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Abstract 

Recent advances in the reliability of the eye-tracking methodology as well as the increasing availability of 

affordable non-intrusive technology have opened the door to new research opportunities in a variety of areas and 

applications. This has raised an increasing interest within disciplines such as medicine, business and education 

for analysing human perceptual and psychological processes based on eye-tracking data. However, most of the 

currently available software requires programming skills and focuses on the analysis of a limited set of eye-

movement measures (e.g. saccades and fixations), thus excluding other measures of interest to the classification 

of a determined state or condition. This paper describes ‘EALab’, a MATLAB analytics toolbox aimed at easing 

the extraction, multivariate analysis and classification stages of eye-activity data collected from commercial and 

independent eye trackers. The processing implemented in this toolbox enables to evaluate variables extracted 

from a wide range of measures including saccades, fixations, blinks, pupil diameter and glissades. Using EALab 

does not require any programming and the analysis can be performed through a user-friendly graphical user 

interface (GUI) consisting of three processing modules: 1) eye-activity measure extraction interface, 2) variable 

analysis and selection interface, and 3) classification interface.  
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Information Sharing Statement  

The software presented in this paper is available at https://ealab-matlabtoolbox.rhcloud.com. Video tutorials 

on how to install and use the software are provided in the tutorial section at https://ealab-

matlabtoolbox.rhcloud.com/tutorial. Frequently ask questions (FAQ) and other instructions can be found at 

https://ealab-matlabtoolbox.rhcloud.com/faq. The software runs in MATLAB and some functions may require 

the use of the MATLAB Statistics toolbox. EALab has been tested in MATLAB versions v7.14 

(MATLAB2012a and latest versions such as MATLAB2015a, including the latest graphical engine). A 

standalone compilation of EALab that runs over MATLAB Runtime (license free shared libraries to execute 

MATLAB applications) is also provided. EALab is distributed free and open source in BSD public license, 

which shares this software with the same license as other third party libraries also included in this software; 

these are: PRT toolbox1 for MATLAB by Kenneth Morton and New Folder Consulting, and Variable Selection 

DEMO2 package by Dimitros Ververidis and Constantine Kotropoulos.  
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Introduction 

In recent years, the increasing number of non-invasive eye-tracking techniques relying on video-based 

systems has raised growing interest in eye-movement research. Improvements in the sensing capabilities of 

pervasive and wearable eye-tracking technology have indeed allowed more natural experimental conditions and 

enhanced ecological validity. In addition, the availability of affordable devices embedded in monitor screens, 

glasses and PC peripherals has widened the range of applications offered by the eye-tracking methodology 

within a variety of disciplines such as medicine, business and education. 

Eye tracking provides a valuable source of physiological data regarding the allocation of information 

processing resources through ocular activity as well as human visual/spatial orientation processes, which are 

closely linked to the underlying neural networks in the brain (Mayer et al. 2004). In particular, there is extensive 

evidence of the association of eye-tracking measures including saccades, fixations, blinks and pupil size with 

cognitive functions. Specifically, pupillary response is known as a psychophysiological measure of cognitive 

activity and attention and was found to be positively associated with increased cognitive processing intensity 

and arousal (Hess and Polt 1964; Dionisio et al. 2001; Bradley et al. 2008). Thus, pupil size has been suggested 

as a metric for assessing memory load during complex visual tasks (Gabay et al. 2011), which are associated 

with higher pupil dilation (Otero et al. 2011). Pupil response has equally proved useful for clinical applications. 

For example, it has been suggested as a biomarker for the early detection of Alzheimer’s disease (Frost et al. 

2013). Similarly, the number of saccades has been proposed as a marker for schizophrenia diagnosis (Holzman 

et al. 1973; Eriksson and Papanikotopoulos 1997). As regards fixation duration, it has been demonstrated to 

provide a reliable measure of professional expertise to discriminate between novices and experts in disciplines 

such as surgery (Law et al. 2004) and sport (Vickers 1993). In addition, both the timing and amount of blinks 

have been found to be relevant indicators for detecting driver fatigue (Eriksson and Papanikotopoulos 1997).  

In the recent literature, information from multiple eye-activity variables has been used to make reliable 

predictions of a given cognitive state or human factor (Tsai et al. 2007; Regis et al. 2012; Li et al. 2013; Jang et 

al. 2014). Specifically, multivariate machine learning techniques have been successfully applied to combine a 

variety of measures from eye-activity data (Liang et al. 2007; Marshall 2007; Miyaji et al. 2009; Jang et al. 

2014; Jaques et al. 2014). Examples of algorithms that have been employed in this aim include linear 

discriminant analysis (LDA) (Richstone et al. 2010; Jang et al. 2014), support vector machines (SVM) (Jang et 

al. 2014; Jaques et al. 2014), Bayesian inference systems (Diard et al. 2013; Jaques et al. 2014), Neural 

Networks (Nets) (Richstone et al. 2010; Marshall 2007), Adaptive Boosting (AdaBoost) (Miyaji et al. 2009) and 

Random Forest (Ren et al. 2013; Jaques et al. 2014). Whilst the individual contribution of each single eye-

activity metric is not directly assessed by these algorithms, the process of variable selection has provided 
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machine learning with the ability to define this contribution as well as a framework to identify the most relevant 

variables in cases where the most informative eye-activity measures are unknown.  

To date, a number of software packages exist for the analysis of eye-tracking data with varying 

functionality, which we compare in Table 1. To the best of the authors’ knowledge, the main toolboxes are 

currently as follows: 

- TobiiSDK: a Software Development Kit made available by the eye-tracker manufacturer Tobii for 

developers to implement their own applications and export the data to MATLAB for further analysis 

(Tobii Technology Inc, 2014) 

- EyelinkToolbox: manufactured by SR Research, it provides a series of MATLAB functions aimed at 

easing the creation of experiments and importing raw data collected from EyeLink eye trackers into 

MATLAB (Cornelissen et al. 2002). 

- ILAB: this software for post-experimental eye-movement analysis is based on MATLAB and focuses 

on the display of gaze trajectories prior to the computation of fixations and saccades (Gitelman 2002). 

- Mirametrix Toobox: another MATLAB toolbox that enables to import eye-tracking data into 

MATLAB (Hennessey and Duchowski 2010). 

- PyGaze and its extension PyGazeAnalyzer: an open-source toolbox in Python that is focused on the 

creation of eye-tracking experiments as well as gaze visualization (Dalmaijer et al. 2013). 

- GazeAlyze: a toolbox that provides a functionality similar to PyGaze but is based on MATLAB and 

includes a GUI environment (Berger et al. 2012). 

- FuncSim toolbox: another open-source toolbox that focuses on the specific goal of measuring similarity 

between gaze scan paths (Foerster and Schneider 2013). 

