenetic importance mayetoor
raise the threshold for treatments [36]. Patientseemingly
low risk of cardiovascular disease can be identifilor
treatment once family history, global genetic r@sid genomic
predictors of response to therapy are considezhtifying
patients with a disease variants known for drugstasce may
lead to decisions to alter pharmacological intetiegrs or

increase the dose of medication (e.g. CYP2C19 an

clopidogrel [35]).

Ill.  ADVANCES IN SENSING AND HARDWARE DESIGN

Due to consumer demand and a shift in researclstape,
the evolution of sensing hardware in the past det¢es been
accelerated. In Table I, we summarise some of tae-sf-
the-art developments in sensing hardware coveriengcds
used in research as well as products available fthe
industry. The table is organised into categoriesoating to
sensor placements, from torso mounted wearableosens
sensors placed on a finger. The clinical relevaoteach
reported sensing hardware is included at the ereholfi row.
This ranges from activity recognition to tackle sibe to
potential
temperatures. In addition to wearable sensors,antable and
ingestible wireless sensing hardware examples qrally
included. The main application of these implantat@asors is
to act as loss-of-function replacement prosthesfsrochronic
disease management. For each category, the exaleylees
are arranged in decreasing Technological Readihessls
(TRL) with TRL=4 indicating in-lab component valiitan
through to TRL=9 where technology is in its finatrh, being
used under operational conditions. Platform teabgiek that
underpin the advance of sensing hardware can legaéded
as developments in sensor embodiment technologgromi
electronics and fabrication processes, and theladoifitly of
wireless power delivery towards miniaturised imjpédhe
sensors. In the following sections, we summariseséh
technological advancements that give rise to ctirstate-of-
the-art sensing systems and beyond.

A. Sensors and Sensor Embodiment

Traditionally, wireless sensing nodes comprisedeafsors,
processing and wireless electronics assembled amtegr
circuit boards (PCBs) made of glass-refined epatyihate
(FR4). Recently, flexible materials such as polgen[37, 38]
have been used for sensor node platforms. Theséblée
sensor node assemblies facilitate flexible sensuvoeliment
and ultimately allow easier sensor application lb@ human
body in the form of a conformal “patch”. On the etthand, a
recent trend in low-cost sensor patch embodimenis iealise
microfluidic channels, printed sensors and eleétomn the
same engineered paper substrate [39]. Thus liglods f
systems are constructed on paper by taking advantdg
hydrophilic channels. In this case, liquid is driiey capillary
forces, therefore eliminating the need for pumpgduin

infection detection by measuring core ybod

traditional bulk-based microfluidic devices. Biochieal
sensing of ions, glucose, and lactate have beermmnated
on a paper microfluidic device for point-of-careaginostic
applications [40]. For the low-cost integration @gctronic
components, various nanoparticles have been pritted
construct conductive tracks and passive electromicponents
as well as strain/temperature sensors [41]. Aedlatend to
paper based microfluidic sensors concerns smattle®x
where force, chemical, humidity and temperaturessenhave
been realised in wearable fabrics. Two approachést &
functionalising fabric for sensing purposes; onéngethe
attachment of discrete sensors to existing fabwbde the
other one involves applying coatings to the falwiic means
such as screen/ink-jet printing and electrodepmsitiSensor
read-out circuits can also be integrated into fabthrough
weaving or knitting conductive threads with convemal
fabric materials [42]. Recent advances in matesigbnce
have also enabled the realisationepfdermal electronics and
sensors [43] for monitoring tissues and organs in an
implantable device setting. These are thin filmsserdevices
fabricated on substrates with only ~20um thicknéssange
of sensors including pH, temperature, strain, E@® PPG
are integrated with microstructures to provide tieal,
thermal and optical stimulation. These sensorsséintlilators
are all assembled on the same flexible-conformiastsate for
cardiac monitoring [14].

Soft lithographyis the key enabling technology behind
epidermal sensors [44]. These were developed $patyiffor
micro/nano-processing of flexible thin film matésisuch as
polymers as opposed to traditional lithography héghes
mainly used for processing bulk silicon for integdcircuits.
Notable soft lithography techniques include mouldin
embossing, and transfer-printing with polymeric ngpa.
These techniques have been used to successfudgrate
sensor electrodes with microfluidic devices in thiero-nano
scale [45]. Soft lithography processing has beeadum
conjunction with traditional lithography processisgch as
photolithography and physical vapour metal depositio
realise bioresorbable devices [46]. These bioredned
sensing platforms are engineered by depositing nicga
semiconductor materials or thin film semiconductaaterials
on biodegradable substrates to form complete systefn
sensors and electronic components. These systeenthas
dissolvable in salt solutions given exposure tifiem a few
hours to weeks. As well as wireless-wearable sgnsin
bioresorbable sensors and electronics have tremendo
potential in the area of transient implants whenéy short-
term implantation is required to monitor post-opies
infection. Another area of active research in adedn
materials for sensors is self-healing structuré3. [#hese are
largely based on self-adhesion on flexible substraby
conductive particle embedded organic polymers. @&hes
polymers consist of reversible hydrogen-bondingwoekts
that can dynamically associate/dissociate with rezle
disturbances, providing the self-healing capabiti These
self-healing materials will facilitate the developnt of next
generation, fully integrated, robust sensing platf® with
minimum sensor drift and ambiguity, as well as-pelivered
electronic readouts.



B. Micro-electronics and Fabrication understand, model, predict and ultimately minimjsest-

Advances inApplication Specific Integrated CircujASIC) OpPerative complications and avoid patient readmissiThe
technology [48] have paved the way for wirelessssen challenge of chronic sensing |m_p_lants remains toirb¢he
platform development towards minimum size, minimung'€as of long-term sensor stability, power manageneé
power consumption as well as minimising measuremefftive |m_plants, and biocompatibility of embodimefib this
uncertainty. A typical System-on-Chip (SoC) ASIGisists of ©€nd, active sensor management schemes can be ased t
sensor signal conditioning circuits, microcontrplland radio Mitigate sensor degradation due to biofouling [$9r active
communication circuitry supporting devices applimas IMplants requiring an energy source, wireless power
throughout generations I-lll. The available silicossource transmission ultrasultra [60] or ultrasonic [61}Ks doubling
facilitates the deployment of low-power, mixed-mpde@S @ data-communication path can be deployed asetess

analogue/digitalon-node processingp maximise the mutual
information between the input signals and the diutauiables
and support data reduction at source. With the rtdeed
increased availability of microfabrication technégy the
sensor ASIC can also be used as a substrate facdtibg
additional sensors. This leaves the overall senand
processing/radio circuitry footprint being not muahger than
the typical ASIC die, which is in the region ofdethan lcrh
Specifically, special fabrication processes integrahysical
microelectromechanical (MEMs) sensors [49] suclst@ain
gauge, pressure sensors and inertia sensors @ae ASIC
silicon substrate [50]. It is also not uncommonctory out
post-processing to deposit biochemical sensing ehisnon
top of ASICs [51]. Example applications of biocheati
sensor integration include “on-chip” sensors for AN
detection, as well as neurotransmitter
measurements through on-chip sensing microstristaueh

as nanowires and carbon nanotubes [52-54]. Thealsigt

transduction process for DNA detection involves iofifised
oligonucleotides on a metal surface (e.g. gold)e Epecific
binding of the target oligonucleotide to the protreates a
change in charge or capacitance at the electrodiacsu This
change in charge or capacitance is then senseduelgad-out
circuitry. In many cases, the metal probe residithg
immobilised oligonucleotides consists of modifiedetat
tracks on a micro fabricated integrated circuitisT$etup with
close proximity between the sensors and interfadi8tC also
improves sensor signal integrity. In the case wileeesensors
and ASIC can only be fabricated using their respect
optimum technologies, advanced integration procekaewn

and proteom

battery charger for critical/non-interruptible irapts such as a
pacemaker. Biocompatible materials such as Paryberd
Liquid Crystal Polymer (LCP) [62] can be used taagsulate
the sensor implant. Implants capable of sensing-sqagical
infection and monitoring tissue healing should taasient in
nature and must be extracted without the needefaperative
intervention. To this end, biodegradable [46] tesbgies
serve as a promising platform for further invedima
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D. Data Management and Sensor Informatics

as System-in-PackagéSiP) [55, 56] are used to drastically The evolution of the sensing devices towards péreatata

reduce sensing system footprint compared to traditi
horizontal assembly with PCBs. To this end, SiPglegn
vertical stacking of silicon bare-dies or
sensors/chips.

