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Abstract— This work presents an accurate, robust, wearable 

measurement system for foot clearance estimation along with 

algorithms to provide a real-time estimate of foot height and 

orientation. Different configurations of infrared distance meter 

sensors were used, both alone and in combination with an inertial 

measurement unit. In order to accurately estimate the foot 

clearance when in presence of daylight and when the foot 

orientation changes dynamically during walking, several 

algorithms were designed based on physics of sensors and tuned 

using the acquired data against a reference system. These 

algorithms, specific to the number of sensors, include the 

estimators of the foot orientation and estimators of the foot 

clearance. These estimators are tested on normal walking (RMS 

error ≤ 8.4mm) and walking with exaggerated step heights and 

inversion-eversion rotations. A Bayesian fusion of estimators was 

also implemented to better cope with the extreme and abnormal 

walking kinematics while maintaining a high performance for 

normal walking. All estimators were trained on uniformly 

distributed bootstrapped sub-samples of data and tested on 

several normal and abnormal walking data. The results proved 

the robustness of the proposed system against variations in the 

gait kinematics (|mean| ± standard deviation of error for heel and 

toe clearance was equal to or smaller than 3.1±9.3 mm when 

using a Bayesian fusion of three different estimators) and 

environment lighting (with an introduced error of 1 to 4% of 

actual distance).  

 
Index Terms—Foot clearance, infrared range meter, inertial 

measurement unit, Bayesian fusion. 

I. INTRODUCTION 

AIT analysis has been attracting more attention in the 

clinical domain as it reveals reliable information about 

the evolution of different diseases and neurological conditions 

affecting the sensorimotor function. For instance, gait analysis 

has been used to assess musculoskeletal complications, 

disease due to aging, cardiopathies, and neurological  
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conditions such as stroke, Parkinson’s disease, and multiple 

sclerosis [1]–[7]. Gait analysis can reflect the quality of life of 

patients and the effect of treatment and rehabilitation 

programs [5], [7]–[10].  

Recent advances in wearable technologies have enabled 

field gait analysis, outside of laboratory measurement, to 

evaluate the subject’s function at the workplace, and during 

activities of daily life [9]. This can better represent the 

sensorimotor function of individuals, provide a more 

comprehensive assessment of treatment or rehabilitation 

programs in place, and could provide predictors of risk factors 

such as the risk of fall in elder adults [11]. 

Among individuals above 65 year-old, one out of three falls 

each year. Falls are the leading cause of fatal and nonfatal 

injuries [12]. The secondary fear of falling and the self-

imposed restrictions of a person in mobility and function can 

lead to loss of personal autonomy and adversely affect the 

quality of life of subjects [13]. Falls are costly for the health 

care system, with the medical costs of falls in the US 

approximating $34 billion in 2013 [12]. 

Although several gait descriptors, e.g. stride length and 

velocities and temporal parameters, were used to identify the 

fall-related factors, the swing phase parameters were less 

investigated. For instance, tripping, caused by insufficiency of 

or fluctuations in foot clearance, i.e. the height of foot/shoe 

sole above the ground during the swing phase, accounts for 

about the 50% of falls in the older population [14], [15]. The 

pattern of foot clearance and/or some extracted features such 

as the minimum toe clearance have been considered recently 

as important factors related to the risk of fall [16], [17].   

Wearable sensors were used to measure the foot clearance 

parameters [18], [19]. Different estimation techniques were 

implemented to obtain foot clearance [18] where the best-

chosen algorithms resulted in the relative error of 

40.6±22.5mm (15.1±8.4% of the actual value) for the 

maximum heel clearance. The obtained results were better for 

minimum toe clearance and the maximum toe clearance at the 

terminal swing with relative errors smaller than 7±10%. While 

much worse results were obtained for the estimation of the 

maximum toe clearance just after toe-off with a relative error 

of 54.5±38.6%. In [19] regression models were built on the 

post-processed parameters obtained from the measurement of 

foot-worn inertial measurement sensor to estimate the 

minimum ground clearance (minimum foot height). They 

reported a mean error of 17.77mm and R2 of 0.83.  
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However, accurate foot clearance estimation with wearable 

sensors such as inertial measurement units remained a 

challenge. This is due to the limited achievable accuracy of 

position estimation through the integration of acceleration 

[18], [19]. Not only the orientation estimation errors 

undermine any accurate estimate of the vertical acceleration 

but also the double integration of acceleration noise result in a 

great drift in position estimate. This latter error can be reduced 

only after the gait cycle has been completed using the fact that 

during foot flat the foot height should be zero [18]. Data 

fusion algorithms were applied also benefiting from magnetic 

sensors to improve the orientation estimates [20]–[22]; 

