
Classic-like cut-based tableau systems
for finite-valued logics

Marco Volpe1 João Marcos2 Carlos Caleiro3

1 Dipartimento di Informatica, Università di Verona, Italy
2 LoLITA and DIMAp, UFRN, Brazil

3 SQIG, Instituto de Telecomunicações and Depto. de Matemática, IST, Portugal

Abstract. A general procedure is presented for producing classic-like
cut-based tableau systems for finite-valued logics. In such systems, cut is
the only branching rule, and formulas are accompanied by signs acting as
syntactic proxies for the two classical truth-values. The systems produced
are guaranteed to be sound, complete and analytic, and they are also
seen to polinomially simulate the truth-table method, thus extending
the results in [6]. Lukasiewicz’s 3-valued logic is used throughout as a
simple illustrative example.

1 Introduction

In [3, 4], in accordance with the so-called Suszko’s Thesis, we have shown how
to take advantage of the intrinsic bivalence that stems from the distinction be-
tween designated and undesignated truth-values in any sufficiently expressive
finite-valued logic in order to provide the latter with a (non-truth-functional)
bivalent semantics, and ultimately with a classic-like tableau proof system, us-
ing 2-signed formulas, associated to a simple decision procedure. However, due
to the necessary encoding of the original semantics of the logic in terms of the
two classical values, one ends up having to work with tableau rules having a
significant number of branches that unavoidably lead to very large proofs.

It is widely known that proofs not involving cuts (or equivalently modus
ponens) can be very inefficient. For classical propositional logic, for instance,
cut-based proofs can be exponentially smaller than the shortest corresponding
cut-free proofs (see [1]). Still, the unrestricted use of the cut rule poses a serious
challenge for proof-search. First proposed by Mondadori, KE tableaux for clas-
sical logic, thoroughly studied in [5, 8, 6], are a cut-based tableau system that
employs only analytic cuts and which is known to polinomially simulate the
truth-table decision method, in the general case, bringing thus an exponential
gain over conventional cut-free tableau systems in the worst cases.

Recent interest in KE tableaux (e.g. [9]) stimulated us to consider exploring
a similar strategy, but now for producing classic-like cut-based tableau systems
for finite-valued logics in general, capitalizing on [3, 4], to which an analytic
restriction of cut may be imposed, and which might also share the benefits
of KE tableaux in terms of proof complexity. This paper reports on such an
exploration.

2 Background

Consider an alphabet with a denumerable set A of atoms and a finite set Σ of
primitive connectives. The arity of a given connective � ∈ Σ is to be denoted by
arg�. The set S of formulas is the carrier of the free Σ-algebra generated by A. In
dealing with finite-valued logics, Vn = {v0, v1, . . . , vn−1} will be used to denote
sets of truth-values, given n ∈ N, and these are supposed to be partitioned
into a set D = {vi | 0 ≤ i ≤ m} of designated values and a set U = {vi |
m + 1 ≤ i ≤ n} of undesignated values. As a matter of stipulation, we will
denote v0 by F and vn−1 by T . In general, an (n-valued) assignment of truth-
values to the atoms is any mapping ρ : A → Vn, and an (n-valued) valuation is
any extension w : S → Vn of such an assignment to the set of all formulas. An
n-valent semantics for S based on Vn, then, is simply a collection of n-valued
valuations. In particular, we will call bivalent any (classic-like) semantics where
V2 = {F, T} and D2 = {T}; the corresponding valuations are called bivaluations.
As usual, we call a valuation w a model of ∆ ⊆ S if w(∆) ⊆ D. A canonical
notion of entailment characterizing a logic L over S is associated to an n-valent
semantics Sem by setting Γ |= α iff every model of Γ in Sem is a model of {α}.
A remarkable case of n-valent semantics corresponds to those we call truth-
functional: such a semantics is given to the set of formulas S by defining an
appropriate Σ-algebra V with carrier Vn, by associating to each � ∈ Σ with
arg� = k an interpretation operator �̂ : Vkn → Vn, and by collecting in Sem
the set of all homomorphisms § : S → V. Any such homomorphism, as usual,
may be understood as the unique extension of an assignment ρ : A → Vn into
a valuation §ρ : S→ V where §(�(ϕ1, . . . , ϕk)) = �̂(§(ϕ1), . . . , §(ϕk)). Any logic
characterized by truth-functional means, for a given Vn, is called n-valued.

Let us now consider the total mapping t : Vn → V2 such that t(v) = T iff
v ∈ D and define, for any valuation § : S→ V of an n-valued semantics Sem, the
bivaluation b§ = t ◦ §. Though this bivalent semantics gives up the fundamental
feature of truth-functionality, we have shown in previous papers (check [2] and
the survey [4]) that it can still be quite useful. As explained below, to accom-
plish the bivalent reduction constructively, we just need to associate a unique
‘binary print’ to each truth-value of a given n-valued logic L, in order to be able
to distinguish any given value from any other value. Given vi, vj ∈ V, we write
vi] vj and say that vi and vj are separated in case t(vi) 6= t(vj). Given any
two formulas ϕi and ϕj and any valuation § such that vi = §(ϕi) 6= §(ϕj) = vj
yet b§(ϕi) = b§(ϕj), we say that a one-variable formula θij(p) of L separates vi
and vj if §(θij(ϕi))] §(θij(ϕj)) (or, equivalently, b§(θ

ij(ϕi)) 6= b§(θ
ij(ϕj))). In

that case we will also say that the values vi and vj of L are effectively distin-
guishable, as they may be separated using the original linguistic resources of L.
Finally, we will say that the logic L is effectively separable in case its truth-
values are pairwise effectively distinguishable, that is, for any pair of distinct
values 〈vi, vj〉 ∈ D2 ∪ U2 a one-variable formula θij(p) can be found in L that
separates vi and vj . From this point on, for simplicity of exposition, we assume
that all the necessary separators belong to the set Σ of primitive connectives
of the logic — note that this is not really a restriction, as one can always con-

servatively extend an n-valued logic L with a conveniently interpreted n-ary
connective. Let Θ denote a finite sequence [θr(p)]

s
r=0 = 〈θ0(p), θ1(p), . . . , θs(p)〉

of one-variable separator formulas, where we assume θ0(p) = p. Obviously, θ0(p)
by itself suffices to separate any pair of values 〈vi, vj〉 ∈ (D × U) ∪ (U × D).
Then, the binary print of a value v ∈ V will be the sequence v = [b§(θr(p))]

s
r=0,

where §(p) = v. Notice that for every pair of distinct values 〈vi, vj〉 ∈ V2 it is
now obviously the case that vi 6= vj .