- EYE-EEG: a plugin of the EEGLAB MATLAB-based toolbox for multimodal data analysis enabling to 

import eye-tracking data (fixations, saccades, pupil rate) and synchronize it with EEG data recorded 

during the same experiment (Plöchl et al. 2012).   
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Table 1. Comparative review of existing software for eye-tracking data analysis 

Software Inputs for 

Analysis 

Primary 

Language  

Experim

ent  

Loader 

Raw Data 

Importer 

GUI  Classificat

ion 

Variable 

Selection 

Variable 

Significance 

Test 

TobiiSDK Fixations 

Saccades 

Pupil size 

Blinks 

 

.Net 

C/C++ 

MATLAB  

(binding) 

Yes Yes 

 

No No No No 

EyelinkToolbox Fixations 

Saccades 

Pupil size 

Blinks 

 

MATLAB 

 

Yes1  

 

Yes No No No No 

Mirametrix 

Toobox 

Fixations 

Saccades 

 

MATLAB Yes Yes No No No No 

PyGaze 

Analytics 

Fixations 

Saccades 

 

Python Yes Yes No No No No 

ILAB Fixations 

Saccades 

 

MATLAB Yes Yes Yes No No No 

GazeAlyze Fixations 

Saccades 

 

MATLAB Yes Yes Yes No No No 

FuncSim Fixations 

Saccades 

 

MATLAB Yes Yes No No No No 

EEGLAB + 

EYE-EGG 

Fixations 

Saccades 

Pupil size 

Blinks 

 

MATLAB Yes2  Yes Yes No  No No 

EEGLAB  + 

EYE-EGG + 

BCILAB 

Fixations 

Saccades 

Pupil size 

Blinks 

 

MATLAB Yes2  Yes Yes Yes2 

 

No No 

EALab Gaze 

Fixations 

Saccades 

Pupil size 

Blinks 

Glissades 

MATLAB Yes3  Yes Yes Yes Yes Yes 

1via PsychToolbox 
2only in combination with EEG data 
3via map files (no programming required). 

 

Despite the existence of software and toolboxes for dealing with eye-tracking data, there is still a lack of 

accessibility to multivariate pattern analysis for users with no programming background. Most of the existing 

software indeed requires basic programming skills in languages such as Python, C/C++ and Matlab. Previous 

research has reported the development of an eye-detection system from a smart camera using a visual 

programming environment called LabView (Mehrubeoglu et al., 2011). However, the data analysis stage was 
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not addressed and the code was not made public. In addition, the large majority of existing software toolboxes is 

focused on the analysis and display of gaze data (i.e. fixations and saccades) while other eye-activity measures 

of interest such as pupil size, blinks and glissades are not considered. As a result, to date the only way of 

including data from all aspects of eye activity is to do so in combination with other sensor modalities such as 

EEG by using an EEG toolbox. 

 

 
Fig. 1 EALab framework: At the top, the icons illustrate the structure of the raw data organised into three 

folders or directories. Below these folders, each text box represents a module, which name is highlighted with a 

green background. Each module corresponds to an interface of the toolbox. The actions that can be performed 

within each module are listed inside the box, followed with the resulting dataset below the double line. 

 

In this context, the purpose of the present paper is to fill the identified gaps by presenting a new toolbox, 

called EALab. Specifically, the proposed software addresses the need for performing multivariate pattern 

analysis on a large range of eye-tracking data accounting for all potential measures of interest to the study of a 

given phenomenon. Thus, the goal of this toolbox is to enable to identify the most relevant variables (i.e. the 

best predictors) and discard the redundant ones while evaluating their predictive power in the context of the 

experiment in consideration. To do so, the toolbox consists of three main modules that correspond to each stage 

of the analysis workflow (Figure 1). The first module enables to perform the raw data processing by computing 
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all potential eye-activity measures of interest as listed in Figure 1. Once this extraction stage is completed, the 

software allows running two additional modules of analysis on the obtained variables, namely variable selection 

and pattern classification. This functionality is provided by means of a user-friendly GUI that allows a large 

number of users from diverse disciplines and backgrounds to analyse their data without any programming 

requirements. In addition, the software makes it possible to export the generated descriptors to comma-separated 

values (CVS) to facilitate their importation into generic analytic tools such as Excel and SPSS. 

 

 

Raw data requirements 

The software is able to parse raw data from both Tobii © and SensoMotoric Instruments (SMI ©) eye-

tracking techniques (e.g. SMI eye-tracking glasses (Bohme et al. 2006; Fromberger et al. 2012)). The standard 

raw files from ClearView EyeTracker recorders, i.e. GZD files (gaze data files) from the SMI BeGaze recorder 

and FXD formats (fixation data files) are supported. Both types of files are encoded into standard ASCII text 

files, which is a format commonly used in eye-tracking research through popular technology including Tobii 

LCD screen products such as T60, T120, TX300 (e.g. (Shahimin et al. 2014; Thiessen et al. 2014; Jaques et al. 

2014; Wilkinson and Mitchell 2014; Kaneko and Tomonaga 2014). Data collected with SR research EyeLink 

eye-trackers are equally supported provided that EDF (Eye Link Distribution Format) files are first converted to 

text files (ASC format). Finally, we have included an additional functionality for data from alternative eye-

tracking manufacturers and formats, which can be exploited through the ‘brand free’ option provided in the 

GUI. In this case, the gaze data and timestamps must be provided as a csv file where the first column contains 

the timestamp, the second and third columns contain the X and Y coordinates of the left eye, respectively, the 

fourth and fifth columns contain the X and Y coordinates of the right eye, respectively, the sixth and seventh 

columns contain left and right pupil diameter (optional), and the eighth and ninth columns contain the left and 

right distance, respectively. 

 

Methodology 

 

Eye-activity measure extraction (module 1) 

The first module is responsible for processing the raw data collected with the eye-tracker hardware during a 

given experiment in order to generate the database of eye-activity measures (please see Table A.1 of Appendix 1 

for the full list of measures extracted by EALab and their abbreviated names, as well as Table 2 for a definition 

of the terms used to refer to each measure). The raw data are typically a set of x and y coordinates for each eye, 

which represent the horizontal and vertical positions of gaze points on a normalized scale, respectively. This 

normalisation is usually performed using the screen size as a reference. EALab allows for the raw data files to 
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contain five types of metrics as computed by the eye tracker simultaneously for both eyes, namely gaze points, 

fixation points, pupil diameter, blinks and dynamic features such as glissades and visual angle. When analysing 

eye activity, a common requirement is to study the relevance of the information provided by these measures for 

the prediction of a given condition of interest, which is temporally determined with respect to experimental 

epochs.  