however, due to non-uniform distribution of ferromagnetic 

materials in modern buildings the magnetic measurement of a 

sensor attached to the foot is much more prone to the 

distortions than the sensors on the upper body. The few 

centimeter errors obtained by IMU-based systems can hardly 

satisfy the needs of a reliable monitoring system since the foot 

vertical range of motion is small in healthy subjects, e.g. the 

expected local maximum toe clearance after the toe off was 

reported below 8cm and the second maximum toe clearance 

prior to the heel strike is also less than 15cm [18], and can be 

much lower in pathologic gaits [22] and in the elderly 

population, e.g. for adults above 70 y/o the two maximum toe 

clearances were reported around 6cm and 13cm  respectively 

[23]. These older adults and patients with neurological 

disorders have a higher risk of fall. Therefore, there is a need 

for the addition of new sensors capable of providing a much 

more accurate estimation of foot clearance.  

The drift cancellation technique used in [18] also impeded 

the use of such techniques for accurate estimation of foot 

height and clearance parameters in real time. Real-time foot 

clearance estimation can play an important role in the control 

of neural prostheses [24] and assistive devices to prevent fall 

in at-risk populations. The lower limb kinematics, in 

particular, the foot clearance, needs to be measured in order to 

close the feedback loop of such a control system. The 

kinematics measurements in [24] were obtained using the 

stereophotogrammetry motion capture system. However to 

translate the neural prostheses to the people’s daily lives there 

is a need for an accurate wearable system that can provide 

robust and real-time estimates of foot clearance.   

This study was thus aimed at designing a wearable system 

along with estimation algorithms for accurate foot clearance 

estimation. The proposed system can measure the heel and toe 

clearances more accurately than previously used wearable 

systems in normal and abnormal walking conditions, while the 

estimation algorithms exclusively use the instantaneous 

measurement of sensors in a real time manner. 

II. METHOD AND MATERIALS 

Different configurations of infrared (IR) distance sensors, 

GP2YOA41SKOF (SHARP®, Japan), were used to measure 

foot clearance in the range of 4 to 30 cm. These IR sensors 

function based on the reception angle of the reflected IR beam 

to the IR detectors. The further the distance, the smaller the 

angle will be. When the sensor is parallel to the ground it can 

measure the sensor height, though when tilted can only 

provide an estimate of the distance to the ground in the sensor 

perpendicular plane. This distance estimation must be 

corrected with an estimation of the sensor orientation using 

additional IR sensors or an inertial measurement unit (IMU). 

In total we considered three configurations comprising one to 

three IR sensors and a configuration of single IR sensor and 

IMU. Our prototype can be seen in Fig. 1.   

A Butterworth low pass filter with 16Hz cutoff frequency 

was implemented for the IR sensors to minimize the noise 

effect. A data acquisition system (National Instruments, USA) 

was used to read the sensor measurements at 1 kHz.  

When the IR sensor points towards the ground, the emitter 

and receiver point towards the ground, an exponential model 

can be used to translate each IR sensor raw measurement to a 

distance estimate as follows:  

 

𝑑̂𝑖 = 𝑎𝑒𝑏𝑆𝑖 + 𝑐        (1) 

 

where Si and 𝑑̂𝑖 are the ith sensor raw measurement and 

estimated distance respectively. a, b, and c are parameters that 

can be estimated using nonlinear least square. In this work, a 

robust version of Levenberg-Marquardt Method was used with 

a Tukey's biweight function [25] to obtain those parameters. 

 

 
Fig. 1. (a)The shoe prototype composed of IR sensors and IMU attached 

with a strap. Reflective markers are used with motion capture camera for 

validation. (b) Motion capture (Vicon UK) during a typical walking trial. 
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A. Foot orientation estimation 

Using each pair of IR sensors fixed on the shoe (Fig. 2), we 

can compute the corresponding foot angle (sensors’ 

orientation). For instance, the foot angle extracted from Sensor 

1 and 2 (Fig. 2) can be computed from their corresponding 

distances (1) as follows:   

 

 
𝛽 =  tan−1

𝑑2 − 𝑑1

𝑙12

 
(2) 

 

 

where l12 is the distance between Sensor 1 and 2, and d1 and d2 

are distances to the ground where the Sensor 1 and 2 are 

pointing respectively. 

 Among the three ankle rotations, namely inversion-

eversion, dorsi- plantar-flexion and pronation-supination, only 

the first two affect the sensors measurement and their heights. 

Therefore, estimation of inversion angle (α) and dorsiflexion 

angle (β) are reformulated as follows: 

 

𝛼̂ =  tan−1 𝑑̂1−𝑑̂3

𝑙13
         (3) 

 

𝛽̂ =  tan−1 𝑑̂2−𝑑̂1

𝑙12
         (4) 

 

where Sensor 3 is assumed to be on the same anatomical 

frontal plane with Sensor 1, and on the opposite side of the 

foot with l13 distance from Sensor 1.  