Example 1. Our running example will be Lukasiewicz’s 3-valued logic, L3. The
logic may be described by choosing as primitive connectives Σ = {¬, �,⊃}, with
arg¬ = arg� = 1 and arg⊃ = 2, and by considering the set of truth-values
V3 = {v0, v1, v2}, with v2 as the sole designated value. The operators interpreting
the connectives are described in Table 1.

x ¬̂x �̂x

v0 v2 v0
v1 v1 v2
v2 v0 v2

x⊃̂y v0 v1 v2

v0 v2 v2 v2
v1 v1 v2 v2
v2 v0 v1 v2

Table 1. Interpretation operators in L3

We need to look for a way of separating the two undesignated values v0 and
v1, and accordingly we will have to set Θ = 〈p, θ1(p)〉, for some convenient
separator θ1. There are two obvious separators already in the alphabet of L3. We
will here choose Lukasiewicz’s ‘possibility’ operator � as θ1. The same choice
has in fact been made in [3], but there we have introduced � by abbreviation,

noticing that �̂x def
== (¬̂x)⊃̂x. Clearly, such choice originates the binary prints

〈F, F 〉, 〈F, T 〉 and 〈T, T 〉, respectively for v0, v1 and v2. Note that the sequence
〈T, F 〉 is unrealizable, as it does not correspond to any of the values in V3.
Below, when � appears in the role of the separator θ1 we will write it as θ, to
help calling attention to the two different roles played by this connective. In [10]
we have studied the effect of choosing Lukasiewicz’s ‘negation’ operator ¬ as θ1.

In earlier work, we have used this bivalent setting to produce classic-like
tableau systems T (L, Θ) for any given n-valued logic L effectively separable
by Θ = [θr(p)]

s
r=0. We refer the reader to [3, 4] for the full details. However,

it is worth mentioning here a few key ingredients of the procedure. Mirroring
the classical truth-values {F, T}, we work with 2-signed formulas X:ϕ such that
X ∈ {F,T} and ϕ ∈ S. As a matter of convention, we shall say that an n-valued
valuation § satisfies a labeled formula X:ϕ if b§(ϕ) = X, which extends naturally
to sets of labeled formulas. Given a binary print v = [Xr]

s
r=0, we use vS(ϕ) to

denote the sequence of signed formulas [Xr:ϕ]sr=0.
The cornerstone of T (L, Θ) is the recipe for obtaining elimination rules

for the connectives. Using & to represent conjunction in the classical metalan-
guage, || to represent disjunction, =⇒ to represent implication, and > to rep-
resent an absurd, we produce a tableau rule for each schematic signed formula
X:θ(�(ϕ1, . . . , ϕk)) where X ∈ {F,T}, θ ∈ Θ, and � ∈ Σ with arg� = k. We
further demand that if θ = θ0, then � /∈ Θ, and we simply write X:�(ϕ1, . . . , ϕk)

instead of X:θ0(�(ϕ1, . . . , ϕk)). The elimination rules are produced by collect-
ing the tuples of binary prints that an homomorphic n-valuation § can as-
sign to the formulas ϕ1, . . . , ϕk in order to satisfy the signed formula. Let-
ting Bθ�X ([ϕi]

k
i=1) = {&[vi

S(ϕi)]
k
i=1 | t(θ̂(�̂([vi]

k
i=1))) = X}, the corresponding

tableau rule is then given by

X:θ(�([ϕi]
k
i=1)) =⇒ || Bθ�X ([ϕi]

k
i=1).

In our metalanguage the above expression represents a tableau rule: the an-
tecedent of each rule is the head, and the succedent describes the child nodes
that can be created once the head matches a node of a previously given branch.

Example 2. In the case of L3 with the single separator θ = �, the above described
recipe would produce, for instance, a rule of the form

T:θ(¬ϕ1) =⇒ (F:ϕ1 & F:θ(ϕ1)) || (F:ϕ1 & T:θ(ϕ1))

simply because §(�(¬ϕ1)) = v2 if and only if �̂(¬̂(§(ϕ1))) = v2 if and only if
§(ϕ1) = v0 or §(ϕ1) = v1. Note that 〈F, F 〉 and 〈F, T 〉 are precisely the binary
prints associated respectively to v0 and v1.

Another example, now using the identity θ0, would yield

F:ϕ1 ⊃ ϕ2 =⇒ (F:ϕ1 & T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2))

|| (T:ϕ1 & T:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2))

|| (T:ϕ1 & T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2))

because §(ϕ1 ⊃ ϕ2) 6= v2 if and only if §(ϕ1)⊃̂§(ϕ2) 6= v2 if and only if §(ϕ1) = v1

and §(ϕ2) = v0, or §(ϕ1) = v2 and §(ϕ2) = v0, or §(ϕ1) = v2 and §(ϕ2) = v1.
Such rules may be streamlined using classical equivalences in the metalan-

guage, and completeness of the tableau system is attained by the addition of
suitable closure rules (see [3]).

The tableau systems produced using this recipe expectedly provide in general
very redundant and highly branching proof-trees. The next sections will show
how to use a similar approach to obtain more efficient systems, namely with
non-branching rules with the exception of an analytic version of the cut rule.