In the case of gaze data, two types of measures can be extracted with EALab, namely saccades and 

fixations. A saccade measures the displacement of the gaze focus between two fixation points. Sequential gaze 

reference samples, i.e. in the absence of a new fixation, are considered part of the saccade. Therefore, the total 

length of the saccade is the sum of all contiguous distances while the time elapsed from the first gaze point to 

the last one within a saccade forms the saccade duration. The latter is useful for computing saccade measures 

such as saccade velocity. The total duration of the session or epoch allows computing frequency measures. As 

for fixations, commonly used measures can be computed from their duration and frequency within a block. 

As regards pupil diameter, a variety of measures can be extracted such as average, maximum value and 

correlation between both eyes, which are known for their relevance in the literature (Hess and Polt 1964; Gabay 

et al. 2011; Otero et al. 2011). Information about the predictability of pupil change like entropy has been 

evaluated as a potential predictor of surgical experience (Tien et al. 2014). Additionally, the pupil diameter rate 

of change provides a measure of the dynamicity of the pupil with respect to time. Differences in pupil activity 

can be seen during fixations, saccades, pre-blink and post-blink periods, hence the need for extracting 

independent measures for these periods in addition to the whole block. Although it is dependent on the applied 

sensing technology, the use of wavelet filters to remove low-frequency components can serve to improve the 

signal-to-noise ratio. The aforementioned pupil measures can additionally be extracted from the pupil size signal 

after wavelet smoothing as implemented in Marshall (2007). EALab decomposes the signal using Daubechies 

level 4 wavelets and selects its coefficients using Stein’s unbiased risk estimate to construct the smoothed signal 

(Mallat 2008). 

Another set of measures can be extracted from blinks, which are identified by examining input raw data 

where the eye is closed. Blink reflex is considered a simultaneous loss of tracking of the cornea for both eyes. 

Depending on the blink duration, three different types of measures are computed by EALab: 1) simple blinks if 

their duration is less than 300ms, 2) slow-blinks if their duration is comprised between 300ms and 500ms, 3) 

micro-sleeps if their duration is comprised between 500ms and 1s, and 4) any further eye closure or phenomena 

where the pupil is not detected by the eye tracker for more than 1s. We consider the samples as missing data if 

the segment indicating loss of tracking has not been homogenous (i.e. intermittent sequence of null and valid 

data) or if the loss of tracking has only involved one eye. A commonly used measure of blinks is the frequency 
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3of occurrence within an experimental block. These measures can be considered variables of interest when 

delineated with respect to a representative label (a task or condition) of the block. 

 

Table 2. Definition of the terms used in relation to the eye-activity measures extracted by EALab 

Saccades 

Term Description 

Number  Count of the number of saccades during a block. 

Frequency Total number of saccades divided by the duration of a block in seconds 

Length Distance covered by a saccade, which is spanned by line segment connecting two contiguous 

gaze samples. 

Maximum Maximum duration in seconds or maximum distance covered by a saccade in a block. 

Average Average duration in seconds or average distance covered by a saccade in a block. 

Velocity Ratio between the length covered and the duration of a saccade. 

Fixations 

Term Description 

Number Count of the number of fixations during a block 

Frequency Total number of fixations divided by the duration of a block in seconds. 

Maximum Maximum duration in seconds of a fixation during a block. 

Average Average duration in seconds of a fixation during a block. 

Pupil 

Term Description 

Maximum Maximum value of the pupil diameter or pupil rate of change in a block. 

Average Average value of the pupil diameter or pupil change of rate in a block. 

Entropy Computed as the Shannon entropy of the pupil diameter signal during a block. 

Correlation Spearman correlation between the pupil diameter signals of both eyes during a block. 

Rate of change Sum of the ratios between the differences in pupil diameter of adjacent samples and the 

sample frequency, divided by the total number of samples in a block. 

Wavelet 

smoothed 

Filtered pupil diameter using a de-noising process through wavelets (Daubechies 4 wavelets 

and Stein’s unbiased risk as threshold selection) 

Wavelet 

Energy 

Sum of the sums of the squared-wavelets coefficients for eight levels of decomposition. 

Pre-blink Pupil diameter before a blink (simple blink, micro-sleep or short-sleep). 

Post-blink Pupil diameter after a blink (simple blink, micro-sleep or short-sleep). 

Blinks 

Blink Simple blinks with duration less than 300ms 

Slow blinks Blinks with duration between 300ms and 500ms 

Micro sleeps Blinks with duration between 500ms and 1s 

Eye closure Missing data from both eyes during more than 1s 

 

 

Variable selection and analysis (module 2) 

The set of samples handled by EALab is composed of observations or independent variables (the eye-

activity measures) and a target variable (the condition to be predicted). The second module of the toolbox is 

aimed at scoring the variables of the database generated in the previous module so as to select the best 

predictors. Indeed, depending on the design of the experiment and the target variable to be predicted, some of 

the extracted eye-activity measures may be redundant and therefore penalise the accuracy of the applied 

classifier. To address this issue, the analysis performed via this module enables to discard less relevant variables 

and select a subset of variables that improve a classification criterion. In addition, the selected variables can be 
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ranked based on an average score and the robustness of this score (significance analysis), which is performed 

via a permutation test to provide information about the relevance and quality of the selected measures as 

predictors of the target variable. The statistical significance may equally serve for conducting hypothesis-driven 

research over the overall set of eye-activity measures. A detailed explanation of the methods in question is 

presented in the subsections below. 

 

Overview of variable selection methods 

Several methods exist for selecting a set of variables. When a scoring approach is used and a threshold is 

applied over this ranking to define a subset of variables, this selection method is known as filtering. Other 

machine learning algorithms make use of a built-in mechanism, which makes it possible to compute a score 

from its internal model parameters. This is the case of support vector machines, random forest, logistic 

regression and Gaussian mixture models, for example. These types of variable selection strategies are the so-

called embedded methods. Alternatively, instead of a direct scoring or internal built-in mechanism, the scoring 

function may be based on an evaluation procedure through a classifier that is used as a “black box” to score the 

predictive power of a subset of variables. These variable selection methods are known as wrappers. As a 

difference to the embedded methods, wrappers enable to consider the evaluation inside the variable search. 

Thus, cross-validation folds can be implemented inside the variable search process to be able to estimate how 

the classifier will perform in practice with a given test set of variables, which is the approach adopted in EALab. 