B. Foot clearance estimation 

The height of each sensor (hi) can be calculated using the 

estimated foot angles, accordingly.  

   

ℎ̂𝑖 = 𝑑̂𝑖 × cos 𝛼̂ cos 𝛽̂        (5) 

 

As mentioned earlier four different sensor configurations were 

investigated: 

- 1-IR sensor (S1): the angles α and β cannot be estimated, 

they were thus set at zero for estimation of foot clearance. 

- 2-IR sensor (S1-S2): angle α was set at zero while β was 

estimated using (4). 

- 3-IR sensor: (3) and (4) were used to convert the sensors 

measurements into the estimation of those angles to be used in 

the estimation of foot clearance. 

- IR-IMU: the foot orientation was estimated with IMU (using 

strapdown integration of angular velocities [26]), and the 

sensor distance was estimated with one IR sensor. The 

orientation from IMU was reset when the IR sensor measured 

zero distance. The height of the sensor was obtained by 

incorporating both sensors’ information. 

Using the estimated sensor height, foot orientation and 

known geometry of the shoe, the heel clearance and toe 

clearance can be estimated using trigonometric equations as 

follows:  

 

ℎ̂ℎ𝑒𝑒𝑙 = {
ℎ̂𝑖 − 𝑙𝑖ℎ𝑒𝑒𝑙 sin 𝛽̂ , 𝜆𝛼̂ ≤ 0

ℎ̂𝑖 − 𝑙𝑖ℎ𝑒𝑒𝑙 sin 𝛽̂ − 𝜆𝑙ℎ𝑒𝑒𝑙 𝑤𝑖𝑑𝑡ℎ sin 𝛼̂ , 𝜆𝛼̂ > 0
  (6) 

 

 
 

 

 

 

 

ℎ̂𝑡𝑜𝑒 = {
ℎ̂𝑖 + 𝑙𝑖𝑡𝑜𝑒 sin 𝛽̂ , 𝜆𝛼̂ ≤ 0

ℎ̂𝑖 + 𝑙𝑖𝑡𝑜𝑒 sin 𝛽̂ − 𝜆𝑙𝑡𝑜𝑒 𝑤𝑖𝑑𝑡ℎ sin 𝛼̂ , 𝜆𝛼̂ > 0
  (7) 

 

where ℎ̂𝑖 is the estimated height of ith sensor on the medial 

side of the shoe, 𝑙𝑖ℎ𝑒𝑒𝑙 and 𝑙𝑖𝑡𝑜𝑒  are the distance of the sensor 

to the same side heel and shoe toe respectively, and 𝑙ℎ𝑒𝑒𝑙 𝑤𝑖𝑑𝑡ℎ  

and 𝑙𝑡𝑜𝑒 𝑤𝑖𝑑𝑡ℎ are the widths of shoe heel and shoe toe box. λ is 

1 if the sensors are placed on the medial side of the shoe and -

1 for the sensors affixed on the lateral side of the shoe. 

Two types of data driven models were used in this study for 

estimating foot clearance. The first was based on the distance 

estimators solely trained on normal walking which included 

three different speeds. The second model was based on a 

Bayesian fusion of three estimators separately trained on 

normal walking (𝑑̂𝑁) and walking with exaggerated foot 

inversions (𝑑̂𝐼𝑛𝑣) and eversions (𝑑̂𝐸𝑣𝑒).  

In the second model, a Normal distribution for α angles of 

normal walking (ΦN) was first estimated over the training data 

(μN and σN were computed). Then, separate distributions were 

fitted to the extreme α values (ΦEve and ΦInv) by temporarily 

excluding the training samples of exaggerated walking which 

fell into normal walking α range. On the other hand, the means 

and standard deviations of ΦEve and ΦInv were computed over 

the samples of these distributions with no intersection with 

samples of ΦN. 

 

𝛷𝑗 = (𝜎𝑗√2𝜋)−1𝑒
−

(𝛼̂−𝜇𝑗)
2

2𝜎𝑗
2

        (8) 

 

where 𝑗 ∈ {𝑁, 𝐸𝑣𝑒, 𝐼𝑛𝑣}, 𝜇𝑗 and 𝜎𝑗 are mean value and 

standard deviation of jth distribution. Φj(α) is the likelihood of 

the inversion angle given the jth walking class from 

{𝑁, 𝐸𝑣𝑒, 𝐼𝑛𝑣}. The probability of each of the gait classes given 

Fig. 2. Sensor configuration, IR sensors (S1, S2 and S3) and IMU. 