Before proceeding, we introduce some extra useful terminology and nota-
tion. As usual, each ϕi, for 1 ≤ i ≤ k, is called an immediate subformula
of �(ϕ1, . . . , ϕk). The set of proper subformulas of a given �(ϕ1, . . . , ϕk) con-
tains the immediate subformulas of this formula and the immediate subformu-
las of any formula therein contained. We here dub Θ-immediate subformula of
�(ϕ1, . . . , ϕk) any formula of the form θ(ϕi), for 1 ≤ i ≤ k and θ ∈ Θ. The set of
proper Θ-subformulas of a given formula has the obvious definition. A Θ-formula
is called atomic if it has no Θ-immediate subformulas. We also define the size
of a formula (signed or not) to be the size of the set of its subformulas (forget-
ting the sign, in the case of a signed formula). For convenience, we will assume
FC = T and TC = F as the complements of the two classical truth-values, and
extend the notation accordingly to the syntactical labels T and F.

In the next section we will illustrate the ideas behind our novel rule-extraction
algorithm by discussing what happens in the running example of L3. After that
we will present and study our general method in full detail.

3 A cut-based tableau system for L3

The idea here is to find a suitable way of defining a tableau system for L3 whose
only branching rule is a cut rule, in a way that generalizes the KE tableaux
of [5, 8], proposed for classical logic. Recall that we consider L3 separators Θ =
〈p, θ(p)〉, where θ = �. Our tableau system will consist of three classes of rules:
the cut rule, elimination rules, and closure rules.

The cut rule is the only branching rule, i.e., the only rule with more than
one branch in the succedent, and has the following typical form:

(L3.Cut) =⇒ F:ϕ || T:ϕ

In Section 4 we will show that it is possible to restrict its use only to analytic
applications.

We will now take full advantage of the classic-like semantics of L3 introduced
by its corresponding bivalent semantics, obtained following the procedure de-
tailed in [2], and extract from it suitable elimination and closure rules for our
novel cut-based system.

As explained and illustrated in Section 2, we will need suitable elimination
rules for signed formulas of the forms X:¬ϕ1, X:ϕ1 ⊃ ϕ2, X:θ(¬ϕ1), X:θ(ϕ1 ⊃ ϕ2)
and X:θ(�(ϕ1)), where θ = � and X ∈ {F,T}. Recall that, given a formula ϕ,
we can express its 3-valued truth-table as a bivalent one, where the value of ϕ
depends only on the values of its Θ-subformulas. Given that the procedure is
systematic, let us focus at a part of it, and consider the bivalent version of the
truth-table corresponding to the formula ϕ1 ⊃ ϕ2. In Table 2, in the Appendix,
we include all the combinations for the signs of ϕ1, θ(ϕ1), ϕ2, θ(ϕ2). A dash
(–) in the last column indicates that the corresponding line contains a sequence
〈T, F 〉 for some 〈ϕ, θϕ〉 that corresponds to no binary print v, for v ∈ V3.

From Table 2 we can mechanically extract a set of elimination rules for L3’s
‘implication’ connective ⊃. Indeed, consider the partial bivaluation bj described
at line j of the table, in such a way that we shall say that Xj :ψ is satisfied if ψ is at
the head of some column and the j-th line below it contains value Xj . In our cut-
based tableau system there will be a rule corresponding to each collection R of
signed formulas satisfied by some partial bivaluation bj with the requirement that
this collection must contain Xj :ϕ1 ⊃ ϕ2. For instance, some possible such collec-
tions are {F:ϕ1 ⊃ ϕ2}, {F:ϕ1 ⊃ ϕ2,T:ϕ1} and {T:ϕ1 ⊃ ϕ2,F:θ(ϕ1),T:θ(ϕ2)}.
Each such collection R, read as a conjunction, will form the antecedent of a
tableau rule. Let Mod(R) be the set of all partial bivaluations corresponding to
combinations that satisfy R. The succedent of the corresponding rule will con-
tain the (possibly empty) collection, read as a conjunction, of all signed formulas
that are simultaneously satisfied by all the bivaluations in Mod(R). As an ex-
ample, let {F:ϕ1 ⊃ ϕ2} be the antecedent of a given rule. Then we can restrict
our attention to the combinations 4, 12 and 13 from Table 2. We may easily see
that {T:θ(ϕ1),F:ϕ2} is an invariant in these combinations. The corresponding
tableau rule will then read:

(L3.⊃ 1∗) F:ϕ1 ⊃ ϕ2 =⇒ T:θ(ϕ1) & F:ϕ2.

Note that we omit the (empty) rules originating from partial bivaluations for
which in the derived restricted table we have no invariants (other than the signed
formulas fixed for the antecedent). For example, we do not have any rule with
{T:ϕ1 ⊃ ϕ2} as antecedent, since T:ϕ1 ⊃ ϕ2 itself is the only invariant in the
corresponding restricted table.

A general and formal account of this rule-extraction procedure will be given
in Section 4. Table 3 in the Appendix contains the full set of rules obtained for
the connective ⊃.

It is clear that the procedure described above for the mechanical extraction
of elimination rules may generate a lot of redundancies. As a trivial example,
one may notice that the rule (L3.⊃ 2∗) of Table 3 is redundant in the presence of
(L3.⊃ 1∗) since they have the same succedent and the collection of antecedents
of one of them is included in the other. For a similar reason, one may notice
that also the rule (L3.⊃ 4∗) is redundant in the presence of (L3.⊃ 1∗). After
the elimination of all such redundant rules, and repeating the procedure for all
connectives, with and without the separator θ, we obtain the elimination rules
(without ∗) given in Table 4 (see Appendix).

Finally, with respect to the closure rules, we follow [3] to the letter. Besides
the traditional closure rule for 2-signed tableaux, which says that a branch is
closed once it contains two signed formulas of the form F:ϕ and T:ϕ, additional
closure rules will be needed in order to exclude the unrealizable binary prints,
in this case 〈T, F 〉. Hence, an additional closure rule will say that branches
containing both a signed formula of the form T:ϕ and a signed formula of the
form F:θ(ϕ) may be closed. One might represent such closure rules by writing:

(L3.C0) F:ϕ & T:ϕ =⇒ >
(L3.C1) T:ϕ & F:θ(ϕ) =⇒ >

Figure 1, in the Appendix, shows an example of a tableau for L3 using the set
of rules obtained as described above.