C. From Wearables to Implantables

Recent interests in published materials and patents
technologies related to wearable-implantable sensane
shown in Figure 3. Smart sensing and stimulatiomplamt
technologies are essential for managing a largebeurnof
critical chronic diseases. They also play an insiregdy
important role in post-surgical infection preventio As an
example, in the UK alone tens of thousands of pa&ens are

capture and heterogeneous data integration hasdided
significant challenges in data management and aosljor

packagedecision support. Early systems involved relativahall-scale

data, often processed via off-line, retrospectimalygsis. The
ability of real-time data capture and the needifibegration
with a diverse range of heterogeneous data souhness
presented unique challenges in sensor informaigk [

The management of preeclampsia (a pregnancy-related

disorder which if allowed to progress to eclampsdsentially
risks the life of the mother and foetus), for exéanmnay be
optimised by incorporating mobile home-monitoringtal
physiological knowledge and disease factors sudaiisks and

implanted each year [57]. On the other hand, despit€atment side effects [64]. For Intensive Caret&J(iCU), it

increasing sophistication of surgical interventiggrgical site
infection occurs in 2-5% of all surgical hospitaliens,
accounts for 17% of all hospital acquired infecsioand
burdens approximately 20% of high-risk surgicaigras [58].
The deployment of wearable/implanted sensors seovbglp

is possible to fuse information from all bedsides®s, lab
results and electronic patient records [65].

Increasingly, we are dealing with big databasesdinital
decision support is no longer limited to isolatextadsources
and data abstraction can start right from the ntmlel,



allowing on-node processing combined with the lategenotyping and genome sequencing have both reduced.
advances in mixed signal ASIC with algorithms mappelndeed, in recent years there has been major stterdéab-on-

directly to the silicon level to achieve ultra-lge@wer high-
throughput processing.

E. Sources of Data and Heterogeneity

a-chip approaches for DNA sensing [78]. This sepsin
modality aims at detecting disease-related nudeoti
variations which could, for example, contribute dsease
susceptibility or reaction to pathogens and drugensider a

The integration of multiple information databases tpatient diagnosed in her forties with unilateratdst cancer

combine with information from pervasive health s#BS
provides several opportunities as well as importhiailenges.
Effective integration of the myriad of sensing datéth

existing biomedical databases requires specifisidenations.

(receptor triple negative) who also has a stromgjlfahistory
of breast and ovarian cancer, prompting her surgion
consider whether or not to prophylactically treat thealthy’
contralateral breast. Currently, she would quafily gene

Electronic health record§EHRS) describing treatments andtesting but the results may take over a month headd

patient outcomes are rich but under-utilised. Minilocal

information included in EHR data-aware houses Hemady

proved an effective way of managing a wide range
healthcare challenges such as supporting diseasagement
system [66, 67], pharmacovigilance [68], buildingdels for

predicting health risk assessment [69, 70], comuatinig

survival rates [71, 72], making therapeutic recomdaions

[71, 73], discovering co-morbidities and buildingipport

systems for clinical trial recruitment [74]. Wheonbitudinal

health data are sampled in a continuous fashiomnimgful

and rich time-series can be collected in order tabée

temporal data mining. This feature can be usefuldemtify

patterns in patient trajectories through treatmetiteases and
intervention timelines.

inevitable treatment delays. Faced with this dilearshe may
decide to have unilateral surgery and delay testing
@ubsequently she is found to have a high-risk breascer
mutation (e.g. BRCAL) and undergoes a delayed alatiéral
mastectomy. In the future, on-chip sequencing wardble
rapid detection of risk mutations simultaneous vétltancer
diagnosis and the patient can better decide whéthendergo
simultaneous bilateral mastectomy and reconstmictach a
patient if found to have a risk mutation may wamtrapidly
access the location of support groups and othéersu$ in an
extended network.

One important yet emerging source of informatiom fo
pervasive health is the one providedsogial network dataln
healthcare, social network data have helped uratetsthe

Clinical research databasesan be used to provide rapidevolution of diseases and unhealthy habits frongggghical,

answers to queries such as possible drug interectiosk
factors, indicator thresholds and disease signatukegood
example of a clinical research database is Clifitais.gov
[75]. Trials are usually performed in multiple syusites and
analysis might be provided by diverse labs. Thisiésbrings

behavioural and time viewpoints. For example, otile
dynamics from people suffering from obesity and kens,
have been assessed using social network [79]slals® been
used in health crises and epidemic studies sudh tm case
of severe acute respiratory syndrome, H1N1 inflagnz

more complexity to an already heterogeneous datasktberculosis outbreaks [80, 81], and more recemtlyed to

Multiple participants can be recruited simultandpuand
equipped with a pervasive health monitoring systeat can
be set-up to automatically collect the desired data
distributed but synchronized schedules, removirgetfiect of
different environmental
streamlines and accelerates data collection pritoc®ata
mining over trial data has been proposed as a rdetbo
identify predictive biomarkers of a treatment eff§€6] or
determining relevant groups of interest [77] by bamng the
details from several studies. These indicators w&ye to
specify the set of biomedical markers of interestere a
pervasive health monitoring system can subsequeaitge
special emphasis on.

track Ebola [82]. The rapid availability of sociatwork data
can be effectively combined with pervasive healtnitoring,
for example assessing the current health status pétient
with their interactions with other individuals atide effects

conditions and seasons. s Ththat these ones induce in their health status.

F. Data Processing and Analysis

Figure 4 shows the research trends in the dataysisal
frameworks used for clinical decision support systevith an
exponential increase in interest in this area andreater
variety in the frameworks used. Whilst the develepmof
intelligent medical systems is still an intensiese@arch area,
parts of this intelligence are implemented in l@saurce

Multi-omics acquisition and profiling will enable the full Processing platforms. This is driven by an explosid data

potential of EHR to be realised. Combining the effef these
new features with pervasive health monitoring mawpkde
rapid gathering of necessary information to underdt

volume, because in order for pervasive sensing ¢o
sustainable for managing large population grougs,isi
necessary to reduce the data at source throughtie&en-

sequence variances in the human genome. Althou§Rde processingTo this end, the mapping of analytical

genotyping is still a relatively new field in EHR,has great
potential for genetic stratification in patient eening, for
instance in the case of factors arising from ggpiaty such as
high-risk DNA mutations, milk and gluten intoleran@nd
mucoviscidosis. In current practice, screening {mmetic
anomalies takes several weeks, and often requirpsoa
information regarding the mutation to be screeféa delays
incurred not uncommonly restrict treatment optioasd
impact on decision-making. The cost and time neguior

algorithms directly taultra-low power pC(microcontrollers)
and implantable sensors has been pursued. Mugiahi [83]
argued that a signal analysis based on a Hilbarisform
implemented in a Shimmer programmable sensor [&fen
required over 100 MIPS (million instructions percsed).
Common operations used in machine learning andakign
processing such as matrix inversions and deconiposit
have a complexity order of approximatédfn®). This means
that for just 100 samples, a simple algebraic dparavould



require around 1 million internal loop instructipnsithout

transformations to be performed in parallel. Maehi@arning

accounting for additional operator instructionstsas floating algorithms that have benefited from these advareside

point products. Nevertheless, simple ar@jht-weight

deep learning,which can also be used to learn a set of

processeshave been implemented for elemental processiragtificially generated featurescnsemble learnings another

parts of online algorithms such as noise filtersattire
extraction and peak detectors.. For instance, itzikki et al
[85] a continuous wavelet transform based algoritisn
implemented on-board in an ad-hoc low-resourcegnated
platform that enables running pre-compiled C ssriptdetect

interesting framework aimed at combining inferendesn
many algorithms trained with subsets of the dasaavivoting
strategy, which can run as parallel processes.