Top: a lateral view; bottom: a posterior view. It also shows how 

the measurable distance by the IR sensors relates to the actual 

height and foot orientation.    



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

this angle, P(j|α), can be obtained using the Bayes rule. By 

assuming the equal prior probability of normal walking, and 

exaggerated inversion, and eversion, the conditional 

probability of each walking class was expressed in (9). 𝛷̃𝑗s 

were used as weights for each estimator in the Bayesian fusion 

as follows: 

  

𝑃(𝑗|𝛼̂) = 𝛷̃𝑗(𝛼̂) =
𝛷𝑗(𝛼̂)

∑ 𝛷𝑘(𝛼̂)𝑘∈{𝑁,𝐼𝑛𝑣,𝐸𝑣𝑒}
       (9) 

     

 𝑑̂𝐹𝑢𝑠𝑖𝑜𝑛 = 𝛷̃𝑁 × 𝑑̂𝑁 + 𝛷̃𝐼𝑛𝑣 × 𝑑̂𝐼𝑛𝑣 + 𝛷̃𝐸𝑣𝑒 × 𝑑̂𝐸𝑣𝑒     (10) 

 

The applied fusion technique works based on the inversion 

angle estimate (𝛼̂), which is only available in the 3-IR and IR-

IMU configurations, therefore, the estimator fusion was only 

implemented for these two sensor configurations.  

C. Experiments setup 

First, single sensor measurements in different fixed 

distances from the ground in two different lighting conditions, 

completely dark (under a box) and normal room lighting with 

sunlight, were performed.  

A stereophotogrammetry motion capture system, including 

11 Cameras (7 Mx3+ and 4 T10s, Vicon) and a set of 12 

markers, was then used as the reference kinematic system, and 

the gait episodes were recorded with two video cameras, 

providing the frontal and lateral views. The measurements of 

IR sensors, IMU and Vicon cameras were virtually 

synchronized and used to train the distance estimators (Eq. 1).     

The collected data include repeated normal gait, walking 

with exaggerated step height, and also exaggerated inversions 

and eversions in three different self-chosen speeds, namely 

normal, slow and fast. Three trials of several gait cycles were 

recorded for each type of walking in each speed, result in nine 

trials for each type of walking. For all the trials the gait cycles 

were extracted and the rest of data were eliminated.   

D. Data analysis and system validation 

Three different analyses were performed, namely training 

and testing on the normal walking, training on normal walking 

and testing on the exaggerated conditions, and training and 

testing on normal walking, and the gait with exaggerated 

inversion and eversion in the case of Bayesian fusion of the 

estimators. They are detailed as follows: 

First, the data for normal walking in different speeds were 

exclusively considered. A leave-one-out cross-validation was 

used to evaluate the estimators trained on the normal walking 

data. Since during each gait cycle the majority of samples 

belong to the stance phase in which the sensors measure very 

low distances, the data are biased in favor of lower foot 

heights. For estimator training, each time over eight out of 

nine trials, a random subsampling was thus implemented to 

generate 10 training sets with uniform histogram over the 

sensor measurements range. Therefore 10 different estimators 

were trained for each of the trials. Each training set consisted 

of 16 gait cycles. Every 10 trained estimators were then tested 

on the left out trial. The expected performance of the system 

comes from testing performance of the 90 resultant estimators 

(tuned for each of 10 subsamples of each 8 combinations out 

of 9 trials), which provides a robust and reliable evaluation of 

the system. The expected value and standard deviation of the 

expected error (µe), standard deviation of error (SDe), root 

mean square error (RMSe) and coefficient of determination 

(R2) were computed for testing the 10 estimators on each 

testing dataset (at each fold of the cross-validation). Then, the 

statistical analysis of the nine testing trials in leave-one-out 

cross validation was performed. Wilcoxon rank sum test was 

used to explore any significant differences between the 

coefficients of determination of the estimated heights when 

using different sensor configurations, namely 1-IR, 2-IR, 3-IR, 

and IR-IMU. 

Second, in order to evaluate the robustness of estimators 

against possible gait abnormalities, the estimators trained on 

the normal walking were tested similarly on walking with 

exaggerated foot height, inversion and eversion each 

performed in the slow, normal and fast gait.  

Furthermore, during the Bayesian fusion of three estimators, 

each was exclusively trained on one of either the normal, 

exaggerated-inversion or exaggerated-eversion walking data. 

Then the resultant fused estimator was tested on each normal 

and abnormal walking data.  

III. RESULTS 

A. Foot clearance estimation 

Typical height (heel clearance) and angle (foot dorsiflexion 

angle) estimates during normal walking are shown in  Fig. 3.  