4 The tableau system

4.1 Rules

Let L be an effectively separable n-valued logic with a set of formulas S generated
over the set of connectives Σ by the set of atoms A, and having D ⊆ Vn as its
set of designated values. We assume also that its binary prints are produced by
a convenient sequence of separators Θ = [θr(p)]

s
r=0, where θ0(p) = p. In the

following, we will exhibit the rules of our novel cut-based tableau system for L.
As explained before, the only branching rule of our system is:

(L.Cut) =⇒ F:ϕ || T:ϕ

Below in this section, we will show that it is possible to restrict the use of such
cut rule only to analytic applications, that is, applications to tableau branches
of which ϕ is a Θ-subformula.

Let now BP = {F, T}s+1 be the set of all possible (s+ 1)-long binary prints
and let a partial binary print be any sequence cR = [cr]r∈R such that R ⊆
{0, 1, . . . , s} and each cr ∈ {F, T} (this definition includes, of course, all binary
prints in BP, as strict partiality occurs precisely when R is a proper subset of
{0, 1, . . . , s}). We say that a partial binary print dU extends cR if R (U and
dr = cr for every r ∈ R.

We say that a sequence [vi]
k
i=1 of binary prints satisfies a signed formula

X:θ(�([ϕi]
k
i=1)) if t(θ̂(�̂([vi]

k
i=1))) = X. Further, we say that a signed formula is

satisfied by a sequence [ciRi
]ki=1 of partial binary prints if it is satisfied by some

sequence of binary prints that extends [ciRi
]ki=1 componentwise.

Let Ri, Ui ⊆ {0, 1, . . . , s} be such that Ri ∩ Ui = ∅, for each 1 ≤ i ≤ k,
let [ciRi

]ki=1 and [diUi
]ki=1 be two disjoint sequences of partial binary prints, and

let δ be the signed formula X:θ(�([ϕi]
k
i=1)). We say that [ciRi

]ki=1 entails [diUi
]ki=1

with respect to δ when, for every sequence [vi]
k
i=1 of binary prints satisfying δ,

if [vi]
k
i=1 extends [ciRi

]ki=1 then [vi]
k
i=1 extends [diUi

]ki=1.
We now produce elimination rules for each signed formula X:θ(�([ϕi]

k
i=1))

such that if θ = θ0, then � /∈ Θ. We consider, for each sequence of partial binary
prints [ciRi

]ki=1 that satisfies X:θ(�([ϕi]
k
i=1)), the following rule:

(L.Rθ�X [ciRi
]ki=1) X:θ(�([ϕi]

j
i=1)) & (&[ci

S
Ri

(ϕi)]
k
i=1) =⇒ &[di

S
Ui

(ϕi)]
k
i=1

where [diUi
]ki=1 is the largest sequence of partial binary prints entailed by [ciRi

]ki=1

with respect to X:θ(�([ϕi]
k
i=1)). That is to say that diUi

extends any other se-
quence of partial binary prints entailed by [ciRi

]ki=1 with respect to the signed
formula. Note that such a largest partial binary print is well-defined. Given the
fact that the signed formula is satisfiable, any two entailed sequences of partial
binary prints [eiVi

]ki=1 and [fiWi
]ki=1 are compatible, i.e., for each i, if j ∈ Vi∩Wi

then eij = fij , and can thus be joined into [giVi∪Wi
]ki=1 such that, for each i,

gij = eij if j ∈ Vi and gij = fij if j ∈ Wi. Clearly, [giVi∪Wi
]ki=1 extends both

sequences and is also entailed by [ciRi
]ki=1 with respect to the signed formula.

The set of elimination rules listed above might contain a lot of redundancies.
We can see an elimination rule as a pair of sets 〈Π1, Π2〉 where Π1 contains the
signed formulas in the antecedent and Π2 the signed formulas in the succedent
of the rule. In this case, we say that a rule (∆1, ∆2) is redundant in a system T
if there is a different rule (Γ1, Γ2) in T such that: (i) Γ1 ⊆ ∆1; and (ii) ∆2 ⊆ Γ2.

Finally, closure rules look precisely as in the system of [4]. We briefly explain
the procedure below, for the sake of self-containment.

We consider first the usual classic-like closure rule:

(L.C0) F:ϕ & T:ϕ =⇒ >

Furthermore, we have to consider the unrealizable binary prints. Let CS =
BP \ {v | v ∈ Vn} be the set of all the bivalent sequences that are not pro-
duced as binary prints of truth-values of L. Intuitively, any closuring sequence
c ∈ CS brings about information that is unobtainable allowing one thus to close
a tableau branch that contains it. Information, even if partial, leading unambigu-
ously to a sequence in CS should always give rise to a closed tableau. Indeed,

closuring information is carried by any partial binary print cR such that all of
its 2s+1−Card(R) possible total extensions are in CS. Hence, it would be reason-
able to add a different closure rule for each such partial closuring information.
However, it suffices to take into account just the minimal closuring situations,
that is, closuring partial sequences cR that cannot be obtained as extensions
of any other closuring partial sequence. In general, where cR = [cr]r∈R is some
partial binary print, we write cSR(ϕ) = [s(cr):θr(ϕ)]r∈R for the linguistic 2-signed
version of such sequence, where s(cr) = T if cr = T and s(cr) = F otherwise.
Accordingly, for each minimal closuring partial binary print cR, we consider an
additional closure rule:

(L.Ck) &
(
cSR(ϕ)

)
=⇒ >

Finally, we get further closure rules as particular cases in the production of
elimination rules. Namely, we need to consider when the formula X:θ(�([ϕi]

k
i=1))

is not satisfiable. For any such a case, we consider the additional closure rule:

(L.Cθ�X) X:θ(�([ϕi]
k
i=1)) =⇒ >

We can now define our full cut-based tableau system.

Definition 1. The tableau system T cut(L, Θ) for the logic L with respect to Θ
is composed of rule (L.Cut), non-redundant elimination rules (L.Rθ�V [ciRi

]ji=1),

and closure rules (L.C0), (L.Ck), (L.Cθ�X) defined as above.

Tableaux are built as usual, by applying the above rules, given an initial
sequence of 2-signed formulas, and a branch is said to be closed if its closure is
obtained by the application of any of the (Ck) rules, including (C0), or any Cθ�X
rule. Branches that are not closed are said to be open. A tableau is said to be
closed in case all of its branches are closed.