G. Machine Learning

ECG heartbeats. For the recogniton of physioldgica Continuous sensing data in real-life environmenbeset

activities, some studies have proposed to redueeothnode
implementation to the inference process of a @ievdd model
[86].
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Fig. 4. Evolution of academic publications with respectite data processi
frameworks used to develop clinical decision suppystems Publicatiol
data were collected from the following databad&EE Explorer, ACN
Digital library, PubMed (National Library of Mediwg, Bethesda, MD), Wi
of Science and Scopus.

Concurrent advances imigh-performance computinigave
made it possible to process high volumes of datdaige
repositories more efficiently. In particular, mamuce
frameworks with sophisticated models of data caglaind in-
memory processing have played a key role from avsoé
viewpoint. Likewise, advances in hardware including-
processors and GPU accelerators such as Xeon &hNwdia

with artifact,

missing data and uncertaintieBayesian
estimation provides an intuitive and formal foundation to
express learning models in terms of uncertaintyr s
reason, graphical models based on hierarchical rzowt
hierarchical Bayesian networks (BN) have becomeufaogn
clinical research. The inclusion of temporal dates maised
interest in Dynamic Bayesian Networks (DBN), whislere
previously more commonly applied to areas suchobstics,
sensing and speech recognition. To obtain an inéerdased

on multiple sources and therefore a large amount of

heterogeneous dimensions, models able to integtate
conditional dependencies and relationships betwderse
factors are appealing. Thus, in clinical applicasio causal
modelling has been suggested as a method to éeilthe
specification of BNs with many parent variables][98/hen
the purpose is to model the causality of concurdgmiamical
systems in continuous time, learning probabiligiraphical
models considering all unmeasured confounding factan
become challenging, but the availability of contina (rather
than episodic) context-aware sensing data offerguen
opportunities to address this issue.

Instead of using probabilitie$yzzy logicis a framework
that is based on the concept of “degree of trukhizzy set
memberships enable the input to interpolate betvleercrisp
set of classical logic, allowing a soft transitiohthe degree
from false to true. These soft assumptions areflilefis they
allow formalising vagueness in the inference ofnichl
decision support systems. In order to model uniceyta
general type-2 fuzzy sets implement the same opsras
type-1 fuzzy sets but the membership function islentoree-

Tesla have enabled highly intensive operations arfimensional, therefore enabling to account for uagety in

TABLE Il
EXEMPLAR TECHNOLOGIES FOR THE FIVE \6 OF BIG DATA IN PERVASIVE HEALTH

Causes Technological solutions Relevant reseaeadsa
L] Large population and biological . Large-scale processing frameworks = Map-reduce (in-memory) frameworks.[87]
Volume datasets. =  Scalable and flexible data storage. = Scalable distributed databases and cloud
. Growing streaming data. computing. [87]
L] Continuous streaming data. . Light-weight processing models. = Low-complexity algorithms, very fast machine
Velocity High frequency data sources . High performance computing learning and on-node processing. [88]
(e.g.pervasive sensors, social (HPC). . Grid computing, parallel programming and
media). coprocessors. [87]
' Isr:)tsgcr:gon of multiple health . Metadata protocols. . Non-relational databasef89]
Variety L . . =  Semantic web models of data . Formal ontologies and semantic web. [90]
. _D|st}M_t labelling strategies across integration . Multi-agent systems. [91]
institutions. ) )
. Measurement imprecision, . Uncertainty quantification. . Uncertainty analysis (Bayesian probabilities or
Veracity confounding factors. . Causality. fuzzy sets). [92]
. Inference certitude of output. . Causal modelling. [93]
. Non-stationary systems.
Variability L] Unforeseen events in health. . Adaptation. L] Online learning models. [94]
. Seasonality and behavioural . Handling concept drift. »  Adaptive and drift-aware learning models. [95]

changes.
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the primary membership. Fuzzy systems have beerlyid learners [105], which has been used for sleep apnoe

applied to the first [97, 98] and second-generasipplications
of pervasive health [99]. Soft-clustering algorithipased on
fuzzy logic have been proposed as a method to szt
analysis to large volumes of data [10Dhta stream learning
techniques have been proposed to process the datpass
and enable adaptation [101]. More recently, simitkata
stream
different frameworks [102].

H. From Sensor Informatics to Big Data

One of the bottlenecks to consider for the thirdegation
of pervasive sensing platforms is to achieve rapid scalable
processing for large datasets. From a softwaret pdiniew,

processing big data is usually linked to prograngningpplications

paradigms such as maps reduce [103]. Several apenes
frameworks such as Hadoop are frequently used de st
distributed database in a scalable architecturey hasis for
tools (such as Cascading, Pig, Hive) that enabieldping
applications to process vast amounts of data (byotder of
terabytes) on commodity clusters. However, when hined
with continuous streams of pervasive heath momitprthis
also requires capacities for iterative and lowdate
computations, which depends on sophisticated marfedata
caching and in-memory computation. Thus, other éaorks
such as Storm and Spark have been created tothitfiap.
For handling data variety and heterogeneigmatic web

monitoring [106]. Likewise, an adaptive neuro-fuzztyeam
learning approach was proposed for the recognitain
activities of daily living [107, 108]. Additionally signal
processing algorithms such as symbolic
approximation can also implement adaptation to détél data
stream segmentation and approximation [109]. Adapti

learning algorithms have been developed gusistream data algorithms can be magsource-awardy taking
adaptation and online procgssin

advantages of their
capabilities to leverage their control parameters minimise
the amount of input/output data processed [110].

The above considerations can be mapped to the 5 Vs

considered in big data research as listed in Tdhle
Regardless of the 5 Vs, almost all
raise privacy challenges. For
applications, the issue is greater due to the né=d
performing linkages with other sources. This reemithe use
of identifiers that uniquely represent the data uban

individual. The techniques for data privacy preseganalysis
can be categorised into five groups: 1) encryptiaga,i.e.

cryptographic; 2) adding noise to datae. randomised
responses; 3) grouping data by factor/attributee.

condensation; 4) hiding attributes in date, anonymisation;
and 5) applying a transformation in the factorsiaites so
that the data distributions are recovered indepethgei.e.

perturbation. In addition, pervasive sensing data aso raise
security threats across the different stages &f ttahsmission

technologies such as ontologies and data representatigfiom sensors to remote databases. Sensor biomédtzies

languages are used. They provide structural anghisgtional

tools of knowledge-management, already adopted Byym sensor networks [111]

organisations [104]. Defining explicit data destois and

been proposed as a solution to secure communiscatidmody

semantics can have multiple uses such as reasoning, |y |MPLICATION ON FUTURE HEALTHCARE DELIVERY

integrating heterogeneous sources, data linkageks data
sharing. Linking data is a particularly importamafure to
provide new sensing applications with querying @éfiges
over the multiple sources for exploration and sgats.

One of the common issues in sensing data is tbwida
unforeseen events in health such as seasonal #ediberal
changes. Some data stream algorithms have beearimapted
considering adaptation such as adaptive, verydiesision tree

The developed world is experiencing a major dengra
shift. Age-related diseases, such as cardiovasadlit®ase,
cerebrovascular accidents and cancer are set torlgemore
prevalent [112]. Emerging evidence suggests riflifigealth
in the elderly population with an increasing incide of
chronic conditions such as osteoarthritis, chroaiovays
disease and diabetes [113]. Similarly, the gldhaiden of

aggregate

pervasive health
big data



disease is leading to an increase in interventipnatedures,
especially surgery [114]. Whilst techniques haveconee
increasingly minimally invasive, post-operative qaitations
such as surgical site infection, inadequate tigsesding and
gastrointestinal anastomotic failure persist.