 

 
Fig.  3. A typical estimate of foot clearance (top), and orientation 

(bottom) with 2-IR sensor configuration. Reference values, 

obtained using motion capture system, plotted in solid gray while 

the black dashed lines are the estimated values.   
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Fig. 4. The coefficient of determination (R2) of estimating the heel 

clearance obtained during normal walking (leave one out cross 

validation).  

1) Cross-validation of different configurations on walking data 

Table I describes the testing performance during normal 

walking for heel and toe clearance estimation. While all the 

estimators are slightly biased, 2-IR configuration showed the 

smallest offset. The largest bias appeared in the 1-IR 

configuration which was still smaller than 7mm. The precision 

(standard deviation of error) in the estimation of foot clearance 

are in similar range for all estimators except 1-IR which 

showed an inferior performance. The highest precision for the 

estimation of heel clearance obtained by 2-IR and 3-IR 

configurations, while IR-IMU showed to have slightly higher 

precision in the estimation of toe clearance. Wilcoxon rank 

sum test on the coefficient of determination (Fig. 4) between 

the reference and estimated heights during normal walking 

showed a significant difference between 1-IR and the rest of 

configurations, but no significant difference across 2-IR, 3-IR 

and IR-IMU configurations. Toe and heel clearance 

estimations during normal walking showed similar accuracy 

and precision. 

2) Cross-validation on different extreme conditions 

(exaggerated step height, and inversion/eversions)  

Testing the estimators, trained on normal walking, during 

abnormal walking trials showed performance deteriorations 

(Table II-IV) particularly in the case of extreme inversion (R2 

dropped by 13 to 20%) and eversions (R2 dropped by 8-16%). 

The RMS error of clearance estimation increased by 2 to 4.5 

fold for extreme inversion gait cycles, while the RMS error of 

extreme eversion cycles has no remarkable change. The RMS 

error in steps with exaggerated height was also increased by 2 

to 3 fold; however, this latter error increase was also due to an 

expansion of the vertical range of motion by 70%. The R2 

values remained high in case of exaggerated step heights.   

The expected error escalated for 1-IR and 2-IR 

configurations, especially for heel clearance in exaggerated 

step height and exaggerated eversion, and for toe clearance in 

exaggerated inversion. However, expected errors of 3-IR and 

IR-IMU configurations almost always remained robust to 

extreme cases except in extreme inversion case.        

 
Fig. 5. Top: probability density function over inversion-eversion 

angle, bottom: normalized weights used in the Bayesian fusion. 

 

In exaggerated step height and inversion trials, the standard 

deviation of errors increased dramatically for heel height for 

almost all configurations while the increases were less 

pronounced in toe clearance estimations.   

A Bayesian fusion algorithm was implemented to benefit 

from specialized estimators to different conditions, namely 

normal walking, exaggerated inversion, and eversion. Fig. 5 

shows the estimated likelihood functions of the inversion 

angle (α), ΦN , ΦEve , ΦInv, and the conditional probability of 

each estimator, i.e. the normalized weights applied in the 

fusion. The heel clearance estimation results are depicted in 

Table V with the fusion applied to 3-IR and IR-IMU 

configurations. Comparing this table with Tables I, III, and IV, 

displays that standard deviation of the estimation error 

improved drastically when tested on walking with exaggerated 

inversion, with more than 58% and 81% reduction for IR-IMU 

and 3-IR configurations respectively. Estimation bias 

decreased in Bayesian fusion with both sensor configurations 

in normal walking and exaggerated inversion, but slightly 

increased in the case of exaggerated eversion. The R2 value of 

the fused estimators increased for both exaggerated cases, yet 

maintained and slightly decreased for IR-IMU and 3-IR 

configurations when tested on normal walking. 

B. Environmental lighting effect 

Comparing the room lighting with the dark condition, we 

observed a 4% difference in the estimated distances for the 

short range, i.e. 4 to 7cm. Between 7-15cm, the difference was 

1% and beyond 15cm, the difference reached almost 8%. The 

lighting effect can thus be considered negligible for the foot 
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clearance estimation applications. 

IV. DISCUSSION 

Separate distance estimators were trained for each sensor 

configuration using normal walking trials. Foot clearance 

RMS error of the best estimators in normal walking was 3.5% 

and 4.3% of the range for heel clearance and toe clearance 

respectively. Testing the obtained estimators in extreme step 

height condition resulted in an increase in absolute errors, 

mainly due to an increase of range of motion. While the 

relative RMS error to the vertical range of motion slightly 

increased to 5.6% for heel clearance, it decreased to 2% for 

toe clearance estimation. However, there was a similarity 

between the patterns of RMS errors across different 

configurations obtained on normal walking test data and 

walking with exaggerated step height (Tables I and II). One 

possible reason is the similarity of the range of dorsiflexion 

and inversion angles in both gait data. These results along with 

high R2 in this extreme case, suggest that the trained 

estimators in normal walking can be successfully used in such 

conditions. This is however not the case for the extreme

 