4.2 Properties

We will now show the soundness and completeness of our cut-based tableau
systems T cut(L, Θ).

As usual, we say that the system is sound if the root of any closed tableau is
unsatisfiable. Conversely, we say that the system is complete if every unsatisfiable
finite set of signed formulas is the root of some closed tableau.

Theorem 1. The tableau system T cut(L, Θ) is sound and complete.

For lack of space, the proof of soundness and completeness of T cut(L, Θ) is
shown in the Appendix. Soundness follows almost immediately by construction.
The completeness proof proceeds by showing that the cut-based systems we
defined can derive each of the rules of the cut-free systems T (L, Θ) from [3, 4].
The strategy used in the proof is simple but often builds unnecessarily complex
tableaux. Below, when we study the proof complexity of our cut-based systems,
we will show that such proofs can be significantly simplified. In any case, most

importantly, the proof of Theorem 1 also shows the completeness of the analytic
version of our cut-based systems, i.e., a restriction that allows applications of
cut only to Θ-subformulas of the formulas occurring in the root of the tree.

Corollary 1. The analytic restriction of T cut(L, Θ) is complete.

In the light of the analiticity result in Corollary 1, the cut-based tableau
system T cut(L, Θ) can be used as a decision procedure for the logic L. Since finite-
valued logics are already known to be decidable by the ‘brute force’ truth-table
method, it will be interesting to know more about the computational complexity
of the decision procedure associated to T cut(L, Θ). As in the case of the KE
system for classical logic (see [5]), it is expectable that our cut-based tableaux for
finite-valued logics fare significantly better than conventional tableaux in terms
of proof complexity, and in general not worse than the truth-table method. We
recall from [7] some typical complexity measures to be used below.

Definition 2. The size of a tableau π, denoted by |π| is the total number of
signed formulas occurring in π. The λ-complexity of a tableau π, denoted by
λ(π), is the number of nodes in π.The ρ-complexity of a tableau π, denoted by
ρ(π), is the maximum number of formulas in a node of π.

Clearly, the following relation holds: |π| ≤ λ(π) · ρ(π). Note that in the case of
a tableau π produced within T cut(L, Θ), the ρ-complexity of π is bounded by
ρ(π) ≤ k(s+ 1), where s+ 1 is the size of Θ and k is the maximum arity of any
connective from the alphabet of L.

The following theorem shows that the cut-based tableau systems given by
Definition 1 can polynomially simulate (p-simulate) the truth-table method.
Again, the proof can be found in the Appendix.

Theorem 2. Given a valid signed formula X:ϕ of L with size a and containing
v distinct atoms, there is a refutation π of XC :ϕ in T cut(L, Θ) of complexity
λ(π) = O(s · a · 2s·v).

We can further show that T cut(L, Θ) is not worse than T (L, Θ). Intuitively,
we must be able to reproduce efficiently in T cut(L, Θ) any proof done within
T (L, Θ), and in particular more efficiently than we managed to do in the proof
of Theorem 1. To illustrate how we proceed, we show in Figure 2 in the Appendix
how it is possible to efficiently simulate in the cut-based tableau system for L3

(Section 3) the branching rule for F:p ⊃ q (Example 2). The proof of the following
theorem (also in Appendix) uses a similar strategy.

Theorem 3. For every proof π in the system T (L, Θ), there exists a proof πcut

with the same root in the system T cut(L, Θ) such that |πcut| ≤ |π|.

The existence of extremely bad cases, in general, for T (L, Θ) is very likely,
although exploring that path is out of the scope of this paper. Together with the
above results, one would then certainly expect to be able to show, as in the case
of classical logic, that the cut-based systems allow in general for a significantly
better performance.

5 Conclusions

Other paths could have been explored for defining appropriate cut-based versions
of the tableau systems in [3, 4]. Yet, we believe that the path explored here
achieves a good trade-off between efficiency of proof construction and usability
of the system. On what concerns the first aspect, as it is common in this area, we
measured efficiency in terms of size of the tableaux produced, by having in mind,
as a minimum requirement, that p-simulation of truth-tables must hold. Clearly,
the use of a larger number of rules would help in this sense; in particular, we
could add a closure rule for each unsatisfiable situation arising from the analysis
of truth-tables, as described in Section 3 and formalized in Section 4. This would
in principle reduce —but asymptotically not in any significant way— the size of
the closed tableaux built as in the proof of Theorem 2, since each unsatisfiable
branch could be closed immediately. A further option would consist in allowing
only elimination rules such that all the immediate subformulas are involved in
the rule, either in the antecedent or in the succedent. As an example, the rule
(L3.⊃ 1) would not be allowed in the system of Section 3. The systems resulting
from such approach allow for the p-simulation of the truth-table method (the
procedure described in the proof of Theorem 2 can still be applied) and have
the advantage of facilitating proof search, in the sense that for each formula in
a tableau one needs to apply at most one elimination rule. A drawback of such
systems is that they tend to require more uses of cut, e.g., the formula in the
example of Figure 1 (see the Appendix) would not have a linear closed tableau.

On what concerns readability and compactness of the system, we mainly tried
to minimize the number of rules and the number of formulas per rule. With such
goal in mind, further simplifications could be proposed. As an example, one can
notice that the rule (L3.⊃ 2) might be rewritten as

F:ϕ1 ⊃ ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1

since the other formulas in the succedent may be obtained by an application of
(L3.⊃ 1). By generalizing such simplifications, one would obtain a more econom-
ical system for which, however, the result of Theorem 2 would not hold. Finally,
we note that the proof of Theorem 2 suggests a very simple decision procedure,
which is enough for p-simulating truth-tables. However, in general there might
be better heuristics for guiding the construction of a tableau. For example, the
canonical procedure given in [7] for the KE system for classical logic coincides,
in essence, with the procedure we adopted in the proof of Theorem 3.