Traditional monitoring of chronic diseases and ewente
symptoms reflects the episodic nature of the symptology.
However, pathology is a continuing process and agert
transient but important events may go undetected waich
infrequent measurements. Despite the ability to suea
extensive biomechanical and biochemical informatitime
diagnostic and monitoring utility is generally limd to brief
time points and unrepresentative physiological estabr
artificially introduced tests. Transient criticabreormalities
cannot always be captured, leading to delayed dsegrand
escalating healthcare costs. Important
threatening disorders can go undetected becaugeottwir
infrequently and only under specific situations that they
may not be recorded objectively. Pervasive sendbet
provide continuous physiological monitoring offeew hope
for complex data analysis, leading to physicianrtalego
support clinical decision-making and diagnosis.

One good example of smart sensing combined with
integration of a diverse range of data sources i®visit the
recent PIP implant scandal as previously mentiored.an
example of the way in which third-generation systemay
change the way health crises are anticipated anthgea by
public health authorities. PIP breast prosthesesh va
significantly higher risk of rupture and comprisirigwer
levels of platinum and higher levels of low molegulveight
siloxanes than medical grade silicone were impthriteéo

background of heightened awareness and concerasdieg

implant ruptures, next generation of wireless loowepr, low

drift sensors incorporated into the elastomer mhamitor outer
shell integrity and / or that sense silicone ondheer surface
of the implant that may herald an intracapsularturg

Automated detection of rupture is coupled with bmtasent to
the surgeon who implanted the device. The implant
removed at the earliest opportunity, silicone sgil into body
tissues is contained and capsule formation minichise

A. From Episodic Monitoring to Continuous Sensing and
Integrated Care

The devices listed in Table | represent the gengeald
from episodic monitoring to continuous sensing antelgrated
care. Accurate and timely detection of healthcatates

and evem- liffacilitates early treatment, limits body trauma gmevents

organ damage. The negative impact of episodic cigtture in
healthcare is arguably best exemplified in the rgarmeent of
cardiovascular disease, post-operative
monitoring of tissue healing and in cancer treatsien
Following myocardial infarcts, life-threating arthynias can

occur

Sensors have already been developed for accurdbedsefor
continuous monitoring of blood pressure, pulse aattiac
rhythm [116] such that arrhythmias can be deteatedear
real time and signals sent to a smartphone forrioite
processing [117]. Critical abnormalities of cardigtythm
such as atrial fibrillation can be detected, reedrdnd rapidly
treated.

For monitoring post-operative issues such as s¢psi],

thousands of women worldwide. Many women presentd@r €xample, there are data to suggest that aggeessirly
themselves to clinics describing pain, swellingderness and therapy can improve outcomes. Surgical site infest
lymphadenopathy associated with symptomatic implastehiscence of wounds and gastrointestinal anasisnzoe

rupture. Asymptomatic women attended requestingsdund
scans to check the integrity of their implants. é&shattended
unsure if PIP implants had been inserted. Whildbusb

evidence of a link between PIP rupture and diseakecking,

many attribute rupture to autoimmune diseases tieate

subsequently contracted. A recent review by theadegent of

health has called for a new implant register [1454 greater
regulation but currently there is no way of moriitgrimplant

integrity without clinical assessment.

social interest regarding faulty breast prostheiseighly

patient management to ensure prompt instigation of
Analysis of social media has revealed locationsreltee a@ppropriate therapy and to avoid the mortality eisged with
overwhelming sepsis, and yet in current clinicalgbice these
prevalent. Analysing the current administrative atiase CcOmplications tend to be detected far too late. Wdou
offered by the National Health Service (NHS), waleated infection is self-evident once the patient has ted
the number of women in London who underwent breaSfythema, pain, tenderness or is discharging pom fthe
assessment during the last three years and ctassifem by Wwound. By the time important changes are detectaifttein
the borough of residence as shown in Figure 5. gtuzta the patient’s circulation, pathological processesveh by
may suggest that women at risk due to their exgosuPIP definition, reached a systemic level and are likelghallenge
do not reside in areas with easy access to breasersng the patient's physiological reserve. Sensors buiito
assessment centres. These data could be combineah indressings, embedded within catheters and anastsmash as
those that can detect biochemical changes in the

inference system to identify the geo-location of nvem
affected based on social networking trends, aneraéhe the
likely volume of patient’s requiring assessment &e@tment
to aid workforce planning and streamline resourdes
locations of greatest need.

It is interesting to note that with this informati@lone, a

recognised complications following surgery. The esaéy of
these complications can be mild necessitating antibiotic
therapy and close observation in hospital but carsdrious
with life-threatening sepsis necessitating repeatedical and
radiological interventions with high morbidity amdortality.
Hospital stay is inevitably prolonged, significanihflating
the costs of healthcare delivery. Early detectibsungical site
infections, dehiscence and anastomotic failure caitecal to

microenvironment (e.g. lactate, glucose, pH) masaldeSSI
or tissue failure, prompt further investigation corrective
clinical action.

surgical e, car

unpredictably without warning, and may remain
thdetected if cardiac monitoring is infrequent artdrmittent.

It has been shown repeatedly that delayed diagnosis

negatively impacts cancer outcomes, whereas sOogeaves

health alarm could have been triggered. Againsts thlives [119]. Similarly, the episodic macroscopiaastructural
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imaging of tumours in patients undergoing neoadjtivaC. Managing the Continuum of Health and Disease
chemotherapy means that assessments of tumourneEspo \yith the current paradigm shift towards prevention

remains crude.
radiological marker clips, capable of monitoringla cellular
level and/or continually detecting cellular profddon

proteins may provide a more accurate assessment S%

chemotherapeutic response upon which clinicians atayto
switch regimen or expedite surgery in case of pesponse.
The above examples illustrate that a vast amofcliracal
information is recorded on any given patient areldtiending
clinician may not always have easy access to thita,d
impairing quality of care. Patients with increasjngomplex
health and social needs often visit a number ofithesre
providers, who may recommend treatments in sequendae
parallel without understanding the impact on thkskio needs
of the patient. Continuous sensing may provide ravenient
solution to the need fointegrated carewhich describes a
drive towards a patient-centred, co-ordinated aaitbred
service. For example, a cardiologist may prescailstatin for
a patient with hypertension and hypercholesteroiaewthout
realising they were taken off this treatment prasly as it

Smart sensors implanted within  th§ediction, personalised treatment and particiyatoedicine,

it is necessary to consider health and diseasecastamuum.
For many life-style diseases, enhancing pervasiealttn
tems with context-aware capabilities providessna set
of contextual information about the monitored cdiodi under
consideration. For example, motion sensors combinid
intelligent behaviour modification can be used totinate
overweight and obese individuals engage in physictvity
to lose weight improving diabetic control, hypegem and
reducing the risk of cancer [120]. Sensors that itnomasal
metabolic rate and activity energy consumption danive
total energy expenditure. However, weight loss ardgurs if
total energy expenditure exceeds calorific intakad a
accurately calculating the latter can be challeggirherefore,
there is a need for sensors that can monitor batarific
intake and energy expenditure simultaneously ardfack
data to the user logs of consumption and activity.
Similarly, shifts toward prevention, predicationdamore
personalised approaches are required to improvemgs in

was causing severe cramps. The result is uUNnegessgfajor non-communicable diseases such as cancer.
readmissions and costs. The next generation ofr&emsay Traditionally, cancer management had relied on gene
have the capability to minimise these vicious cyabé poor treatments supported by trial data such that army gatients
care by improving awareness of medication side c&ffe \ith g given cancer may be similarly treated on liasis that
(knowledge) and enhancing linkage between heakhcahey were found to have contracted the same ‘dise¥st, a
providers through rapid knowledge and event sharingitical aspect of most complex diseases such msecas that

(integration).