TABLE I 

PERFORMANCE OF DIFFERENT CONFIGURATIONS: TRAINING AND TESTING SETS WERE OBTAINED FROM THE NORMAL GAIT DATA  

Estimators 
Heel clearance: [0 213.7] mm  Toe clearance: [0 147.8]mm  

e  (mm) SDe (mm) RMSe (mm) R2 e  (mm) SDe (mm) RMSe (mm) R2 

1-IR −6.1 ± 0.2 13.2 ± 0.1 14.5 ± 0.1 0.87 ± 0.05 4.4 ± 0.6 7.6 ± 0.3 8.8 ± 0.3 0.83 ± 0.11 

2-IR 0.8 ± 0.2 7.5 ± 0.0 7.6 ± 0.0 0.96 ± 0.01 0.2 ± 0.6 6.3 ± 0.1 6.3 ± 0.3 0.91 ± 0.01 

3-IR 1.3 ± 0.2 7.6 ± 0.0 7.6 ± 0.0 0.96 ± 0.01 0.4 ± 0.6 6.3 ± 0.1 6.3 ± 0.3 0.91 ± 0.01 

IR-IMU 1.9 ± 0.2 8.2 ± 0.0 8.4 ± 0.0 0.95 ± 0.03 0.9 ± 0.6 6.1 ± 0.1 6.3 ± 0.3 0.92 ± 0.01 

𝛼 ∈ [−5.1 7.5]°, 𝛽 ∈ [−50.8 28.7]° 
 

TABLE II 

PERFORMANCE OF DIFFERENT CONFIGURATIONS: TRAINING OVER NORMAL AND TESTING OVER EXAGGERATED-HEIGHT GAITS 

Estimators 
Heel clearance: [0 367.9] mm Toe clearance: [0 241.3] mm  

e  (mm) SDe (mm) RMSe (mm) R2 e  (mm) SDe (mm) RMSe (mm) R2 

1-IR −16.5 ± 0.2 28.3 ± 0.2 32.7 ± 0.2 0.90 ± 0.02 −1.1 ± 0.8 13.8 ± 0.1 13.8 ± 0.3 0.95 ± 0.00 

2-IR −5.1 ± 0.2 20.6 ± 0.1 21.2 ± 0.1 0.95 ± 0.00 −0.1 ± 0.8 16.5 ± 0.3 16.5 ± 0.4 0.94 ± 0.00 

3-IR −1.8 ± 0.2 20.4 ± 0.1 20.5 ± 0.1 0.95 ± 0.00 3.1 ± 0.8 16.2 ± 0.3 16.5 ± 0.4 0.94 ± 0.00 

IR-IMU −1.5 ± 0.1 24.9 ± 0.0 24.9 ± 0.0 0.92 ± 0.00 4.6 ± 0.7 13.8 ± 0.3 14.5 ± 0.3 0.95 ± 0.00 

𝛼 ∈ [−10.9 7.6]°, 𝛽 ∈ [−44.0 30.0]° 
 

TABLE III 

PERFORMANCE OF DIFFERENT CONFIGURATIONS: TRAINING OVER NORMAL AND TESTING OVER EXAGGERATED-INVERSION GAITS 

Estimators 
Rearfoot (sensor) height: [0 161.9] mm Forefoot (sensor) height : [0 284.3] mm 