As we have seen, the syntactic encoding of the truth-tabular semantics pre-
supposed by our classic-like approach to cut-based tableaux generates in prin-
ciple a multiplication of the number of rules. Moreover, in the resulting tableau
systems, rules contain a number of expressions in the antecedent which need to
be simultaneously matched to the nodes of a given branch in order to be applied.
Even though proof-complexity theorists do not in general take into account the
costs implicit in the use of a deductive system with a large number of rules and
with rules which require a lot of pattern-matching effort, and we have here done
our study in accordance with that tradition, one might also think it wiser to
measure such costs in calculating the efficiency of a given proof system.

Acknowledgments. The third author thanks the support of FCT and FEDER
via the projects PEst-OE/EEI/LA0008/2011 of IT, and UTAustin/MAT/0057/
2008 of IST, as well as of the PQDR and GeTFun initiatives of SGIQ.

References

1. George Boolos. Don’t eliminate cut. Journ. of Phil. Logic, 13:373–378, 1984.
2. Carlos Caleiro, Walter Carnielli, Marcelo E. Coniglio, and João Marcos. Two’s

company: “The humbug of many logical values”. In J.-Y. Béziau, editor, Log.
Universalis, pages 169–189. Birkhäuser Verlag, Basel, Switzerland, 2005.

3. Carlos Caleiro and João Marcos. Classic-like analytic tableaux for finite-valued
logics. In H. Ono et al, editor, Proc. of WoLLIC 2009, volume 5514 of Lect. Notes
in AI, pages 268–280. Springer, 2009.

4. Carlos Caleiro and João Marcos. Many-valuedness meets bivalence: Using logical
values in an effective way. J. of Multiple-Valued Log. and Soft Comp., 18, 2012.

5. Marcello D’Agostino. Investigations into the complexity of some propositional
calculi. PRG Techn. Monogr. 88, Oxford Univ., Computing Lab., Oxford, 1990.

6. Marcello D’Agostino. Are tableaux an improvement on truth-tables? Cut-free
proofs and bivalence. Journ. of Log., Lang., and Inform., 1:235–252, 1992.

7. Marcello D’Agostino. Tableau methods for classical propositional logic. In Hand-
book of Tableau Methods, pages 45–123. Kluwer Academic Publishers, 1999.

8. Marcello D’Agostino and Marco Mondadori. The taming of the cut: Classical
refutations with analytic cut. Journ. of Log. and Comp., 4(3):285–319, 1994.

9. Marcelo Finger and Dov Gabbay. Cut and pay. Journ. of Logic, Language and
Information, 15:195–218, 2006.

10. João Marcos and Dalmo Mendonça. Towards fully automated axiom extraction for
finite-valued logics. In W. Carnielli et al, editor, The Many Sides of Logic, pages
425–440. College Publications, London, 2009.

Appendix
On tableaux for L3.

combination ϕ1 θ(ϕ1) ϕ2 θ(ϕ2) ϕ1 ⊃ ϕ2

0 F F F F T

1 F F F T T

2 F F T F –

3 F F T T T

4 F T F F F

5 F T F T T

6 F T T F –

7 F T T T T

8 T F F F –

9 T F F T –

10 T F T F –

11 T F T T –

12 T T F F F

13 T T F T F

14 T T T F –

15 T T T T T

Table 2. The bivalent version of ⊃

(L3.⊃ 1∗) F:ϕ1 ⊃ ϕ2 =⇒ T:θ(ϕ1) & F:ϕ2

(L3.⊃ 2∗) F:ϕ1 ⊃ ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(L3.⊃ 3∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1) & F:ϕ2

(L3.⊃ 4∗) F:ϕ1 ⊃ ϕ2 & F:ϕ2 =⇒ T:θ(ϕ1)

(L3.⊃ 5∗) F:ϕ1 ⊃ ϕ2 & F:ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1)

(L3.⊃ 6∗) F:ϕ1 ⊃ ϕ2 & F:ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1)

(L3.⊃ 7∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) =⇒ F:ϕ2

(L3.⊃ 8∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(L3.⊃ 9∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & T:θ(ϕ2) =⇒ T:ϕ1 & F:ϕ2

(L3.⊃ 10∗) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1

(L3.⊃ 11∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 =⇒ T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2)

(L3.⊃ 12∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(L3.⊃ 13∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:ϕ2 =⇒ T:θ(ϕ1) & F:θ(ϕ2)

(L3.⊃ 14∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1)

(L3.⊃ 15∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) =⇒ F:ϕ2 & F:θ(ϕ2)

(L3.⊃ 16∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(L3.⊃ 17∗) F:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & F:ϕ2 =⇒ F:θ(ϕ2)

(L3.⊃ 18∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 =⇒ T:θ(ϕ1) & F:ϕ2

(L3.⊃ 19∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(L3.⊃ 20∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ2) =⇒ T:θ(ϕ1) & F:ϕ2

(L3.⊃ 21∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:ϕ2 =⇒ T:θ(ϕ1)

(L3.⊃ 22∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:ϕ2 & F:θ(ϕ2) =⇒ T:θ(ϕ1)

(L3.⊃ 23∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & F:ϕ2 & T:θ(ϕ2) =⇒ T:θ(ϕ1)

(L3.⊃ 24∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) =⇒ F:ϕ2

(L3.⊃ 25∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(L3.⊃ 26∗) F:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & T:θ(ϕ2) =⇒ F:ϕ2

(L3.⊃ 27∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1 & F:θ(ϕ1) & F:ϕ2

(L3.⊃ 28∗) T:ϕ1 ⊃ ϕ2 & F:ϕ2 =⇒ F:ϕ1

(L3.⊃ 29∗) T:ϕ1 ⊃ ϕ2 & F:ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1 & F:θ(ϕ1)

(L3.⊃ 30∗) T:ϕ1 ⊃ ϕ2 & F:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(L3.⊃ 31∗) T:ϕ1 ⊃ ϕ2 & T:ϕ2 =⇒ T:θ(ϕ2)

(L3.⊃ 32∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) =⇒ F:ϕ1

(L3.⊃ 33∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ1 & F:ϕ2

(L3.⊃ 34∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:θ(ϕ2) =⇒ F:ϕ1

(L3.⊃ 35∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:ϕ2 =⇒ F:ϕ1

(L3.⊃ 36∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1

(L3.⊃ 37∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(L3.⊃ 38∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(L3.⊃ 39∗) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(L3.⊃ 40∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) =⇒ T:θ(ϕ2)