To implement the wrapper approach, one option is to perform an exhaustive search given all possible 

combinations of variables, which can require a very large number of computations. Instead, it is desirable to 

adopt an efficient strategy that searches for an optimal subset without the need for testing all possible 

combinations. The greedy stepwise search approach provides a solution to this issue. Common search strategies 

within this methodology make use of sequential algorithms, which can be of two types, namely forward 

selection and backward elimination. The former starts with an empty set of variables and sequentially adds new 

ones until there is no further improvement given the decision criterion. On the contrary, the backward 

elimination algorithm starts with a candidate subset that contains all variables and sequentially eliminates 

variables until the criterion worsens. Sequential forward selection performs best when the set of optimal 

variables is small. At the beginning of the procedure, large combinations of variables can potentially be 

evaluated, however, the more variables to evaluate, the smaller the flexibility of the search. Besides, some 

variables can become of minor importance by the end of the procedure. On the contrary, sequential backward 

selection performs best when the optimal set of variables is large, but a disadvantage is that variables are not 

further evaluated once they have been discarded. These strategies are typically implemented by evaluating the 

performance of a learning machine in a wrapper fashion. 
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The weaknesses of both sequential search types can be addressed by implementing a bi-directional 

correction in the sequential steps, called floating sequential (FS) variable selection (Pudil et al. 1994; Ververidis 

and Kotropoulos 2008, 2006), which is categorized into two types: sequential forward floating selection (SFFS) 

and sequential backwards floating selection (SBFS). Thus, in this approach the search is not strictly sequential 

towards a single direction, it rather ‘floats’ forwards first and then backwards (SFFS) or backwards first and 

then forwards (SBFS) with the objective of improving the criterion. An explanation of the floating mechanism 

implemented in EALab is presented in Appendix 3, taking the example of the SFFS.  

By applying a scoring function over this set of samples, a set of importance scores can be obtained for each 

variable. This score is typically interpreted as increasing with the predictive power of a specific variable with 

respect to the target. This approach is used to directly obtain a ranking of a set of variables based on their scores. 

Examples of scoring approaches that do not require learning include those using correlation-based metrics such 

as mutual information, information gain and distribution comparison tests. On the other hand, embedded 

methods can be considered scoring approaches that require learning; thus its mechanism is based on the 

importance of each variable, particularly for solving a classification problem. However, if the ranking is used to 

select a set of variables, it is necessary to define a cut-off threshold, which could be arbitrary (selected by the 

user) or based on statistical assumptions about the underlying null distribution.   

EALab implements Relief-F, which is considered one of the most popular approaches to rank variables and 

determine their importance. It has been used in a variety of bioinformatics areas such as tumour classification 

(Metsis et al. 2012) and gene selection (McKinney et al. 2013; Cordell 2009; Ye et al. 2008; Saeys et al. 2007). 

Most scoring approaches assume the conditional independence of the variables; as a result, they are less reliable 

for experiments where the variables may involve interactions. Relief-F does not make this assumption. It aims at 

estimating the quality of the variables according to how well their values distinguish between instances that are 

near to each other. An explanation of the mechanism of this algorithm is provided in Appendix 3. 

To test the robustness of the most important variables selected, the statistical significance of the scores can 

be computed. In this aim, EALab applies a non-parametric method that consists in computing the scores by 

permuting the target variable several times, i.e. a permutation test (Efron and Tibshirani 1994). This approach 

produces different ranking values obtained through several runs of the scoring function under the null 

hypothesis. An empirical probability distribution of the scores can be generated for each eye-activity measure 

from these rankings. The resulting distributions can be used to test the null hypothesis. If the original score 

value of a variable lies far outside most of the mass of the distribution, then this variable can be considered as 

significantly predictive of the target variable. This allows computing the statistical significance of the original 

test. The statistical significance of the importance score of a variable provides an indicator of its stability. Whilst 
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the statistical significance may suggest the superior reliability of some of the scores, this information should not 

be used as a method for selecting the most important variables. To this aim, it is more suitable to apply a search 

algorithm over the whole set of variables, which will enable to find the best subset of variables that minimizes a 

given decision criterion (based on the classification error for instance). Following this, a permutation test can be 

applied over the selected variables to provide them with a score and determine the robustness of these scores.  

 

Eye-activity variable selection process in EALab 

A wrapper approach is first designed; a Bayesian classifier with Gaussian probability density function is 

used to predict the class label. Bayesian classifiers (Williams and Barber 1998; Rasmussen 2006) have been 

widely used in a variety of pattern recognition applications from signals such as biomarker discovery (Chu et al. 

2005), emotion recognition, (Ververidis and Kotropoulos 2008) and the detection of cognitive states (Wang and 

Mitchell 2002). This type of classifier presents the advantages of being very fast to compute as well as providing 

reasonably good generalization properties. This classifier is wrapped into a k-fold cross-validation (CV) 

evaluation process, being k the number of folds (k partitions of the whole data). One fold is taken as a test set 

while the remaining k-1 is used for training the algorithm. The average numbers of positive classification values 

is taken as criterion function or heuristics. Alternatively, this criterion can be defined through a statistical test by 

computing the variance of the correct-classification rates (CCR) within each cross-validation. This can be done 

by defining either a lower bound or both lower and upper bounds on the confidence interval of the current 

variable criterion in order to accept a new variable (Ververidis and Kotropoulos 2008). Depending on the user’s 

choice, the software implements a sequential selection search that is either backward or forward, with or without 

floating, using as a criterion the fraction of correctly classified observations in each cross-validation fold, 

divided by k. Once the variables have been selected, the Relief-F algorithm is applied by EALab to repeatedly 

compute the ranks over a selected number of times by applying permutation tests (Efron and Tibshirani 1994). 

Selected confidence intervals are derived from the null distribution of the scores of all the variables and the 

position of the original score in the distribution is assessed for significance.  

 

Classification algorithms (module 3) 

The toolbox enables to opt for different classification algorithms. Specifically, four learning algorithms and 

two meta-classifiers are implemented; these have been reported to be successful in recognizing mental states in 

previous work. From left to right in Figure 4, the first three are linear discriminant analysis (LDA) (Duda et al. 

1999), quadratic discriminant analysis (QDA) (McLachlan 2004) and a Bayesian classifier with Gaussian 

density function and maximum-a-posteriori inference (Murphy 2012). For example, in Richstone et al. (2010), 

LDA has previously been used to assess surgical skills from eye-activity measures whilst Bayesian inference 
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systems have been applied to stress detection by Barreto et al. (2007). In LDA all classes are assumed to have 

the same covariance matrix while classes may have different covariance in QDA. Another classification 

algorithm available in EALab is support vector machine (SVM) (Cristianini and Shawe-Taylor 2000; Cortes and 

Vapnik 1995), which is a popular large margin classifier algorithm as it is aimed at finding a hyper-plane that 

maximizes the distance between classes (Drucker et al. 1997). As an example of application, SVM and Bayesian 

classifiers have been used to detect drivers’ fatigue in Senaratne et al. (2007). The fourth learning algorithm that 

can be selected in EALab is a neural network (Neural nets), which is a three-layer feed-forward neural network 

with sigmoid activation functions. The back-propagation algorithm is implemented as described in Duda et al. 