e  (mm) SDe (mm) RMSe (mm) R2 e  (mm) SDe (mm) RMSe (mm) R2 

1-IR −0.4 ± 0.2 34.8 ± 0.1 34.8 ± 0.1 0.76 ± 0.00 16.9 ± 0.8 7.3 ± 0.6 18.4 ± 0.6 0.93 ± 0.01 

2-IR 2.7 ± 0.2 34.4 ± 0.1 34.5 ± 0.1 0.74 ± 0.00 14.8 ± 0.8 3.7 ± 0.4 15.3 ± 0.4 0.95 ± 0.00 

3-IR −11.4 ± 0.2 31.6 ± 0.1 33.5 ± 0.1 0.77 ± 0.00 0.5 ± 0.7 10.2 ± 0.2 10.2 ± 0.3 0.97 ± 0.00 

IR-IMU −7.6 ± 0.2 22.5 ± 0.1 23.7 ± 0.1 0.83 ± 0.00 5.3 ± 0.7 14.2 ± 0.4 15.2 ± 0.4 0.94 ± 0.01 

𝛼 ∈ [−2.1 37.0]°, 𝛽 ∈ [−40.1 45.9]° 

 
TABLE IV 

PERFORMANCE OF DIFFERENT CONFIGURATIONS: TRAINING OVER NORMAL AND TESTING OVER EXAGGERATED-EVERSION GAITS 

Estimators 
Rearfoot clearance: [0 123.9] mm Forefoot clearance: [0 160.3] mm  

e  (mm) SDe (mm) RMSe (mm) R2 e  (mm) SDe (mm) RMSe (mm) R2 

1-IR −12.0 ± 0.2 12.5 ± 0.1 17.3 ± 0.1 0.73 ± 0.00 −8.2 ± 0.7 10.5 ± 0.1 13.3 ± 0.4 0.89 ± 0.01 

2-IR −9.2 ± 0.2 10.0 ± 0.1 13.6 ± 0.1 0.83 ± 0.00 −10.3 ± 0.7 7.9 ± 0.1 13.0 ± 0.3 0.95 ± 0.01 

3-IR 0.3 ± 0.2 9.0 ± 0.1 9.0 ± 0.1 0.84 ± 0.00 −0.7 ± 0.7 6.4 ± 0.1 6.4 ± 0.3 0.96 ± 0.01 

IR-IMU 0.9 ± 0.2 8.4 ± 0.0 8.4 ± 0.0 0.87 ± 0.00 −0.1 ± 0.7 6.2 ± 0.1 6.2 ± 0.3 0.96 ± 0.01 

𝛼 ∈ [−21.4 5.9]°, 𝛽 ∈ [−38.3 35.5]° 

  
TABLE V 

PERFORMANCE OF FUSED ESTIMATORS FOR HEEL CLEARANCE 

Estimators 
IR-IMU 3-IR 

e  (mm) SDe (mm) RMSe (mm) R2 e  (mm) SDe (mm) RMSe (mm) R2 

Normal 0.4 ± 0.1 8.2 ± 0.0 8.2 ± 0.0 0.95 ± 0.00 −0.6 ± 0.6 8.5 ± 0.3 8.5 ± 0.3 0.83 ± 0.11 

Ext-Inv 3.1 ± 0.2 9.3 ± 0.1 9.8 ± 0.2 0.91 ± 0.00 0.7 ± 0.6 6.0 ± 0.1 6.1 ± 0.3 0.91 ± 0.01 

Ext-Eve 1.4 ± 0.2 7.5 ± 0.1 7.6 ± 0.1 0.88 ± 0.00 0.8 ± 0.6 6.6 ± 0.1 6.7 ± 0.3 0.91 ± 0.01 
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inversions and eversions. For instance, in the former case, the 

heel clearance RMS error reached 14.6% of the vertical range 

of motion. The patterns of RMS errors across different sensor 

configuration differed from the normal walking and 

exaggerated step height conditions. This can be attributed to 

the difference between the ranges of inversion angle. The R2 

values of heel clearance estimation in both extreme inversion 

and eversion cases dropped. This is also the reason a Bayesian 

fusion was used to cope with walking with possible deviated 

inversion-eversion cycles.   

Heel clearance error (expected mean error ± expected 

standard deviation) when using the best-performed estimators 

during normal walking was 0.8±7.5mm and during the worst 

case abnormal walking was smaller than 0.8±6.6mm (obtained 

based on Bayesian fusion) which appeared to be one order of 

magnitude less than errors of previously proposed systems 

[18], [19]. Toe clearance estimation errors were 0.9±6.1mm 

and 4.6±13.8mm for normal and worst-case abnormal walking 

respectively, thus showing superior performance to [18], [19]. 

When the estimators, trained on normal walking, were 

tested on the exaggerated inversion, IR-IMU presented 

slightly better estimation of the heel clearance while the best 

results for the toe clearance was achieved by 3-IR 

configuration. IR-IMU configuration obtained the best 

performance when being tested on exaggerated eversion.  This 

can be explained by the fact that any increase of inversion and 

eversion range would result in an increase of scattering of IR 

signals emitted to the ground since fewer beams travel back to 

the sensor receiver; the distance estimation thus becomes less 

reliable which also affects the estimation of foot orientation 

and the ultimate clearance estimates. In contrast, the foot 

orientation estimation in IR-IMU was done mainly by IMU’s 

data which are not disrupted by experiencing a higher range of 

rotation.  

The estimated distance showed slight bias in all cases. This 

can be investigated using the applied exponential model 

relating distance and the raw measurements of the IR sensor. 

Assuming that sensor measurements follow a normal 

distribution, Si~N(μ, σ2|di), the estimated distance will have a 

lognormal distribution, which theoretically results in a biased 

estimate as showed in the following equations. 