(L3.⊃ 41∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(L3.⊃ 42∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 & T:θ(ϕ2) =⇒ F:ϕ1

(L3.⊃ 43∗) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)

(L3.⊃ 44∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ2) =⇒ F:θ(ϕ1) & F:ϕ2

(L3.⊃ 45∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:ϕ2 & F:θ(ϕ2) =⇒ F:θ(ϕ1)

(L3.⊃ 46∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:ϕ2 =⇒ T:θ(ϕ2)

(L3.⊃ 47∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ1) & F:θ(ϕ2) =⇒ F:ϕ2

(L3.⊃ 48∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & F:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)

(L3.⊃ 49∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) =⇒ T:θ(ϕ2)

(L3.⊃ 50∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & F:ϕ2 =⇒ T:θ(ϕ2)

(L3.⊃ 51∗) T:ϕ1 ⊃ ϕ2 & F:ϕ1 & T:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)

(L3.⊃ 52∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 =⇒ T:θ(ϕ1) & T:ϕ2 & T:θ(ϕ2)

(L3.⊃ 53∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ2) =⇒ T:θ(ϕ1) & T:ϕ2

(L3.⊃ 54∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:ϕ2 =⇒ T:θ(ϕ1) & T:θ(ϕ2)

(L3.⊃ 55∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:ϕ2 & T:θ(ϕ2) =⇒ T:θ(ϕ1)

(L3.⊃ 56∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) =⇒ T:ϕ2 & T:θ(ϕ2)

(L3.⊃ 57∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & T:θ(ϕ2) =⇒ T:ϕ2

(L3.⊃ 58∗) T:ϕ1 ⊃ ϕ2 & T:ϕ1 & T:θ(ϕ1) & T:ϕ2 =⇒ T:θ(ϕ2)

Table 3. Rules derived from the truth-table for ⊃.

(L3.¬1) F:¬ϕ1 =⇒ T:θ(ϕ1)

(L3.¬2) T:¬ϕ1 =⇒ F:ϕ1 & F:θ(ϕ1)

(L3.⊃ 1) F:ϕ1 ⊃ ϕ2 =⇒ T:θ(ϕ1) & F:ϕ2

(L3.⊃ 2) F:ϕ1 ⊃ ϕ2 & T:θ(ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1) & F:ϕ2

(L3.⊃ 3) F:ϕ1 ⊃ ϕ2 & F:ϕ1 =⇒ T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2)

(L3.⊃ 4) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ2) =⇒ F:ϕ1 & F:θ(ϕ1) & F:ϕ2

(L3.⊃ 5) T:ϕ1 ⊃ ϕ2 & F:ϕ2 =⇒ F:ϕ1

(L3.⊃ 6) T:ϕ1 ⊃ ϕ2 & T:ϕ2 =⇒ T:θ(ϕ2)

(L3.⊃ 7) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) =⇒ F:ϕ1

(L3.⊃ 8) T:ϕ1 ⊃ ϕ2 & F:θ(ϕ1) & T:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(L3.⊃ 9) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) =⇒ T:θ(ϕ2)

(L3.⊃ 10) T:ϕ1 ⊃ ϕ2 & T:θ(ϕ1) & F:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(L3.⊃ 11) T:ϕ1 ⊃ ϕ2 & T:ϕ1 =⇒ T:θ(ϕ1) & T:ϕ2 & T:θ(ϕ2)

(L3.θ¬1) F:θ(¬ϕ1) =⇒ T:ϕ1 & T:θ(ϕ1)

(L3.θ¬2) T:θ(¬ϕ1) =⇒ F:ϕ1

(L3.θ ⊃ 1) F:θ(ϕ1 ⊃ ϕ2) =⇒ T:ϕ1 & T:θ(ϕ1) & F:ϕ2 & F:θ(ϕ2)

(L3.θ ⊃ 2) T:θ(ϕ1 ⊃ ϕ2) & F:θ(ϕ2) =⇒ F:ϕ1 & F:ϕ2

(L3.θ ⊃ 3) T:θ(ϕ1 ⊃ ϕ2) & T:ϕ2 =⇒ T:θ(ϕ2)

(L3.θ ⊃ 4) T:θ(ϕ1 ⊃ ϕ2) & F:θ(ϕ1) =⇒ F:ϕ1

(L3.θ ⊃ 5) T:θ(ϕ1 ⊃ ϕ2) & F:θ(ϕ1) & T:ϕ2 =⇒ F:ϕ1 & T:θ(ϕ2)

(L3.θ ⊃ 6) T:θ(ϕ1 ⊃ ϕ2) & T:ϕ1 =⇒ T:θ(ϕ1) & T:θ(ϕ2)

(L3.θ�1) F:θ(�(ϕ1)) =⇒ F:ϕ1 & F:θ(ϕ1)

(L3.θ�2) T:θ(�(ϕ1)) =⇒ T:θ(ϕ1)

Table 4. Elimination rules of the tableau system for L3.

In Figure 1, we get (2.1) and (2.2) by applying rule (L3.⊃1) to the formula (1).
The same rule applies to (2.2) to originate (3.1) and (3.2). An application of
(L3.⊃3) to (1) and (3.2) gives (4.1). Then we apply (L3.θ ⊃1) to (4.1) and get
(5.1) and (5.2). We close the tableau by applying (L3.C0) to (2.1) and (5.2).
Note that the proof-tree is linear as no use of (L3.Cut) was necessary.

(1) F:(p0 ⊃ (p1 ⊃ p0))

(2.1) T:θ(p0)

(2.2) F:(p1 ⊃ p0)

(3.1) T:θ(p1)

(3.2) F:p0

(4.1) F:θ(p1 ⊃ p0)

(5.1) T:p1
(5.2) F:θ(p0)

>

Fig. 1. A refutation of p0 ⊃ (p1 ⊃ p0) in L3

Proof of Theorem 1 [soundness and completeness]. For soundness, it is
sufficient to show that if an homomorphic n-valuation § : S → Vn satisfies the
head of a rule then it must satisfy one of the branches of its succedent. This is
clearly the case for the cut rule. The property also holds for the closure rules, as
shown in [3, 4]. We are thus left with proving the claim for the linear elimination
rules (L.Rθ�X [ciRi

]ki=1), which holds basically by construction. Indeed, if § satisfies

X:θ(�([ϕi]
j
i=1)) and [ci

S
Ri

(ϕi)]
k
i=1 then § must also satisfy [di

S
Ui

(ϕi)]
k
i=1 because

[ci
S
Ri

(ϕi)]
k
i=1 entails [di

S
Ui

(ϕi)]
k
i=1 with respect to X:θ(�([ϕi]

j
i=1)).