(1999). For example, neural nets have been applied to grade surgeon experience based on eye-tracking data 

(Richstone et al. 2010; Marshall 2007). 

The next two algorithms are meta-classifiers because they implement a base classifier and then apply a 

given method to enhance its performance. These algorithms are composed of a combination of simpler 

classifiers, which together make a “better” one. The first is adaptive boosting (AdaBoost) (Zhu et al. 2009; 

Hastie et al. 2009), which aims at minimizing the weighted error by sequentially training a set of simple and fast 

classifiers. Each classifier outputs a weight impurity score for each observation. The resultant weights are used 

for the training of the next sequential (boosted) classifier. The second meta-classifier implemented in EALab is 

random forest (RF) (Breiman 2001), which creates a group of decision trees where each tree is able to see a 

subset of the overall dataset. Each of these subsets is built by means of a method called bootstrap-aggregating 

(Breiman 2001). RF combines the inference provided by each decision tree by means of a voting strategy (e.g. 

taking the class with the highest number of votes).   

 

User guide 

In this section we provide guidance on how to use the EALab toolbox for eye-tracking research based on a 

dataset example. The demo data are provided along with the toolbox in the EALab source files folder. One set of 

demo data was collected using a remote Tobii eye-tracking system of 50 Hz (model 2140C) and another demo 

experiment was recorded with wireless SensoMotoric Instruments (SMI) eye-tracking glasses of 30 Hz (model 

ETG 2W). Once the appropriate eye-tracking manufacturer is selected in the first interface of EALab, the 

modules of the toolbox and steps of analysis are the same regardless of the eye tracker. The user guide provided 

in this section is based on the demo data collected with the Tobii eye-tracking system. The experiment consisted 

in a simulated bi-manual motor task performed by thirteen subjects, among which seven were sleep-deprived 
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and six were rested. Each subject repeated the task in three different sessions. Each session was divided into 

three time intervals (epochs) corresponding to each of the three separate actions of the motor tasks. 

In this example, the multivariate analysis methodology provided by EALab enables to 1) generate an 

exhaustive dataset of eye-activity measures extracted from the raw data, 2) identify the eye-tracking variables 

that best predict fatigue, and 3) predict whether a subject is fatigued or rested by allocating them into the correct 

group or class at a given time interval. The detailed design as well as the interpretation of the results for this 

particular experiment are out of the scope of this paper. 

 

Data preparation and file directories 

In order to perform the analysis workflow provided by the software, the raw eye-tracking data must be 

organised into three separate directories: one for the gaze data, a second one for the fixation data and a third one 

for the experimental design. When the selected brand is SMI, the fixation directory is not required. In the case of 

SR Research/EyeLink data format, only a single ASC file is required for each experimental session. 

The raw data generated by the eye-tracking recorder software are typically contained in two different types 

of files, namely the gaze and fixation data files. These files must be renamed using the following name format: 

[NAME]_[SESSION ID].gzd for the gaze files and [NAME]_[SESSION ID].fxd for the fixation files, where the 

name is a unique alphanumeric name and the session ID is an integer. The same file name and session ID must 

be used in both formats for the same subject and session. e.g. SUBJ1_1.gzd and SUBJ1_1.fxd. Once the files 

have been renamed accordingly, the user places the files in two separate folders: one for the fixations files and 

one for the gaze files. 

In addition, a third type of files is required to provide EALab with the necessary information that will 

define the experimental design and task. These must be created by the user and placed into a separate folder, 

which we will refer to as the “map directory”. This directory must consist of a series of Excel files (one for each 

subject), with the following name format: [NAME]_[SESSION ID]_[CLASS LABEL].xls. Each Excel file must 

contain four columns in the following order: “Block”, “Repetition”, “Start”, and “Finish”. The first column is an 

index to determine different types of block; the second column is an index of the repetition of the block; the 

third column is an indicator of the time when the epoch starts and the fourth column indicates the time at which 

the epoch finishes (both expressed as a number of gaze samples, knowing that gaze samples multiplied by the 

frequency of recording is equal to timestamp). The time count starts at the beginning of the recording and the 

start and finish times can be annotated using a standard chronometer during the experiment. Thus, there is no 

need for restarting the recording for every block or task. Alternatively, this information can be obtained through 

eye-tracking visualisation tools provided by the manufacturer such as Tobii Studio.  
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Eye-activity Measure Extraction Interface 

When EALab is launched, the extraction interface is the first to open, as shown in Figure 2. The first three 

buttons at the top of this interface allow the user to indicate the path of the directories where the raw data and 

map files are located. Once this information is provided, the user can select the eye-tracking measures of interest 

that they wish to extract from the raw data (highlighted by number 5 in the figure). These will make the database 

that is generated by clicking on the “compute database” button (6a). A description of the outcome of the 

database generation is shown in the message panel box, which also lists the correspondence between each 

subject ID and file name. The interface gives the option to export the database to an Excel file for further 

exploration (6b and 6c). The database consists in one column for each eye-tracking measure computed during 

the extraction process and the last three columns are dedicated to the Epoch, Class and Subject ID, respectively. 

Furthermore, the interface provides visualization capabilities to explore the generated variables. The 

visualization functionality enables to select two eye-activity variables of interest to visualise them in a scatter 

plot and generate a histogram for a specific variable, grouped by classes. 
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Fig. 2 Eye-activity Measure Extraction Interface. The numbers in red highlight the key elements of this 

interface. They are ordered with respect to the suggested sequence of steps a user can perform, as follows: 

(1)(2)(3) show the selection of the file directories where the raw data are located; (4) is the scrolling menu for 

selecting the raw data format; (5) corresponds to the independent tick boxes for selecting the eye-activity 

measures of interest; (6a) is the button to import the raw data and compute the measures selected in (5); (6b) 

enables to select the directory where to export the database; (6c) launches the exportation process. The buttons 

starting with 7 are not compulsory for the analysis. They provide the option to generate graphic files to show the 

scanpath signatures from gaze and fixations. To do so, (7a) opens a window where the user can select the file 

directory where to save the figures and (7b) initiates the generation (which can take a lot of processing time in 

case of a large dataset like in the example of demo 1). (8)(9) show the visualization options; and finally (10) 

allows moving on to one of the other two interfaces for further analysis. 
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Eye-activity Measure Selection Interface 