 

𝐸 (𝑎𝑒𝑏×𝑆𝑖 + 𝑐) = 𝑎𝑒𝑏𝜇+𝑏2𝜎2 4⁄ + 𝑐         (11) 

 

𝑏𝑖𝑎𝑠 = 𝐸(𝑑̂𝑖) − 𝑑𝑖 = 𝐸 (𝑎 × 𝑒𝑏×𝑆𝑖 + 𝑐) − 𝑎 × 𝑒𝑏×𝐸(𝑆𝑖) − 𝑐 

(12) 

 

𝑏𝑖𝑎𝑠 = 𝑎𝑒𝑏𝜇(𝑒𝑏2𝜎2 4⁄ − 1)                      (13) 

 

where E is the expectation operator, and (11) is the expected 

value of the estimated distance. The bias is defined as the 

difference between the expected distance estimate and the 

actual distance (12), i.e. the distance calculated based on the 

expected value of the sensor’s measurements. Since b and σ in 

(13) are nonzero, the bias is always nonzero.    

The emitted IR wavelength is 870±70nm which is beyond 

near-infrared wavelengths; therefore the color of the surface 

would not have any effect on the measurements. Surfaces with 

three different colors (white, orange and brown) were tested 

and no difference in measurements was observed. Sunlight 

and indoor illumination have infrared components, which 

could have an effect on distance estimation via the IR sensors. 

A set of static measurements were thus performed in two 

different lighting conditions, i.e. dark and normal room 

lighting, showed 1% to 4% difference in short distances, and 

up to 8% in the distances larger than 15cm. These results 

confirm the robustness of this system against some of the 

environmental factors.  

One of the main limitations of IR distance meter sensors is 

their dependency on the flatness of the ground. Any carpet or 

rough surface would aggravate the results due to the scattering 

of the IR beam. Although this study only explored flat 

surfaces such as white and colored papers, in the case of 

extremely rough surfaces the IMU in the IR-IMU 

configuration can be used for estimation of foot clearance. 

However, the accuracy of IMU-based estimation of foot 

clearance is much lower than the configurations including the 

IR sensors when used over flat grounds.   

A comparison between the different configurations showed 

that if the target population has no extended range of 

inversion-eversion, then the minimal IR sensor configuration 

would provide sufficiently good results, i.e. better than 

previously designed wearable systems. However, if the 

population of interest has a different range of inversion-

eversion due to a pathology or lack of joint stiffness the 

configuration with 3 IR sensors or the combination of IR 

sensor and IMU can be used.  

The weak performance of minimal IR sensor configuration 

in high ranges of foot rotations originates from the inability of 

this configuration in the estimation of orientation. Even when 

using multiple IR sensors to estimate the orientation, errors 

remained high for walking with extreme inversion angles. The 

trained distance and orientation estimators on normal walking 

data were not reliable for such extreme conditions. The 

Bayesian fusion of three separately trained estimators on the 

normal walking and extreme inversion and eversion cases 

demonstrated on average superior performance when tested on 

the data collected from normal walking and extreme cases.  

While both 3-IR and IR-IMU configurations showed the 

superior performance when compared to the other tested 

configurations, the IR-IMU also benefitted from the ability to 

estimate other spatiotemporal parameters of gait such as 

cadence, speed, and step length [21]. This configuration can 

be used as a multipurpose system for a robust and thorough 

gait analysis. The already developed wireless data transfer in 

IMUs will be used to transfer both IMU and IR sensor data for 

real-time analysis. The size of this prototype can be reduced 

and an adjustable sensor fixation can be developed in order to 

adapt the system to every size shoes. An algorithm can be 
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developed for the IR-IMU configuration to switch the foot 

clearance estimation to the IMUs if insufficient IR signal is 

received by the sensors receptors, which might happen in the 

case of walking on rough surfaces such as carpet. The 

scattering on the general rough surfaces can be quantified in a 

separate study and be used for the mentioned algorithm. A 

future application of the proposed device would be to provide 

real time foot clearance feedback to close a neural prosthesis 

control loop for spinal cord injury patients. In that neural 

prosthesis, electrical stimulation will be given in specific 

sequences to the spinal cord column with an accurate timing 

corresponding to the foot clearance in gait cycles.  

V. CONCLUSION 

A wearable system for foot clearance parameter estimation 

was developed along with different data-driven estimators. 

Four sensor configurations including one to three IR sensors 

and a combination of one IR and one IMU were used to 

estimate the heel and toe clearances. In order to estimate the 

sensor’s height the foot orientation was estimated using 

separately designed estimators based on the physics of the 

sensors while their parameters were tuned using a nonlinear 

least square technique. This system was evaluated in normal 

walking, and walking conditions with exaggerated step height, 

inversion and eversion rotations. To improve the estimation 

performance in the exaggerated inversion and eversion 

separate estimators were trained and then fused together with 

the normal walking estimators. 
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