We prove completeness of T cut(L, Θ) by exploiting the completeness of the
tableau system T (L, Θ) defined in [3, 4]. Clearly, it is enough to show that all the
rules of T (L, Θ) are derivable in T cut(L, Θ). Closure rules are common to both
systems. Thus, we just need to show that it is possible to simulate in T cut(L, Θ)
the branching elimination rules of T (L, Θ), extracted as explained in Section 2.
Let us pick one arbitrary such rule

X:θ(�([ϕi]
k
i=1)) =⇒ || Bθ�X ([ϕi]

k
i=1)

where we recall that Bθ�X ([ϕi]
k
i=1) = {&[vi

S(ϕi)]
k
i=1 | t(θ̂(�̂([vi]

k
i=1))) = X}.

Given the root X:θ(�([ϕi]
k
i=1)), we start by using (L.Cut) to cut on all

the immediate Θ-subformulas of �([ϕi]
k
i=1). This will produce 2k(s+1) branches

corresponding to all possible combinations of classical values for θj(ϕi) with
j = 0, 1, . . . , s and i = 1, . . . , k. The branches that correspond to combina-
tions that satisfy the head of the rule coincide precisely with the elements of
Bθ�X ([ϕi]

k
i=1). Thus we are left with showing that the remaining branches can

all be closed. Some of these branches may close simply by means of an applica-
tion of some (L.Ck) rule because they correspond to combinations that include
some unrealizable binary print (as the dashed lines in Table 2). Hence, we only
need to analyze what happens with the branches corresponding to valid com-
binations that assign the value XC to θ(�([ϕi]

k
i=1)). Consider the sequence of

elements in one such branch and take the largest prefix of the obtained sequence
that turns X:θ(�([ϕi]

k
i=1)) satisfiable. It is, of course, a proper prefix. Assume

also that Y:θj(ϕi) is the next element in the sequence. Clearly, the prefix cor-
responds to some sequence [ciRi

]ki=1 of partial binary prints, whose associated

rule (L.Rθ�X [ciRi
]ki=1) will produce YC :θj(ϕi) (or a simpler rule if this one is

redundant). Finally, we may close the branch using the rule (L.C0). ut

Proof of Theorem 2 [proof complexity]. First we apply (L.Cut) to all
the atomic Θ-subformulas of ϕ. This will generate a tree with 2(s+1).v branches.
Then, for each such branch, we proceed by applying (L.Cut) to aΘ-subformula ϕi
of ϕ such that all of its immediate Θ-subformulas are already in the branch. By
construction, such a ϕi exists. We note that at least one of the two branches
thereby generated gives rise to a contradiction and may be closed by applying
at most one elimination rule and one closure rule. Indeed, by the definition of
the system, either the system contains an elimination rule for ϕi whose appli-
cation gives rise to a contradiction on one of the Θ-subformulas of ϕi or, as a
trivial case, ϕi is of the form θ(�(. . .)) and we can apply a closure rule (L.Cθ�X),
that is, either F:ϕi =⇒ > or T:ϕi =⇒ >. If one of the branches does not close,
we can reiterate on it the same procedure, by applying (L.Cut) to a further
Θ-subformula of ϕ such that all its immediate Θ-subformulas are in the branch.

We conclude by noticing that all the initial 2(s+1).v branches may be closed
by following the above described procedure, i.e., by applying (L.Cut) to at most
the Θ-subformulas of ϕ, and thus linearly in (s+ 1).a. ut

Proof of Theorem 3 [speedup]. For every proof π in the system T (L, Θ),
there exists a proof πcut with the same root in the system T cut(L, Θ) such that
|πcut| ≤ |π|. Building upon the proof of Theorem 1, it is enough to show that each
branching elimination rule of T (L, Θ) can be efficiently derived in the cut-based
system. Let us consider an arbitrary such rule

X:θ(�([ϕi]
k
i=1)) =⇒ || Bθ�X ([ϕi]

k
i=1)

where Bθ�X ([ϕi]
k
i=1) = {&[vi

S(ϕi)]
k
i=1 | t(θ̂(�̂([vi]

k
i=1))) = X}, as from Section 2.

Starting with root X:θ(�([ϕi]
k
i=1)), in T cut(L, Θ) we can follow a procedure

consisting in applying linear elimination rules for X:θ(�([ϕi]
k
i=1)) whenever pos-

sible, or (L.Cut) on some missing Θ-subformula if none of the elimination rules
can be applied. It is easy to see that, by construction, the amount of information
in the simulating tree is not bigger than the one produced by the rule, i.e., each
formula in such a tree also occurs in at least one branch of the rule. ut

On the simulation of the cut-free systems. The tree on the left of Figure 2
represents an application of the rule obtained in Section 2, the one on the right
represents its efficient simulation by means of rules of the cut-based system. In
particular, we use (L3.⊃1) to derive (2.1) and (2.2); then we cut on p and obtain
(3.1) and (3.2); finally, we obtain (4) by using (L3.⊃3) on (1) and (3.1) and we
obtain (5.1), (5.2) by a further application of the cut rule.

F:p ⊃ q

F:p

T:θ(p)

F:q

F:θ(q)

T:p

T:θ(p)

F:q

F:θ(q)

T:p

T:θ(p)

F:q

T:θ(q)

(1) F:p ⊃ q

(2.1) T:θ(p)

(2.2) F:q

(3.1)F:p

(4)F:θ(q)

(3.2)T:p

(5.1)F:θ(q) (5.2)T:θ(q)

Fig. 2. Finding efficient simulations of branching elimination rules for L3