The selection interface (Figure 3) is able to perform two types of analysis: automatic variable selection and 

ranking. The selection process can be performed manually by selecting the desired variables from the panel and 

clicking on “add” (or “remove” to unselect a variable). Alternatively, the toolbox provides an auto-mode 

variable selection. This can be chosen by clicking on “auto”, which starts a new process and opens a new 

interface (bottom part of Figure 3). The configuration of the automatic selection process can be customised by 

updating the settings available in this interface. Specifically, the software provides four different alternatives for 

setting the criterion (correct classification rate, CCR) and calculating the importance scores of the variables: 1) 

cross-validation, 2) cross-validation plus a lower bound test on the CCR confidence interval, 3) cross-validation 

plus lower and upper bound tests on the CCR confidence interval, and 4) resubstitution. In the resubstitution 

option, the overall dataset is used for training and then again for the testing phase. Nevertheless, it is worth 

mentioning that this method is known for yielding optimistically biased CCR. The other three methods are more 

robust as they employ independent sets for training and testing. In addition, the criterion settings allow setting 

the threshold parameter of the confidence interval (gamma) that is used in case a statistical variable elimination 

method is selected, as well as the percentage of data that will be used for testing (e.g. if it is set at 10%, then 10 

cross-validation folds will be created from the data). As for the selection strategy, four methods are available, 

namely sequential forward, sequential-forward floating, sequential-backward elimination and sequential-

backward floating elimination. 

Taking the examples of the demo data, a set of relevant eye-tracking measures can be found with a 

maximum correct classification rate of 0.75. Hence, one can rank the selected subset of measures by relevance 

for the condition/stimulus of interest. The larger the number of trials selected during the significance test the 

more robust the analysis and the more reliable the ranking. The highest ranked eye-activity measure for this 

example of subsets is the frequency of eye closure (FEyesClosed) [Permutation test, p=0.0010, N=200, 

alpha=0.05]. Previous research has studied blink rate as a possible measure of fatigue and concluded that the 

rate of blinking is related to ‘mental tension’, a type of relief mechanism controlled by the nervous system 

(Stern et al., 1994). Additionally, one can find that significant measures such as MaxSacTime [Permutation test, 

p=0.001, N=200, alpha=0.05], SacAvgVelocity [Permutation test, p=0.001, N=200, alpha=0.05] and 

SacFrequency [Permutation test, p=0.026, N=200, alpha=0.05] are related to saccades. Previous research has 

hypothesised that the level of fatigue can be determined by slow saccades with noticeable slowing at large 

amplitudes. Additionally, ocular measures of pupil size have been found to be relevant for mental workload 
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(Recarte and Nunes, 2003) and a surrogate marker of brain module activation (Granholm and Steinhauer, 2004). 

Therefore, users can benefit from the variable exploration in EALab to guide their analysis over these different 

measures and examine the discrimination power for the concerned conditions/stimuli and the selected variables 

in the classification interface. 

 
Fig. 3 Eye-activity Measure Selection Interface. The numbers in red show the elements of this interface. They 

are ordered with respect to the suggested sequence of step a user can perform, as follows: (1)(2) buttons enable 

to select variables manually by choosing from the left-hand side list of extracted measures to add them to the 

right-hand side list of selected variables and by removing the unwanted one; (1*) to customise the settings for 

the auto-variable selection mode, (2*) to launch the auto-variable selection panel, which is shown in the 

screenshot below the interface window. Once the variables have been selected, either manually or through the 

auto mode process, then the user can click on “compute significance” (3). (4) enables to select the folder to 

where the user wishes to export the ranking results in comma-separated value (csv) format and (5) performs the 
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exportation process to the selected folder. Finally the user can choose to move on to the classification module by 

clicking on (6). 

 

Classification Interface  

The third interface is designed to classify the subjects with respect to the target condition in consideration 

using the selected variables. Taking the example of the demo data, the objective of this module is to correctly 

predict the group to which each subject belongs by identifying whether they are fatigued or rested based on the 

eye-tracking variables. To do so, the classification process is to be able to verify the ability of the eye-activity 

variables to predict the condition. 

The first panel of this interface is the “Classifier selection” (Figure 4). This stage enables the user to choose 

from six different classifiers, which correspond to the ones previously discussed in the methodology section. 

The next stage of this interval provides general settings of classification through which the user is able to select 

the number of variables that will be used to train the classifier according to four different options: 1) use all the 

variables selected in the previous module, 2) use all selected variables which score is significant, 3) use the best 

two variables only, and 4) use all available variables regardless of whether they have been selected in the 

previous module or not. It is worth mentioning that the third option may not provide the best results, however, it 

enables the user to explore two eye-activity variables independently. 

In case the user is interested in testing the classification power of two independent eye-activity variables, 

the eye-activity measure selection interface (Figure 3) enables to manually select the two variables of interest 

from the left-hand side panel of extracted measures ensuring that all other measures are removed from the right-

hand side panel of selected measures. Using two variables it is possible to plot the 2D decision boundaries of the 

selected classifier. Additionally, in binary classification scenarios, the toolbox provides the possibility to plot the 

ROC curve. All classifiers are evaluated using a k-fold cross validation for which the number of folds can be 

selected through the interface. The results of the classifier are displayed in a confusion table where the rows 

correspond to the predicted values and the columns correspond to the real values. The values of sensitivity, 

precision and specificity are also appended to the confusion matrix. Finally, the message box located at the 

bottom of the window provides the total values for accuracy, specificity, sensitivity, precision and area-under 

the curve (AUC) for binary class problems. Taking the fatigue example into consideration, the classification 

through multivariate quadratic discriminant analysis and following a k-fold cross-validation evolution enables to 

obtain 76.4% accuracy, 72.6% precision, 79.22% sensitivity and 72.25% specificity considering all selected 
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measures. It is worth noting that using a single measure would not enable to discriminate certain conditions in a 

reliable way, hence the importance of a multivariate approach. 

 
Fig 4. Classification Interface. The numbers in red show the components of this interface. They are ordered 

with respect to the suggested sequence of steps a user can perform, as follows: (1) selection of the classifier and 

configuration of its settings, (2) setting the variables to use for the classification and the number of folds for the 

cross-validation, and finally (3) running the classifier. In case the boundary and ROC (Receiver Operator 

Characteristics) tick boxes are marked, then the plots will appear as shown in the bottom part of the figure. The 

one in the left-hand side represents the decision boundaries of the classifier applied to the example data provided 

with the software, which was a quadratic discriminant analysis (QDA) in this example. The samples are shown 

in dark red and blue for the conditions of interest (i.e. fatigued and rested, respectively) considering the 

following eye-movement measures: the frequency of eye closure (FEyesClosed) and saccade frequency 

(SacFrequency), as shown in the axes labels. The prediction made by the classifier about the conditions 

associated with each sample is marked by the light red and blue areas. As for the graph in the right-hand side of 
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Figure 4, this shows the ROC curve based on the probability of detection against the probability of failure, 

therefore providing a visual representation for evaluating the performance of the classifier. 