B. Stratified Patient Management

Clinical decision support systems able to digestl a

understand continuous personalised health dataahtime
can improve the quality of care provision particlyldn the
field of cancer management. Clinical decision suppgstems
have the advantage of being able to capitalise diroad

knowledge-base by data mining patient records ann(‘:!

accounting for other data repositories such as m&wmn
clinical phenotypes and bio-markers. The clinicapact of
clinical decision support systems is best exengalifiby
considering the management of a patient treated
malignancy. Consider a patient scheduled to
chemotherapy for bladder cancer. The patient's DMNA
sequenced, identifying a high-risk genotype for lagal
malignancy and an appointment is scheduled witkreeticist
to discuss the impact of the risk mutation. Thaichl team
suggest a wearable system for constant
monitoring, being able to detect
hypertension and consider increasing blood pressameol.

Following the first cycle of chemotherapy, the wadde
sensor detects a pyrexia (body temperature >°&J).&nd a
low neutrophil count. This information can be useddentify
likely side effect of chemotherapy. Once chemothgrhas
been discontinued and clinical remission estabfishine
system seeks to promote health and wellbeing amiimisie
disease recurrence. For example, wearable motimsoee can
detect sedentary behaviour and a recommendatiobeaent
to the patient to engage in a more active lifestyle

n

recei

physiologi
poorly controlle

they encompass many different types of disease gowin

differences in disease-perturbed networks [121juiRéng to

the example to breast cancer, data from recent ngieno
analysis informs us that the phenotypic diversifyboeast
tumours is supported by similar diversity in genx@ression
resulting in an improved molecular taxonomy of lstezancer
[122]. Improved risk modelling and identificatiorf at risk
utations will lead to more widespread adoption

preventative strategies (e.g. risk screening, clpeaphylaxis
and risk reducing surgical protocols). Moreover pioved
genetic stratification of cancer may enable therplageutical
industry to develop novel drug targets. Routindemtion of

of

f\%nomic, metabonomic and proteomic data in patieritis

cancer, if coupled with sensor informatics has,gbtential to
improve our understanding of resistance to chemaffitics.
The future of personalised cancer treatments desndmd
improved understanding of drug choice, dose andtiur to
enhance cure, minimise adverse effects and treatfaiture,

C
d’;?nd prevent recurrence.

V. DiscussiON ANDCONCLUSIONS

Over the last decade, technological
supported the evolution of a pervasive health pgradwhich
is also captured in alternative names suchhiguitous health
(u-health) andmobile health(m-health). Considered in this
paper we discussed different generations of deacestheir
associated analytics.

From a clinical perspective, the evolution of each
generation of pervasive health monitoring has &tediof a
sequence of technological steps necessary to mrovid
integrated care, bridging the gap between health disease
management. Current healthcare services are tipical

advances have



fragmented into many processes that are oftenidisjpspace [€]
and time. 7l

From a technical standpoint, there remains a need 1[
horizontal advances within each generation to img@rthe
quality of the involved technologies. However, i@t [8]
developments may see an entirely new generatioveafable
sensing devices and smart implants that are lowepolew
drift, resistant to biofouling and that can be lasnplanted [9]
and extracted when no longer required.

From a data analysis perspective, long-term coatiau (101
sensing and the need not only to monitor but alsatervene |y,
in real-time brings unique challenges, as well ggootunities
to sensor informatics. Other challenges are related
integrating large data sets from heterogeneousthetdta
sources. Advances in high-performance computinggast
learning models and semantic web are therefordylikeplay [13]
a key role in the future. These technical challshgié
overcome, are set to transform future healthcaligetyg. Big
data mining and social network analysis have thergml to
manage global epidemics such as Ebola, incorpgratin
geographical information systems to track casesglamate
warning systems and streamline outbreak resporge T8is (15]
can be translated into clinical medicine progressmf a
reactive to a proactive discipline. In our opinianeeting [16]
these challenges will help address key areas ofticimical
needs including management of chronic diseases ssch
diabetes and cancer, detection of nosocomial argicsll site
infections and monitoring of surgical prosthesesoré/
importantly, technological advances in sensor desigupled [18]
to improved data analytics will shift the focusrralisease to
prediction and prevention. Predictive medicine nuagtitalise
on diverse information from a range of bioinfornsatdata to [19]
define a baseline of health (wellness) and thenilagily
employed to detect transition to disease. Miningséh
numerous data sources per individual will help t@ea
predictive and actionable models [121] to betteilota [21]
therapeutic regimens thereby improving outcomesarality
of life. Challenges such as data storage, analyécsl a
cultural reluctance to rely on open-source algarih data
sharing and open data policies will need to be cyree.

Clearly, if the ultimate goal in healthcare is ® lased on [23]
preventative, predictive, personalised and pasicigy
medicine, the sensing technologies as discussdisrpaper [24]
and their future evolution will play a key role ii@alising this
goal.

(12]

[14]

[17]

[20]

[22]

REFERENCES [2s]

[1] Y. Yonezawaet al, "A new intelligent bed care system for [26]
hospital and home patientsBiomedical Instrumentation &
Technologyyol. 39, pp. 313-319, 2005.

2] W. Guet al, "A novel method for the contactless and contirsuou [27]
measurement of arterial blood pressure on a slgdjgd," inlEEE
EMBC, 2009, pp. 6084-6086.

[3] K. K. Kim et al, "The electrically noncontacting ECG [28]
measurement on the toilet seat using the capdgiberipled
insulated electrodes," IEEE IEMBS2004, pp. 2375-2378.

[4] Q. Zhanget al, "Determination of Activities of Daily Living of [29]
independent living older people using environméytallaced
sensors," iINEEE EMBG 2013, pp. 7044-7047.

[5] C.-H. J. Leeet al, "Augmenting kitchen appliances with a shared[30]
context using knowledge about daily events,"liH, 2006, pp.
348-350. [31]

11

G. Z. Yang,Body Sensor Network@nd ed, Germany: Springer,
2014.

J. Andréuet al "An ambient assisted-living architecture based on
wireless sensor networks.", iRroc. Symposium of Ubiquitous
Computing and Ambient Intelligenc009, pp. 239-248

R. M. Kwasnickiet al, "Assessing functional mobility after lower
limb reconstruction: A psychometric evaluation o$ensor-based
mobility score,"Annals of Surgeryol. 261(4), pp. 800-806, April
2015

M. Howell Joneset. al "A pressure sensitive home environment,"
in IEEE HAVE 2006, pp. 10-14.

F.-T. Sunet al, "Activity-aware mental stress detection using
physiological sensors," IMobiCASE 2012, pp. 211-230.

M. Borazio and K. Van Laerhoven, "Combining awvable and
environmental sensing into an unobtrusive toolldog-term sleep
studies," inProc. ACM SIGHIT 2012, pp. 71-80.

J. Lanagaret al, "Utilising wearable and environmental sensors to
identify the context of gait performance in the teghin Diverse
2011, pp. 1-5.

J. Ahn, "Enhancing Performance and Reliabiliof RFID
Middleware Using Mobile Agents," im WASA 2012, pp. 292-
300.

L. Xu et al., "3D multifunctional integumentamembranes for
spatiotemporal cardiac measurements and stimula@voss the
entire epicardium,'Nature Communicationsvol. 5(3329), pp. 1-
10, Feb 2014.

P. S. Pandiast al, "Smart Vest: wearable multi-parameter remote
physiological monitoring system,"Medical Engineering &
Physicsyol. 30, pp. 466-477, May 2008.

S. Carraraet al, "Remote system for monitoring animal models
with single-metabolite bio-nano-sensortEEE Sensors Journal,
vol. 13, pp. 1018-1024, Mar 2013.