 

 

Discussion  

This paper developed EALab, a MATLAB-based toolbox for analysing a wide range of eye-tracking data 

while providing an intuitive and easy-to-use GUI intended for users from a variety of areas. A gap was 

identified through a detailed comparison of existing toolboxes, highlighting the need for this type of software. In 

addition, similar analytical approaches to the one implemented by EALab have been proposed in the research 

literature (Jang et al. 2014; Richstone et al. 2010; Marshall 2007; Ren et al. 2013; Frost et al. 2013), which 

supports the relevance of the proposed toolbox for the analysis of eye activity as a predictor of human cognition 

within a growing, heterogeneous research community. The need for performing the analysis steps provided by 

EALab using a large set of eye-activity measures was equally identified within our own research team, as well 

as the need for a GUI and reproducibility. As regards the methods implemented in this toolbox, users are 

encouraged to read the references provided in the corresponding sections as well as additional material for a 

complete background on the detailed concepts underlying each method. 

Throughout its development, the software has been tested and assessed by scientific personal with no 

programming skills in order to design it accordingly with a particular attention on user-friendliness. Other 

research groups have developed graphical tools for designing experiments and loading raw data. As a result of 

our experience, we have observed that non-specialist users are more comfortable with editing and creating files 

with Microsoft Excel than with ad-hoc interfaces created for this purpose. For this reason, EALab addresses the 

need for defining the mapping files through a protocol created over Excel files (.xlsx), with which users are 

commonly familiar regardless of their technical background. Thus, this format also presents the benefit of 

simply requiring widespread software such as Microsoft Office suite and any open-source variants including 

LibreOffice/OpenOffice. The only additional requirement for using EALab is a licensed copy of MATLAB and 

the statistics Toolbox for some functions. 

 Following the release of the first version of this toolbox, we aim to work on improving and extending its 

functionality. In the current version, the toolbox is able to import raw data from Tobii (Clearview) and SMI 

(BeGaze) eye-trackers, while SR Research data are only supported if previously converted to ASC format. This 

represents a limitation in the usability and contribution of EALab, which is due to the lack of access to EyeLink 

eye-tracking systems within our centre. In order to improve the compatibility of EALab and facilitate its use for 
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a wide range of researchers, we aim to further develop the possibility to import EyeLink data in the near future 

and are hopeful that other research groups will contribute by providing raw data from different manufacturers to 

increase the number of technologies supported by EALab. Additionally, in the current version, the software 

makes use of the event markers provided in the raw data to distinguish between saccades and fixations, which 

are defined as per the standard of the device manufacturer. In future releases, we could work on providing the 

functionally of re-labelling these markers, allowing for the user to re-program these events by re-defining the 

fixation radius, for example. Additionally, we will consider improving the processing speed for large datasets by 

parallelizing some procedures and making use of the GPU for CPU-intensive operations. 

Overall, EALab is aimed at completing the range of existing software in support for eye-tracking research. 

We hope that a wide number of researchers will benefit from its use and that a fruitful cooperative environment 

of research will be developed around it. 
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Appendices 

 

Appendix 1. Table of eye-activity measures and abbreviations used in EALab 

Table A1.  Eye-activity measures extracted by EALab 

NFix Number of fixations MaxPostblinkL Maximum pupil diameter during 

post-blink periods (left eye) 

FixAvgTime Average fixation time wMaxPupilR Wavelet-smoothed maximum 

pupil diameter (right eye) 

FixMaxTime Maximum fixation time wMaxPupilL Wavelet-smoothed maximum 

pupil diameter (left eye) 

FixFrequency Fixation frequency wAvgPupilR Wavelet-smoothed average pupil 

diameter (right eye)  

NSac Number of saccades wAvgPupilL Wavelet-smoothed average pupil 

diameter (left eye) 

SacFrequency Saccade frequency wEntropyPupilR Wavelet-smoothed pupil entropy  

(right eye) 

MaxSacTime Maximum saccade time wEntropyPupilL Wavelet-smoothed pupil entropy 

(left eye) 

SacAvgVelocity Average saccade velocity wCorrAllPupil Wavelet-smoothed pupil diameter 

correlation between both eyes 

SacMaxVelocity Maximum saccade velocity wPupilRateL Wavelet-smoothed pupil diameter  

rate of change (left eye) 

SacAvgDuration Average saccade duration wPupilRateR Wavelet-smoothed pupil diameter  

rate of change (right eye) 

SacLength Total saccade length wave_energyR Wavelet energy of pupil diameter 

(right eye) 

MaxSacLength Maximum saccade length wave_energyL Wavelet energy of pupil diameter 

(left eye) 

AvgSacLength Average saccade length wSacMaxPupilR Wavelet-smoothed maximum 

pupil diameter during saccades 

(right eye) 

MaxPupilR Maximum pupil diameter 

(right eye) 

wSacMaxPupilL Wavelet-smoothed maximum 

pupil diameter during saccades 

(left eye) 

MaxPupilL Maximum pupil diameter 

(left eye) 

wSacAvgPupilR Wavelet-smoothed average  pupil 

diameter during saccades (right 

eye) 

AvgPupilR Average pupil diameter 

(right eye) 

wSacAvgPupilL Wavelet-smoothed average pupil 

diameter during saccades (left 

eye) 

AvgPupilL Average pupil diameter (left 

eye) 

wSacEntropyPupilR Wavelet-smoothed pupil entropy 

during saccades (right eye) 

EntropyPupilR Pupil entropy (right eye)  wSacEntropyPupilL Wavelet-smoothed pupil entropy 

during saccades (left eye) 

EntropyPupilL Pupil entropy (left eye) wSacCorrPupil Correlation of the wavelet-

smoothed  pupil diameters of both 

eyes during saccades 

CorrAllPupil Pupil diameter correlation 

between both eyes 

wSacRateL Wavelet-smoothed pupil rate of 

change during saccades (left eye) 

PupilRateL Pupil diameter rate of 

change (left eye) 

wSacRateR Wavelet-smoothed pupil rate of 

change during saccades (right 

eye) 

PupilRateR Pupil diameter rate of SacWave_energyR Energy of the wavelet-smoothed 
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change (right eye) pupil diameter during saccades 

(right eye) 

SacMaxPupilR Maximum pupil diameter 

during saccades (right eye) 

SacWave_energyL Energy of the wavelet-smoothed 

pupil diameter during saccades 

(left eye) 

SacMaxPupilL Maximum pupil diameter 

during saccades (left eye) 

wFixMaxPupilR Wavelet-smoothed maximum 

pupil diameter during  fixations 

(right eye) 