M. Sunget al "Wearable feedback systems for rehabilitation,"
Journal of neuroengineering and rehabilitatiogl. 2, pp. 1-12,
2005.

K.-G. Ng et al, "Evaluation of the cadi thermosensor wireless
skin-contact thermometer against ear and axillargperatures in
children," Journal of Pediatric Nursing-Nursing Care of Chiér

& Families,vol. 25, pp. 176-186, Jun 2010.

M. Leonardiet al, "Wireless contact lens sensor for intraocular
pressure monitoring: assessment on enucleated ygig,"eActa
Ophthalmologicayol. 87, pp. 433-437, Jun 2009.

L. Atallah et al, "Observing recovery from knee-replacement
surgery by using wearable sensors,BBN,2011, pp. 29-34.

Q. Weiet al, "Novel Design for Non-Latency Wireless Binaural
Hearing Aids,"|IEEE Transactions on Electrical and Electronic
Engineeringyol. 9, pp. 566-568, Sep 2014.

M. S. Mannootet al, "Graphene-based wireless bacteria detection
on tooth enamel,Nature Communicationsjol. 3, pp. 1-8, Mar
2012.

M.-Z. Pohet al, "A Wearable Sensor for Unobtrusive, Long-Term
Assessment of Electrodermal ActivitylEEE Transactions on
Biomedical Engineeringjol. 57, pp. 1243-1252, May 2010.

S. Patelet al, "Monitoring motor fluctuations in patients with
parkinson's disease using wearable sens&EE Transactions on
Information Technology in Biomedicingl. 13, pp. 864-873, Nov
2009.

S. Xuet al, "Soft microfluidic assemblies of sensors, cirsuénd
radios for the Skin,Scienceyol. 344, pp. 70-74, Apr 4 2014.

H. Zhouet al, "Use of multiple wearable inertial sensors in empp
limb motion tracking,"Medical Engineering & Physicsjol. 30,
pp. 123-133, Jan 2008.

E. S. Sazonowt al, "Monitoring of posture allocations and
activities by a shoe-based wearable sen$6EE Transactions on
Biomedical Engineeringjol. 58, pp. 983-990, Apr 2011.

K. Kong and M. Tomizuka, "A gait monitoring sgm based on
air pressure sensors embedded in a shd&EE-Asme
Transactions on Mechatronicgyl. 14, pp. 358-370, Jun 2009.

R. C. Kinget al, "Development of a wireless sensor glove for
surgical skills assessmentlEEE Transactions on Information
Technology in Biomedicineol. 13, pp. 673-679, Sep 2009.

B. O'Flynn et al, "Novel smart sensor glove for arthritis
rehabiliation," inBSN 2013, pp. 1-6.

U. Marschner et al, “Integration of a wireless lock-in
measurement of hip prosthesis vibrations for lowggdetection,”



(32]

(33]

(34]
(35]

[36]

[37]

(38]
[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Sensors and Actuators a-Physicabl. 156, pp. 145-154, Nov [57]
2009.

J. E. Pandolfincet al, "Ambulatory esophageal pH monitoring
using a wireless system&merican Journal of Gastroenterology, [58]
vol. 98, pp. 740-749, Apr 2003.

J. Holmberget al, "Battery-Less Wireless Instrumented Knee
Implant,” Journal of Medical Devices-Transactioristtee Asme,

vol. 7(1), pp. 1-11, Mar 2013. [59]
G.-Z. Yanget. al "Multi-sensor fusion," irBody sensor networks

2nd ed., Germany: Springer, 2014, pp. 301-354.

E. A. Ashleyet al, "Clinical evaluation incorporating a personal
genome,'Lancetyvol. 375, pp. 1525-1535, May 2010. [60]
D. I. Chasmaret al, "Polymorphism in the apolipoprotein(a) gene,
plasma lipoprotein(a), cardiovascular disease lamneose aspirin
therapy,"Atherosclerosisyol. 203, pp. 371-376, Apr 2009.

T. Sekitani and T. Someya, "Stretchable, Leagea Organic [61]
Electronics," Advanced Materialsyol. 22, pp. 2228-2246, May
2010.

X. Li et al, "A perspective on paper-based microfluidics: €atr [62]
status and future trend8fomicrofluidics,vol. 6, Mar 2012.

D. D. Lianaet al, "Recent Advances in Paper-Based Sensors,"
Sensorsyol. 12, pp. 11505-11526, Sep 2012. [63]
W. Dungchaiet al, "Electrochemical detection for paper-based
microfluidics," Analytical Chemistryyol. 81, pp. 5821-5826, Jul
2009. [64]
D. Tobjork and R. Osterbacka, "Paper ElectsyiiAdvanced
Materials,vol. 23, pp. 1935-1961, May 2011.

L. M. Castano and A. B. Flatau, "Smart fatsénsors and e-textile
technologies: a reviewSmart Materials and Structuresol. 23,  [65]
p.1-27, 2014.

D. H. Kim et al, "Epidermal Electronics,Scienceyol. 333, pp.
838-843, Aug 2011.

Y. N. Xia and G. M. Whitesides, "Soft lithogray," Annual [66]
Review of Materials Sciencegl. 28, pp. 153-184, 1998.

J. A. Rogers and R. G. Nuzzo, "Recent progr@sssoft
lithography,"Materials Todayyol. 8, pp. 50-56, Feb 2005.

S. W. Hwanget al, "Materials and fabrication processes for[67]
transient and bioresorbable high-Performance @eleics,"
Advanced Functional Materialspl. 23, pp. 4087-4093, Sep 2013.

B. C. K. Teeet al, "An electrically and mechanically self-healing [68]
composite with pressure- and flexion-sensitive prbogs for
electronic skin applicationsNature Nanotechnologwol. 7, pp.
825-832, Dec 2012.

F. Boeufet al, "An evaluation of the CMOS technology roadmap[69]
from the point of view of variability, interconnectand power
dissipation,"IEEE Trans. on Electron Devicegol. 55, pp. 1433-
1440, Jun 2008. [70]
T.-H. Tsaiet al, "A CMOS micromachined capacitive tactile
sensor with integrated readout circuits and comgéors of
process variations,''EEE Trans. on biomedical circuits and [71]
systemsyol. 8, pp. 608-16, 2014 Oct (Epub 2014 Oct 2014.

B. Alandry et al, "A fully integrated inertial measurement unit:
application to attitude and heading determinatidBEE Sensors
Journal,vol. 11, pp. 2852-2860, Nov 2011. [72]
E. Stern et al, "Label-free immunodetection with CMOS-
compatible semiconducting nanowirelsldture,vol. 445, pp. 519-

522, Feb 2007.

A. Manickam et al, "A CMOS electrochemical impedance [73]
spectroscopy (EIS) biosensor arrayEEE Transactions on
Biomedical Circuits and Systenvs). 4, pp. 379-390, Dec 2010.

F. L. Chan et al., "An electrochemical dopaenisensor with a
CMOS detection circuit," Journal of Micromechanics and [74]
Microengineeringvol. 18(7), p. 1-7, Jul 2008.

B. Y. Leeet al, "Biosensor system-on-a-chip including CMOS-
based signal processing circuits and 64 carbon tnbedased
sensors for the detection of a neurotransmitteafj on a Chip,

vol. 10, pp. 894-898, 2010. [75]
A. Shamimet al, "Wireless dosimeter: System-on-chip versus
system-in-package for biomedical and space apygitsit IEEE  [76]
Trans. on Circuits and Systewsl. 55, pp. 643-647, Jul 2008.

R. R. Tummala, "SOP: what is it and why? A nmicrosystem-
integration technology paradigm-Moore's law for teps
integration of miniaturized convergent systems bf tnext [77]
decade,"IEEE Trans. on Advanced Packagimgl. 27, pp. 241-

249, 2004.

12

Healthcare Quality Improvement Partnership (PIQ (2014).
National audit of cardiac rhythm devices. Unitedngdom.
[Online]. Available: http://www.hqip.org.uk/

D. Cardoet al, "National Nosocomial Infections Surveillance
(NNIS) System Report, data summary from Januar tB8ugh
June 2004, issued October 200Arherican Journal of Infection
Control,vol. 32, pp. 470-485, Dec 2004.

W. Kenneth Ward, "A review of the foreign-bodgsponse to
subcutaneously-implanted devices: the role of nm@wages and
cytokines in biofouling and fibrosisJournal of diabetes science
and technologwol. 2, pp. 768-77, 2008 2008.

C. M. Zierhofer and E. S. Hochmair, "High-eféncy coupling-
insensitive transcutaneus power and data-trangmissia an
inductive link,"IEEE Trans. on Biomedical Engineeringgl. 37,
pp. 716-722, Jul 1990.

S. Ozeri and D. Shmilovitz, "Ultrasonic trantgneous energy
transfer for powering implanted deviceblltrasonics,vol. 50, pp.
556-566, May 2010.

Y. Qin et al, "Polymer integration for packaging of implantable
sensors,"Sensors and Actuators B-Chemicatl. 202, pp. 758-
778, Oct 2014.

Y. Zhenget al, "Unobtrusive sensing and wearable devices for
health informatics,'|EEE Trans. on Biomedical Informaticeol.
61, pp. 1538-1554, 2014.

M. Velikova et al, "Exploiting causal functional relationships in
Bayesian network modelling for personalised healtb¢
International Journal of Approximate Reasoning]. 55, pp. 59-
73, 2014.

F. Portelaet al, "A pervasive approach to a real-time intelligent
decision support system in intensive medicine,"Kinowledge
Discovery, Knowledge Engineering and Knowledge Manzent
Germany: Springer, 2013, pp. 368-381.

J. Sunet al, "Predicting changes in hypertension control using
electronic health records from a chronic diseaseagement
program,” Journal of the American Medical Informatics
Associationyol. 21, pp. 337-344, 2014.

G. N. Forreset al, "Use of Electronic Health Records and Clinical
Decision Support Systems for Antimicrobial Stewids
Clinical Infectious Diseasespl. 59, pp. S122-S133, 2014.

R. Eriksson et al, "Dose-specific adverse drug reaction
identification in electronic patient records: temgdalata mining in
an inpatient psychiatric populatiorDrug Safetyyol. 37, pp. 237-
247,2014.

D. W. Bateset al, "Big data in health care: using analytics to
identify and manage high-risk and high-cost pasignHealth
Affairs,vol. 33, pp. 1123-1131, 2014.

M. R. Bolandet al, "Discovering medical conditions associated
with periodontitis using linked electronic heal#cords,"Journal

of clinical periodontologyyol. 40, pp. 474-482, 2013.

H. Xu et al, "Validating drug repurposing signals using elecic
health records: a case study of metformin assatiaith reduced
cancer mortality,"Journal of the American Medical Informatics
Associationyol. 22, pp. 179-191, 2014.

Y. Hagaret al, "Survival analysis with electronic health record
data: Experiments with chronic kidney diseas&tatistical
Analysis and Data Mining: The ASA Data Science dalrol. 7,
pp. 385-403, 2014.

T. Carset al, "Extraction of Electronic Health Record Data in a
Hospital Setting: Comparison of Automatic and Sémiomatic
Methods Using AntiTNF Therapy as Model,Basic & clinical
pharmacology & toxicologwol. 112, pp. 392-400, 2013.

M. Marcos, J. A. Maldonado, B. Martinez-SalegdD. Boscé, and
M. Robles, "Interoperability of clinical decisiomgport systems
and electronic health records using archetypesase study in
clinical trial eligibility," Journal of biomedical informaticssol.
46, pp. 676-689, 2013.

National Library of Medicine (NLM). (2015). @ical trial registry
[Online]. United States. Available: http://www mitaltrials.gov

I. Lipkovich and A. Dmitrienko, "Strategies rfoidentifying
predictive biomarkers and subgroups with enhancedtrhent
effect in clinical trials using SIDES," Journal of
biopharmaceutical statisticspl. 24, pp. 130-153, 2014.

F. Altiparmaket. al "Information mining over heterogeneous and
high-dimensional time-series data in clinical siadatabases,"



(78]

[79]

(80]

[81]

[82]

[83]

[84]

[85]

(86]

[87]

[88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

IEEE Trans. on Information Technology in Biomedicivol. 10,

pp. 254-263, 2006.

J. P. Metterset al, "New directions in screen printed [102]
electroanalytical sensors: an overview of recentetbments,”
Analyst,yvol. 136, pp. 1067-1076, 2011. [103]
N. A. Christakis and J. H. Fowler, "The cofiee dynamics of
smoking in a large social networkNew England journal of
medicineyol. 358, pp. 2249-2258, 2008.

S. Cauchemeet al, "Role of social networks in shaping disease[104]
transmission during a community outbreak of 2009NH1
pandemic influenza,'Proceedings of the National Academy of[105]
Sciencesyol. 108, pp. 2825-2830, 2011.

J. L. Gardyet al, "Whole-genome sequencing and social-networ106]
analysis of a tuberculosis outbrealyew England Journal of
Medicine,vol. 364, pp. 730-739, 2011.

R. Ansumaneet al, "Ebola in Sierra Leone: a call for action,” [107]
Lancet,vol. 384, pp. 303-303, Jul 2014.

D. Musianiet al, "Active sensing platform for wireless structural
health monitoring," ifProc. ACM/IEE IPSIN2007, pp. 390-399. [108]
A. Burns, B. R. Greene, M. J. McGrath, T. JSkea, B. Kuris, S.

M. Ayer, et al, "SHIMMER™-A wireless sensor platform for
noninvasive biomedical researchEEE Sensors Journalol. 10, [109]
pp. 1527-1534, 2010.

J. Hulzink et al, "An ultra low energy biomedical signal
processing system operating at near-threshdBEE Trans. on [110]
Biomedical Circuits and Systems). 5, pp. 546-554, 2011.

L. Atallah et al, "Real-time activity classification using ambient

and wearable sensor$fEE Trans. on Information Technology in [111]
Biomedicineyol. 13, pp. 1031-1039, 2009.

A. Bahga and V. K. Madisetti, "A cloud-basegpeoach for
interoperable electronic health records (EHREJEE Journal of [112]
Biomedical and Health Informaticeol. 17, pp. 894-906, 2013.

E. B. Mazomenoset al, "A low-complexity ECG feature [113]
extraction algorithm for mobile healthcare applicas,” IEEE

journal of biomedical and health informatioml. 17, pp. 459-469,

2013.

N. Leavitt, "Will NoSQL databases live up their promise?,” [114]
Computeryol. 43, pp. 12-14, 2010.

G. B. Laleciet al, "Providing semantic interoperability between
clinical care and clinical research domaint£EE Journal of [115]
Biomedical and Health Informaticepl. 17, pp. 356-369, 2013.

H. Damasceno Vianna and J. L. V. Barbosa, "Adel for
Ubiquitous Care of Noncommunicable DiseasHSEE Journal of [116]
Biomedical and Health Informaticepl. 18, pp. 1597-1606, 2014.

B. Taatiet al, "Data mining in bone marrow transplant records to
identify patients with high odds of survivallEEE Journal of
Biomedical and Health Informaticsol. 18, pp. 21-27, 2014. [117]
S. Pereraet al, "Semantics driven approach for knowledge
acquisition from emrs,TEEE Journal of Biomedical and Health
Informatics,vol. 18, pp. 515-524, 2014. [118]
A. Manniniet al, "Online Decoding of Hidden Markov Models for

Gait Event Detection Using Foot-Mounted GyroscdpeEEE
Journal of Biomedical and Health Informatiogl. 18, pp. 1122-

1130, 2014. [119]
J. Y. Xu et al, "Context-driven, Prescription-Based Personal
Activity Classification: Methodology, Architecturegnd End-to-

End Implementation,'"EEE Journal of Biomedical and Health [120]
Informatics,vol. 18, pp. 1015-1025, 2014.