SacAvgPupilR Average pupil diameter 

during saccades (right eye) 

wFixMaxPupilL Wavelet-smoothed maximum 

pupil diameter during  fixations 

(left eye) 

SacAvgPupilL Average pupil diameter 

during saccades (left eye) 

wFixAvgPupilR Wavelet-smoothed average pupil 

diameter during  fixations (right 

eye) 

SacEntropyPupilR Pupil entropy during 

saccades (right eye) 

wFixAvgPupilL Wavelet-smoothed average pupil 

diameter during  fixations (left 

eye) 

SacEntropyPupilL Pupil entropy during 

saccades (left eye) 

wFixEntropyPupilR Wavelet-smoothed pupil entropy 

during fixations (right eye) 

SacCorrPupil Correlation between the 

pupil diameters of both eyes 

during saccades 

wFixEntropyPupilL Wavelet-smoothed pupil entropy 

during  fixations (left eye) 

SacRateR Pupil rate of change during 

saccades (right eye)  

wFixCorrPupil Correlation of the wavelet-

smoothed  pupil diameters of both 

eyes during fixations 

SacRateL Pupil rate of change during 

saccades (left eye) 

wFixRateL Wavelet-smoothed rate of change 

of pupil diameter during fixations 

(left eye) 

FixMaxPupilR Maximum pupil diameter 

during  fixations (right eye) 

wFixRateR Wavelet-smoothed rate of change 

of pupil diameter during fixations 

(right eye) 

FixMaxPupilL Maximum pupil diameter 

during  fixations (left eye) 

FixWave_energyR Wavelet-smoothed pupil diameter 

energy during fixations (right 

eye) 

FixAvgPupilR Average pupil diameter 

during  fixations (right eye) 

FixWave_energyL Wavelet-smoothed pupil diameter 

energy during fixations (left eye) 

FixAvgPupilL Average pupil diameter 

during  fixations (left eye) 

wAvgPreblinkR Wavelet-smoothed average pupil 

diameter during  pre-blink 

periods (right eye) 

FixEntropyPupilR Pupil entropy during  

fixations (right eye) 

wAvgPreblinkL Wavelet-smoothed average pupil 

diameter during  pre-blink 

periods (left eye) 

FixEntropyPupilL Pupil entropy during  

fixations (left eye) 

wMaxPreblinkR  Wavelet-smoothed maximum 

pupil diameter during  pre-blink 

periods (right eye) 

FixCorrPupil Correlation of both pupil 

diameters during  fixations 

wMaxPreblinkL Wavelet-smoothed maximum 

pupil diameter during  pre-blink 

periods (left eye) 

FixRateL Pupil rate of change during  

fixations (left eye) 

wAvgPostblinkR Wavelet-smoothed average pupil 

diameter during  post-blink 

periods (right eye) 

FixRateR Pupil rate of change during  

fixations (right eye) 

wAvgPostblinkL  Wavelet-smoothed average pupil 

diameter during  post-blink 

periods (left eye) 

AvgPreblinkR Average pupil diameter 

during pre-blink periods 

wMaxPostblinkR Wavelet-smoothed maximum 

pupil diameter during post-blink 
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(right eye) periods (right eye) 

AvgPreblinkL Average pupil diameter 

during pre-blink periods 

(left eye) 

wMaxPostblinkL Wavelet-smoothed pupil diameter 

maximum during  post-blink 

periods (left eye) 

MaxPreblinkR  Maximum pupil diameter 

during pre-blink periods 

(right eye) 

FBlink Frequency of blinks 

MaxPreblinkL Maximum pupil diameter 

during pre-blink periods 

(left eye) 

FSlowBlink Frequency of slow blinks 

AvgPostblinkR Average pupil diameter 

during post-blink periods 

(right eye) 

FMicroSleep Frequency of micro sleeps 

AvgPostblinkL Average pupil diameter 

during post-blink periods 

(left eye) 

FEyesClosed Frequency for any type of blink 

or voluntary eye closure larger 

than one second. 

MaxPostblinkR  Maximum pupil diameter 

during post-blink periods 

(right eye) 

AvgAngVel Average angular velocity 

(visual angle) 

MaxAngVel Maximum angular velocity 

(visual angle) 

AvgAngAcc Average angular acceleration 

(visual angle) 

MaxAngAcc Maximum angular 

acceleration (visual angle) 

NFGlissades Number of fast glissades 

AvgFGlissades Average fast glissades 

duration 

NSGlissades Number of slow glissades 

AvgSGlissades Average slow glissades 

duration 

TGlissades Total number of glissades 

 

Appendix 2. Sequential Forward Floating Selection (SFFS) 

The SFFS approach is composed of the following series of steps considering the forward case: 

1) Select the best variable that maximizes the criterion, 

argmax J( ); ; 1i k

in N
n N n N n i i 



    
 

2) Select the worst variable, 

argmaxJ( )i
n Ni

n N n


    

3) Check, 

1, J( ) J( )
( , )

2,

i i
i

goto step N n N
f N n

goto step otherwise





  
 


  

where function J(.)  represents the function describing the criterion;N is a vector of selected variables that 

is initialized as N    in the first iteration and only goes through step 1; n  is a single variable only, 

represented as n   when it is the one yielding the worse criterion and n   for the one yielding the best criterion; 

i  is a counter of the number of elements in N . 
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Appendix 3. Relief-F Algorithm  

     The Relief-F algorithm assigns a score to each variable as an indicator of its relevance. It gives a higher score 

to the variables that are better able to discriminate an observation from its neighbours of different classes. 

Relief-F (Kononenko et al. 1997) was introduced as an extension of a previous Relief algorithm (Kira and 

Rendell 1992) to improve its capacity to deal with incomplete, noisy and multiclass problems. It starts with 

selecting a random instance (R) from the set of observations; it searches for another two types of near 

observations within the neighbour of size s: 1) nearest hits (H), which are observations from the same class and 

2) nearest misses (M). The algorithm to compute Relief-F weights is as follows: 

 


 
     

 

   

  1 1
( )

( )
[ ] : [ 1] ( , , ) / ( )+ ( , , ( ))) / ( )

1 ( ( ))

; {1,2,..., }

i

i

k k
i j jj j

ic class R

P C
W n W n diff n R H t k diff n R M C t k

P class R

n N j k

  

where W is the weight of each feature and 0[ ] 0W n  , t is the total number of observations.  diff  is a function 

that takes the values of the random sample instance (R) and nearest hit (H) or miss (M) and calculates its 

distance. k  is a user-defined number of nearest-neighbours and ( )M C is the nearest miss from class C. The 

implementation from MATLAB’s Bioinformatics Toolbox is included in the toolbox. 
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