S. Visscheret al, "Modelling treatment effects in a clinical
Bayesian network using Boolean threshold functlorstificial
Intelligence in Medicineyol. 46, pp. 251-266, 2009.

J. Andreu and P. Angelov, "Real-time humarivitgtrecognition  [121]
from wireless sensors using evolving fuzzy systenrs,|IEEE

FUZZ 2010, pp. 1-8.

F. Doctor et al, "A type-2 fuzzy embedded agent to realise[122]
ambient intelligence in ubiquitous computing enmir@nts,"
Information Sciencespl. 171, pp. 309-334, 2005.

B. Yuan and J. Herbert, "Fuzzy cara-a fuzzgdsh context
reasoning system for pervasive healthcaRrgcedia Computer
Scienceyol. 10, pp. 357-365, 2012.

L. O. Hall, "Exploring big data with scalabsoft clustering,” in
Synergies of Soft Computing and Statistics forlligent Data
Analysis Germany: Springer, 2013, pp. 11-15.

C. C. Aggarwal and D. S. Turaga, "Mining D&@meams: Systems

and Algorithms,"Machine Learning and Knowledge Discovery for

13

Engineering Systems Health Managemeblited Kingdom:
Taylor & Francis, 2011, ch. 1, pp. 3-39.

A. Bifet and G. D. F. Morales, "Big Data Sire Learning with
SAMOA," in IEEE ICDMW 2014, pp. 1199-1202.

E. A. Mohammedet al, "Applications of the MapReduce
programming framework to clinical big data analystsuirrent
landscape and future trend8ioData mining,vol. 7, pp. 7-22,
2014.

L. Feigenbaunet al, "The semantic web in actionScientific
Americanyol. 297, pp. 90-97, 2007.

A. Bifet and R. Gavalda, "Adaptive learningrh evolving data
streams," iDA, 2009, pp. 249-260.

S. L. Wakchaure and G. D. Ghuge, "Apnea pulse: real-time
data mining in sleep apnea monitoltit. Journal of Emerging
Technology and Advanced Engineeringl, 3, pp. 70-76, 2013.

J. Andreuet al, "Real time recognition of human activities from
wearable sensors by evolving classifiers,"IBREE FUZZ 2011,
pp. 2786-2793.

J. Andreu and P. Angelov, "An evolving machiearning method
for human activity recognition systemsJournal of Ambient
Intelligence and Humanized Computirg). 4, pp. 195-206, 2013.
B. Hugueney, "Adaptive segmentation-based ®fim
representations of time series for better modelargl lower
bounding distance measures,'AKDD, 2006, pp. 545-552.

M. M. Gaberet al, "Resource-aware Mining of Data Streams,"
Journal of Universal Computer Sciencgl. 11, pp. 1440-1453,
2005.

C. C. Pooret al, "A novel biometrics method to secure wireless
body area sensor networks for telemedicine and aitthe&IEEE
Communications Magazineol. 44, pp. 73-81, 2006.

A. Souleet al, Focus on older peopléJnited Kingdom: Palgrave
Macmillan, 2005.

C. Jaggeet al, "Cohort differences in disease and disabilityhie
young-old: findings from the MRC Cognitive Functiand Ageing
Study (MRC-CFAS),"BMC Public Health,vol. 7, pp. 156-164,
2007.

D. Ozgedizt al, "The burden of surgical conditions and access to
surgical care in low- and middle-income countri@yfletin of the
World Health Organizationvol. 86, pp. 646-647, 2008.
Department of Health (2013), Government &f thited Kingdom.
Review of the regulation of cosmetic interventiof®nline].
Avilable: https://www.gov.uk/government/publicatsin

G. R. Tsouri and M. H. Ostertag, "Patient-8fie 12-Lead ECG
Reconstruction From Sparse Electrodes Using Indigren
Component Analysis,TEEE Journal of Biomedical and Health
Informatics,vol. 18, pp. 476-482, 2014.

S. Adibi, "Biomedical sensing analyzer (BS#y mobile-health
(mHealth)-LTE," IEEE Journal of Biomedical and Health
Informatics,vol. 18, pp. 345-351, 2014.

B. Venemeet al, "Robustness, Specificity, and Reliability of an
In-Ear Pulse Oximetric Sensor in Surgical Patién&EE Journal
of Biomedical and Health Informaticsol. 18, pp. 1178-1185,
2014.

K. Kerlikowskeet al, "Efficacy of screening mammography - A
metaanalysis," Jama-Journal of the American Medical
Associationyol. 273, pp. 149-154, Jan 1995.

N. A. de Glaset al, "Physical Activity and Survival of
Postmenopausal, Hormone Receptor-Positive BreastceCa
Patients Results of the Tamoxifen Exemestane Adjuva
Multicenter Lifestyle Study,"Cancer,vol. 120, pp. 2847-2854,
Sep 2014.

L. Hood and S. H. Friend, "Predictive, perslared, preventive,
participatory (P4) cancer medicineNature Reviews Clinical
Oncologyyvol. 8, pp. 184-187, Mar 2011.

C. M. Perotet al, "Molecular portraits of human breast tumours,"
Nature,vol. 406, pp. 747-752, Aug 2000.



Dr. Javier Andreu-Perez (S'10-M’13) is Research
Associate at the Hamlyn Centre, Imperial College
London, U.K. He is member of the Body Sensor
Networks and Human Robot Interaction groups. He
received a MEng in Computer Science and Enginegring
an MSc in Software Engineering and a PhD in
Intelligent Systems. His research interests include
biomedical engineering, health informatics, machine
learning, neuroscience and artificial intelligence.

Dr. Daniel Richard Leff is Senior Clinical Lecturer in
surgery at Imperial College London and honorary
consultant in onco-plastic breast surgery at Ingberi
College Healthcare NHS trust, U.K. He receivech® P
in Surgery, is Fellow of the Royal College of Swge
and member of the Association of Surgical Oncology

e the U.K. His research interests include imaging,
biosensing, neuroergonomics and brain function.

Dr. Henry Man Ip is Research Associate at the Hamly
Centre, Imperial College London, U.K. He is membfker
the Body Sensor Networks and Implantable Sensing
groups. He received a BEng in Electrical and Etettr
Engineering and a PhD in Bioengineering. His main
interests are in the development of smart sensuds a
implants, as well as advances in micro-fabricatomwl
embodiment of pervasive sensors.

14

Prof. Guang-Zhong Yang (S'90-M'91-SM’'08-
F'11) received his PhD in Computer Science from
Imperial College London, U.K. He is the director,
co-founder, and currently chairs the Hamlyn Centre
for Robotic Surgery. He holds a number of key
academic positions at Imperial College — he is
director and founder of the Royal Society/Wolfson
Medical Image Computing Laboratory, co-founder
of the Wolfson Surgical Technology Laboratory, afthirman of the
Centre for Pervasive Sensing. He is also a Disiigd Lecturer for
IEEE Engineering in Medicine and Biology Societydaa Fellow of the
Royal Academy of Engineering (RAENg), the InstitofeElectrical and
Electronics Engineers (IEEE), the Institution of gireering and
Technology (IET), the American Institute for Mediand Biological
Engineering (AIMBE), the International Academy ofetlcal and
Biological Engineering (IAMBE), the Society of Medil Imaging and
Computer Assisted Intervention (MICCAI), and theyCand Guilds of
London. He is equally a recipient of the Royal 8tciResearch Merit
Award, the I.I. Rabi Award from the Internationadctety for Magnetic
Resonance in Medicine and The Times Eureka ‘Top' 1®@British
Science. His current research interests includeméitical imaging,
sensing, and robotics.




